
29.03.2021 0x v3 Staking | ConsenSys Diligence

https://consensys.net/diligence/audits/2019/10/0x-v3-staking/ 1/59

A CONSENSYS DILIGENCE AUDIT REPORT

0x v3 Staking

Date October 2019

Lead Auditor Steve Marx

Co-auditors Alex Wade

1 Summary
ConsenSys Diligence conducted a security audit on the 0x staking contracts.
These contracts control the distribution of fees collected by the 0x Exchange
to ZRX stakers.

The 0x v3 Exchange audit is good background reading to understand this
report.

2 Audit Scope
The scope of this audit was the staking project within the 0x monorepo.

This audit covered the following �iles from commit b8e01d7 of the
0xProject/0x-monorepo:

https://consensys.net/diligence/audits/2019/09/0x-v3-exchange/
https://github.com/0xProject/0x-monorepo/commit/b8e01d7be535196a3145a431291183ecfbb333c6
https://pages.consensys.net/diligence-1-day-spot-check

29.03.2021 0x v3 Staking | ConsenSys Diligence

https://consensys.net/diligence/audits/2019/10/0x-v3-staking/ 2/59

File Name SHA-1 HashFile Name SHA-1 Hash

ReadOnlyProxy.sol
6ec64526446ebff87ec5528ee3b2786
338cc4fa0

Staking.sol
67ddcb9ab75e433882e28d91868159
90b7084c61

StakingProxy.sol
248f562d014d0b1ca6de3212966af3e
52a7deef1

ZrxVault.sol
6c3249314868a2f5d0984122e8ab141
3a5b521c9

fees/MixinