
29.03.2021 0x Exchange v4 | ConsenSys Diligence

https://consensys.net/diligence/audits/2020/12/0x-exchange-v4/ 1/19

0x Exchange v4

Date December 2020

Lead Auditor Steve Marx

Co-auditors Nicholas Ward

1 Executive Summary
This report presents the results of our engagement with 0x Labs to review
version 4 of the 0x Exchange smart contracts.

The review was conducted by Steve Marx and Nicholas Ward over the course
of four person-weeks between November 30th and December 11th, 2020.

2 Scope
Our review focused on the commit hash 475b608338561a1dce3199bfb9fb59ee9372149b

and was limited to the protocol v4 smart contracts (contracts/zero-ex in the
linked repository). Notably, the scope excluded all transformer contracts,
staking contracts, and any existing live deployments of the protocol
contracts. The complete list of �iles in scope can be found in the Appendix.

https://github.com/0xProject/protocol/tree/475b608338561a1dce3199bfb9fb59ee9372149b
https://pages.consensys.net/diligence-1-day-spot-check

29.03.2021 0x Exchange v4 | ConsenSys Diligence

https://consensys.net/diligence/audits/2020/12/0x-exchange-v4/ 2/19

3 System Overview
0x provides detailed documentation of the system. In brief:

The exchange proxy is an e�icient upgradeability mechanism that allows
different features to be deployed, upgraded, and rolled back on a
function-by-function basis.

The functionality behind this proxy enables traders (market makers and
takers) to swap arbitrary ERC20 tokens at prices they set and to interact
with 1st-party and 3rd-party automated liquidity providers (such as
Uniswap or 0x’s PLP).

Market makers interact with the system by offering cryptographically
signed trades.

Takers accept a market maker’s trade by submitting it to the exchange,
either directly or as a metatransaction through a relayer.

4 Security Specification
This section describes, from a security perspective, the expected behavior
of the system under audit. It is not a substitute for documentation. The
purpose of this section is to identify speci�ic security properties that were
validated by the audit team.

4.1 Actors

The relevant actors are listed below with their respective abilities:

Market makers provide liquidity to the system. They cryptographically
sign orders, which offer to trade a quantity of a maker token for a
different quantity of a taker token. Makers can offer limit orders and RFQ
orders. These are broadly similar, but the latter is restricted in terms of
what transaction origin can take the trade.

Takers accept the trades offered by market makers. They submit these
trades to a smart contract, which settles the trades by transferring
tokens between the taker and maker. Takers can also trade with external
entities via functions like sellToUniswap() , which directly trades with the
Uniswap automated liquidity protocol.

https://0xprotocol.readthedocs.io/en/latest/

29.03.2021 0x Exchange v4 | ConsenSys Diligence

https://consensys.net/diligence/audits/2020/12/0x-exchange-v4/ 3/19

Relayers The exchange supports metatransactions, where a third-party
relayer submits a transaction on behalf of a trader.

The system owner has special privileges, such as deploying new
features. In the deployed con�iguration, the owner is a multisig wallet
that implements a time lock to prevent sudden unexpected changes to
the system.

4.2 Trust Model

In any system, it’s important to identify what trust is expected/required
between various actors. For this audit, we established the following trust
model:

The exchange owner is a multisig wallet controlled by 0x Labs. This
wallet and the associated governance system are out of scope for this
audit, but it is expected that traders do not need to trust 0x Labs.
Changes are voted on by the community and then bound to a signi�icant
time lock, which gives users a chance to see changes coming before
they are applied.

Traders (both makers and takers) should not need to trust each other. If a
maker signs an order, they expect that funds can only be transferred
away from them under the terms of that order. Similarly, a taker only pays
when the trade happens as speci�ied in the order. No one should be able
to cause a trader to participate in a trade they didn’t agree to.

4.3 Security Properties

The following is a non-exhaustive list of security properties that were veri�ied
in this audit:

Orders should not be able to be over�illed (�illed beyond the taker or
maker amounts speci�ied).

Only orders properly signed by their makers should be �illable.

A given metatransaction should only be executed once.

Canceled or expired orders should not be �illed.

Calls to external systems (e.g. Uniswap, PLP, and transformers) should be
guarded such that only outcomes acceptable to the taker can occur.

Protocol fees are taken when limit orders are �illed. These fees are then
sent to a staking contract, which is out of scope for this audit.

29.03.2021 0x Exchange v4 | ConsenSys Diligence

https://consensys.net/diligence/audits/2020/12/0x-exchange-v4/ 4/19

5 Recommendations
5.1 Remove the unused
MetaTransactionFeature._executeMetaTransaction
()

function

Description

This function appears to be unused:

code/contracts/zero-
ex/contracts/src/features/MetaTransactionsFeature.sol:L190-L214

/// @dev Execute a meta-transaction via `sender`. Privileged variant.
/// Only callable from within.
/// @param sender Who is executing the meta-transaction.
/// @param mtx The meta-transaction.
/// @param signature The signature by `mtx.signer`.
/// @return returnResult The ABI-encoded result of the underlying call.
function _executeMetaTransaction(
 address sender,
 MetaTransactionData memory mtx,
 LibSignature.Signature memory signature
)
 public
 payable
 override
 onlySelf
 returns (bytes memory returnResult)
{
 ExecuteState memory state;
 state.sender = sender;
 state.mtx = mtx;
 state.hash = getMetaTransactionHash(mtx);
 state.signature = signature;

 return _executeMetaTransactionPrivate(state);
}

Recommendation

Unless there’s a justi�ication for its existence, this unused function should be
removed.

29.03.2021 0x Exchange v4 | ConsenSys Diligence

https://consensys.net/diligence/audits/2020/12/0x-exchange-v4/ 5/19

5.2 Remove stale comments ✓ Fixed

Resolution

This is �ixed in 0xProject/protocol@ 437a3b0 .

Description

There are several comments throughout the codebase that applied to an
earlier version of the code and are no longer accurate.

Examples

FeeCollector.sol

code/contracts/zero-ex/contracts/src/external/FeeCollector.sol:L60

// Leave 1 wei behind to avoid expensive zero-->non-zero state change.

UniswapFeature.sol

code/contracts/zero-ex/contracts/src/features/UniswapFeature.sol:L400-
L401

// Cap the gas limit to prvent all gas being consumed
// if the token reverts.

Recommendation

Stale comments should be removed or updated.

5.3 UniswapFeature : Revert if msg.value is non-zero
but user is not selling ether ✓ Fixed

Resolution

https://github.com/0xProject/protocol/commit/437a3b048d2ca0b489fe581acd2b4578c7a557f8

29.03.2021 0x Exchange v4 | ConsenSys Diligence

https://consensys.net/diligence/audits/2020/12/0x-exchange-v4/ 6/19

This is �ixed in 0xProject/protocol@ 437a3b0 .

Description

If a user calls UniswapFeature.sellToUniswap() and is attempting to sell ether for
any token, the function reverts if msg.value != sellAmount . However, there is no
check on msg.value if the user is attempting to sell any other token. This could
lead to stuck funds if a user erroneously supplies ether.

Below is the check made when the caller is selling ether for other tokens:

code/contracts/zero-ex/contracts/src/features/UniswapFeature.sol:L179-
L181

if iszero(eq(callvalue(), sellAmount)) {
 revert(0, 0)
}

Recommendation

Add a check that msg.value == 0 when the user is not selling ether.

6 Findings
Each issue has an assigned severity:

Minor issues are subjective in nature. They are typically suggestions
around best practices or readability. Code maintainers should use their
own judgment as to whether to address such issues.

Medium issues are objective in nature but are not security vulnerabilities.
These should be addressed unless there is a clear reason not to.

Major issues are security vulnerabilities that may not be directly
exploitable or may require certain conditions in order to be exploited. All
major issues should be addressed.

Critical issues are directly exploitable security vulnerabilities that need to
be �ixed.

https://github.com/0xProject/protocol/commit/437a3b048d2ca0b489fe581acd2b4578c7a557f8

29.03.2021 0x Exchange v4 | ConsenSys Diligence

https://consensys.net/diligence/audits/2020/12/0x-exchange-v4/ 7/19

6.1 Ether temporarily held during transactions can be
stolen via reentrancy Major ✓ Fixed

Resolution

This is addressed in 0xProject/protocol@ 437a3b0 by transferring exactly
msg.value in sellToLiquidityProvider() . This adequately protects against this

speci�ic vulnerability.

The client team decided to leave the accounting in MetaTransactionsFeature

as-is due to the complexity/expense of tracking ether consumption more
strictly.

Description

The exchange proxy typically holds no ether balance, but it can temporarily
hold a balance during a transaction. This balance is vulnerable to theft if the
following conditions are met:

�. No check at the end of the transaction reverts if ether goes missing,

�. reentrancy is possible during the transaction, and

�. a mechanism exists to spend ether held by the exchange proxy.

We found one example where these conditions are met, but it’s possible that
more exist.

Example

MetaTransactionsFeature.executeMetaTransaction() accepts ether, which is used to
pay protocol fees. It’s possible for less than the full amount in msg.value to be
consumed, which is why the function uses the refundsAttachedEth modi�ier to
return any remaining ether to the caller:

code/contracts/zero-
ex/contracts/src/features/MetaTransactionsFeature.sol:L98-L106

https://github.com/0xProject/protocol/commit/437a3b048d2ca0b489fe581acd2b4578c7a557f8
https://github.com/0xProject/protocol/blob/475b608338561a1dce3199bfb9fb59ee9372149b/contracts/zero-ex/contracts/src/features/MetaTransactionsFeature.sol#L137

29.03.2021 0x Exchange v4 | ConsenSys Diligence

https://consensys.net/diligence/audits/2020/12/0x-exchange-v4/ 8/19

/// @dev Refunds up to `msg.value` leftover ETH at the end of the call.
modifier refundsAttachedEth() {
 _;
 uint256 remainingBalance =
 LibSafeMathV06.min256(msg.value, address(this).balance);
 if (remainingBalance > 0) {
 msg.sender.transfer(remainingBalance);
 }
}

Notice that this modi�ier just returns the remaining ether balance (up to
msg.value). It does not check for a speci�ic amount of remaining ether. This

meets condition (1) above.

It’s impossible to reenter the system with a second metatransaction because
executeMetaTransaction() uses the modi�ier nonReentrant , but there’s nothing

preventing reentrancy via a different feature. We can achieve reentrancy by
trading a token that uses callbacks (e.g. ERC777’s hooks) during transfers.
This meets condition (2).

To �ind a full exploit, we also need a way to extract the ether held by the
exchange proxy. LiquidityProviderFeature.sellToLiquidityProvider() provides such a
mechanism. By passing ETH_TOKEN_ADDRESS as the inputToken and an address in
the attacker’s control as the provider , an attacker can transfer out any ether
held by the exchange proxy. Note that sellToLiquidityProvider() can transfer
any amount of ether, not limited to the amount sent via msg.value :

code/contracts/zero-
ex/contracts/src/features/LiquidityProviderFeature.sol:L114-L115

if (inputToken == ETH_TOKEN_ADDRESS) {
 provider.transfer(sellAmount);

This meets condition (3).

The full steps to exploit this vulnerability are as follows:

�. A maker/attacker signs a trade where one of the tokens will invoke a
callback during the trade.

�. A taker signs a metatransaction to take this trade.

https://github.com/0xProject/protocol/blob/475b608338561a1dce3199bfb9fb59ee9372149b/contracts/zero-ex/contracts/src/features/LiquidityProviderFeature.sol#L96

29.03.2021 0x Exchange v4 | ConsenSys Diligence

https://consensys.net/diligence/audits/2020/12/0x-exchange-v4/ 9/19

�. A relayer sends in the metatransaction, providing more ether than is
necessary to pay the protocol fee. (It’s unclear how likely this situation
is.)

�. During the token callback, the attacker invokes
LiquidityProviderFeature.sellToLiquidityProvider() to transfer the excess ether

to their account.

�. The metatransaction feature returns the remaining ether balance, which
is now zero.

Recommendation

In general, we recommend using strict accounting of ether throughout the
system. If there’s ever a temporary balance, it should be accurately resolved
at the end of the transaction, after any potential reentrancy opportunities.

For the example we speci�ically found, we recommend doing strict
accounting in the metatransactions feature. This means features called via a
metatransaction would need to return how much ether was consumed. The
metatransactions feature could then refund exactly msg.value - <consumed ether>

. The transaction should be reverted if this fails because it means ether went
missing during the transaction.

We also recommend limiting sellToLiquidityProvider() to only transfer up to
msg.value . This is a form of defense in depth in case other vectors for a similar

attack exist.

6.2 UniswapFeature : Non-static call to
ERC20.allowance() Minor ✓ Fixed

Resolution

This is �ixed in 0xProject/protocol@ 437a3b0 .

Description

In the case where a token is possibly “greedy” (consumes all gas on failure),
UniswapFeature makes a call to the token’s allowance() function to check

https://github.com/0xProject/protocol/commit/437a3b048d2ca0b489fe581acd2b4578c7a557f8

29.03.2021 0x Exchange v4 | ConsenSys Diligence

https://consensys.net/diligence/audits/2020/12/0x-exchange-v4/ 10/19

whether the user has provided a token allowance to the protocol proxy or to
the AllowanceTarget . This call is made using call() , potentially allowing state-
changing operations to take place before control of the execution returns to
UniswapFeature .

code/contracts/zero-ex/contracts/src/features/UniswapFeature.sol:L373-
L377

// `token.allowance()``
mstore(0xB00, ALLOWANCE_CALL_SELECTOR_32)
mstore(0xB04, caller())
mstore(0xB24, address())
let success := call(gas(), token, 0, 0xB00, 0x44, 0xC00, 0x20)

Recommendation

Replace the call() with a staticcall() .

6.3 UniswapFeature : Unchecked returndatasize in
low-level external calls Minor ✓ Fixed

Resolution

This is �ixed in 0xProject/protocol@ 437a3b0 .

Description

UniswapFeature makes a number of external calls from low-level assembly
code. Two of these calls rely on the CALL opcode to copy the returndata to
memory without checking that the call returned the expected amount of
data. Because the CALL opcode does not zero memory if the call returns less
data than expected, this can lead to usage of dirty memory under the
assumption that it is data returned from the most recent call.

Examples

Call to UniswapV2Pair.getReserves()

https://github.com/0xProject/protocol/commit/437a3b048d2ca0b489fe581acd2b4578c7a557f8

29.03.2021 0x Exchange v4 | ConsenSys Diligence

https://consensys.net/diligence/audits/2020/12/0x-exchange-v4/ 11/19

code/contracts/zero-ex/contracts/src/features/UniswapFeature.sol:L201-
L205

// Call pair.getReserves(), store the results at `0xC00`
mstore(0xB00, UNISWAP_PAIR_RESERVES_CALL_SELECTOR_32)
if iszero(staticcall(gas(), pair, 0xB00, 0x4, 0xC00, 0x40)) {
 bubbleRevert()
}

Call to ERC20.allowance()

code/contracts/zero-ex/contracts/src/features/UniswapFeature.sol:L372-
L377

// Check if we have enough direct allowance by calling
// `token.allowance()``
mstore(0xB00, ALLOWANCE_CALL_SELECTOR_32)
mstore(0xB04, caller())
mstore(0xB24, address())
let success := call(gas(), token, 0, 0xB00, 0x44, 0xC00, 0x20)

Recommendation

Instead of providing a memory range for call() to write returndata to,
explicitly check returndatasize() after the call is made and then copy the data
into memory using returndatacopy() .

if lt(returndatasize(), EXPECTED_SIZE) {
 revert(0, 0)
}
returndatacopy(0xC00, 0x00, EXPECTED_SIZE)

6.4 Rollback functionality can lead to untested
combinations Minor Acknowledged

Resolution

From the client team:

29.03.2021 0x Exchange v4 | ConsenSys Diligence

https://consensys.net/diligence/audits/2020/12/0x-exchange-v4/ 12/19

Just like our migrations, we batch our rollbacks by release,
which enforces rolling back to known good con�igurations.

The documentation now includes an emergency playbook that describes
how rollbacks should be done.

Description

SimpleFunctionRegistry maps individual function selectors to implementation
contracts. As features are newly deployed or upgraded, functions are
registered in logical groups after a timelock enforced by the owning multisig
wallet. This gives users time to evaluate upcoming changes and stop using
the contract if they don’t like the changes.

Once deployed, however, any function can individually be rolled back
without a timelock to any previous version of that function. Users are given
no warning, functions can be rolled back to any previous implementation
(regardless of how old), and the per-function granularity means that the
con�iguration after rollback may be a never-before-seen combination of
functions.

The combinatorics makes it impossible for a user (or auditor) to be
comfortable with all the possible outcomes of rollbacks. If there are n

versions each of m functions, there are n^m combinations that could be in
effect at any moment. Some functions depend on other onlySelf functions,
so the behavior of those combinations is not at all obvious.

This presents a trust problem for users.

Recommendation

Rollback makes sense as a way to rapidly recover from a bad deployment, but
we recommend limiting its scope. The following ideas are in preferred order
(our favorite �irst):

Disallow rollback altogether except to an implementation of address(0) .
This way broken functionality can be immediately disabled, but no old
version of a function can be reinstated.

https://0xprotocol.readthedocs.io/en/latest/additional/emergency.html

29.03.2021 0x Exchange v4 | ConsenSys Diligence

https://consensys.net/diligence/audits/2020/12/0x-exchange-v4/ 13/19

Limit rollback by number of versions, e.g. only allowing rollback to the
immediately previous version of a function.

Limit rollback by time, e.g. only allowing rollback to versions in the past n
weeks.

Appendix 1 - Files in Scope
This audit covered the following �iles:

File Name SHA-1 hash

ZeroExOptimized.sol
e7e11491de1aece81c55caa1368f0d2
7c3a80633

ZeroEx.sol
ee3599a8120bf4e0d23dfd051ca191
03145a74d6

IZeroEx.sol
faa7bb1a3e210ec44be4e659a61480
8641384a60

features/INativeOrdersFeature.sol
0a9418aadddf4bd53356f562d7df0
de3e6da6c6e

features/LiquidityProviderFeature.
sol

63d02651ae4bdc9d4a0a3c1c45cf1
ed4f715b9fe

features/IMetaTransactionsFeature
.sol

4cae4935a15ccbc1be1b1566ec498d
e161f9db88

features/ILiquidityProviderFeature.
sol

a394372fee2c38140574771b935e7e
85e3202b55

features/IBootstrapFeature.sol
4ada28f1cf166a45c6816a4a8c8343
e542af7dbb

features/OwnableFeature.sol
b7c0184113283fe9d931a760725c8b
308da5c4ba

features/IOwnableFeature.sol
2e84fc1ab8130cfaabe2b9e9df75ff15
cf406f9e

features/BootstrapFeature.sol
65cf0c9cf041d6ffef455e7ec627857
e740019d3

29.03.2021 0x Exchange v4 | ConsenSys Diligence

https://consensys.net/diligence/audits/2020/12/0x-exchange-v4/ 14/19

File Name SHA-1 hash

features/IUniswapFeature.sol
8b0884c62215679ccd8820ad660b
eb4da2cff9d7

features/UniswapFeature.sol
c57720d6bb301512b0e2634ff8bb0
8cf85b2f4be

features/SignatureValidatorFeatur
e.sol

103d1d2e9f87d099bff0c45b92b5b
5b5a9906acd

features/IFeature.sol
b0941335bf210546cc0c539cd5081
469122c81ed

features/SimpleFunctionRegistryF
eature.sol

b9bf0b338aba19a6de727598ee6e6
89971671d8a

features/MetaTransactionsFeature.
sol

9acf4c2893bbe048be2134a1ba03d
d44f3491df4

features/ITokenSpenderFeature.so
l

45bf89b19de3094a98a5bc80af753
8c65ccd613e

features/NativeOrdersFeature.sol
53da6f5812dea148f32fec018cddd8
555cb0703d

features/TransformERC20Feature.
sol

dcadde7b91e198f902a71af7f8f458a
3039bddbd

features/TokenSpenderFeature.sol
b246f4f0a32f3faf3c4cf4db4780a94
b9876e60e

features/ISimpleFunctionRegistryF
eature.sol

1855f16802�bf273e4e0fca41a34c6e
ae28a2449

features/ITransformERC20Feature.
sol

93cc9efdd7be831b5061201a4414e7
36ba074ac2

features/ISignatureValidatorFeatur
e.sol

c59a306588413d3c99045d48a762
c11429f56eb2

features/libs/LibNativeOrder.sol
bf2b3834�bf107b79885670862ae17
419dafa84

features/libs/LibSignature.sol
39754070b5fca1e05cd642b9a8509
acbe64f3f85

29.03.2021 0x Exchange v4 | ConsenSys Diligence

https://consensys.net/diligence/audits/2020/12/0x-exchange-v4/ 15/19

File Name SHA-1 hash

storage/LibMetaTransactionsStora
ge.sol

e63bf052efe3214b2486f76caee6e17
8c2855161

storage/LibTransformERC20Stora
ge.sol

b3829af465d566b9e1baca6e905cf
0bd2e0f4570

storage/LibSimpleFunctionRegistr
yStorage.sol

edc9005421bc9085ae84664a8185
a62f7eef1c2b

storage/LibReentrancyGuardStora
ge.sol

8f68335f6bd36b15bc380b2e6dedf
458e1035b11

storage/LibTokenSpenderStorage.
sol

85cbb2b001867162e81506a4d1bd5
6f17b9372fc

storage/LibNativeOrdersStorage.s
ol

4c764e8bffde891bfc60d0321ac437
635fe84bc3

storage/LibStorage.sol
0f112d17cf10569ebb1d4430692017
ae9b8c64ae

storage/LibProxyStorage.sol
4f613dd79bd8d2eaff9c024c4d1526
a9e84e8c9b

storage/LibOwnableStorage.sol
f669284be001bef9545e94d8c79fe
4c9a66be898

�ixins/FixinReentrancyGuard.sol
4ac7d89eb7808088e0d61abd10dd
ca269afafda7

�ixins/FixinProtocolFees.sol
46970d1f231cdbb6f3a890d0f8d96
52c69e65bfe

�ixins/FixinTokenSpender.sol
cc5c619068c3c47076beac1988672
3b99c08e443

�ixins/FixinEIP712.sol
0a9f38ed221270c8d17a461e3e63d
007e74fe1eb

�ixins/FixinCommon.sol
4a9fa7e6f12f22a095d963b24fc5197
9e1a4d026

external/PermissionlessTransform
erDeployer.sol

8�b02f2efda6d22e5408bdcee68b7
50f80cedf4e

29.03.2021 0x Exchange v4 | ConsenSys Diligence

https://consensys.net/diligence/audits/2020/12/0x-exchange-v4/ 16/19

File Name SHA-1 hash

external/ILiquidityProviderSandbo
x.sol

70129318e68a1b505ad906bc35621
cd00436ba7e

external/TransformerDeployer.sol
f730f39c0b8dcba296917ea3aa653
497d70201df

external/LibFeeCollector.sol
019c152459e160cc0b3b438d0fc6a
531fef7ee39

external/AllowanceTarget.sol
03cf3ab3b1bb0be08e50411a6369e
3634d3701a6

external/LiquidityProviderSandbo
x.sol

be58a5d1807b08f1a113961c48e266
98310def53

external/FlashWallet.sol
6df1faa76acf249602e08cdac9b87b
7595820378

external/IAllowanceTarget.sol
55e49c6c8ddfffd90b951052ac4f21
02b31839dc

external/FeeCollectorController.so
l

893b62b0d6ad86136540430e1ab1
bea677af95ad

external/FeeCollector.sol
bc2c79e65d59219f20e51c11fdd6bd
380d574d37

external/IFlashWallet.sol
c670f0cb9b6ae1ae8edddd1d70b03
7713fdba629

migrations/LibBootstrap.sol
27928b1e31e589d0586ea310ec4aa
8b374517c3a

migrations/FullMigration.sol
ce79921725d5c137ed67b4d7c3d45
c73e7ed03b8

migrations/InitialMigration.sol
69f2e365b10c3319de1599ddab9e8
1541f41da57

migrations/LibMigrate.sol
32fda4e20e5f2efff7b8556db06f467
1531c7394

vendor/ILiquidityProvider.sol
c52b120596ca8b2e8d90939b5d46
f72850d99b61

29.03.2021 0x Exchange v4 | ConsenSys Diligence

https://consensys.net/diligence/audits/2020/12/0x-exchange-v4/ 17/19

File Name SHA-1 hash

vendor/v3/IERC20Bridge.sol
1c8c55e1a83d506eca75207a23b6b
04528b3aa5f

vendor/v3/IExchange.sol
b672e592a178b7c0e861e75d2f2d61
4ab90dcdb1

vendor/v3/IGasToken.sol
daff2216f78162c74695a4e721867d8
a1f840656

vendor/v3/IStaking.sol
e1321ee791effd3933b4ff3ae43d8a5
9dd2fe435

Appendix 2 - Disclosure
ConsenSys Diligence (“CD”) typically receives compensation from one or
more clients (the “Clients”) for performing the analysis contained in these
reports (the “Reports”). The Reports may be distributed through other means,
including via ConsenSys publications and other distributions.

The Reports are not an endorsement or indictment of any particular project
or team, and the Reports do not guarantee the security of any particular
project. This Report does not consider, and should not be interpreted as
considering or having any bearing on, the potential economics of a token,
token sale or any other product, service or other asset. Cryptographic tokens
are emergent technologies and carry with them high levels of technical risk
and uncertainty. No Report provides any warranty or representation to any
Third-Party in any respect, including regarding the bugfree nature of code,
the business model or proprietors of any such business model, and the legal
compliance of any such business. No third party should rely on the Reports in
any way, including for the purpose of making any decisions to buy or sell any
token, product, service or other asset. Speci�ically, for the avoidance of
doubt, this Report does not constitute investment advice, is not intended to
be relied upon as investment advice, is not an endorsement of this project or
team, and it is not a guarantee as to the absolute security of the project. CD
owes no duty to any Third-Party by virtue of publishing these Reports.

PURPOSE OF REPORTS The Reports and the analysis described therein are
created solely for Clients and published with their consent. The scope of our

29.03.2021 0x Exchange v4 | ConsenSys Diligence

https://consensys.net/diligence/audits/2020/12/0x-exchange-v4/ 18/19

review is limited to a review of Solidity code and only the Solidity code we
note as being within the scope of our review within this report. The Solidity
language itself remains under development and is subject to unknown risks
and �laws. The review does not extend to the compiler layer, or any other
areas beyond Solidity that could present security risks. Cryptographic tokens
are emergent technologies and carry with them high levels of technical risk
and uncertainty.

CD makes the Reports available to parties other than the Clients (i.e., “third
parties”) – on its website. CD hopes that by making these analyses publicly
available, it can help the blockchain ecosystem develop technical best
practices in this rapidly evolving area of innovation.

LINKS TO OTHER WEB SITES FROM THIS WEB SITE You may, through
hypertext or other computer links, gain access to web sites operated by
persons other than ConsenSys and CD. Such hyperlinks are provided for your
reference and convenience only, and are the exclusive responsibility of such
web sites’ owners. You agree that ConsenSys and CD are not responsible for
the content or operation of such Web sites, and that ConsenSys and CD shall
have no liability to you or any other person or entity for the use of third party
Web sites. Except as described below, a hyperlink from this web Site to
another web site does not imply or mean that ConsenSys and CD endorses
the content on that Web site or the operator or operations of that site. You
are solely responsible for determining the extent to which you may use any
content at any other web sites to which you link from the Reports. ConsenSys
and CD assumes no responsibility for the use of third party software on the
Web Site and shall have no liability whatsoever to any person or entity for the
accuracy or completeness of any outcome generated by such software.

TIMELINESS OF CONTENT The content contained in the Reports is current as
of the date appearing on the Report and is subject to change without notice.
Unless indicated otherwise, by ConsenSys and CD.

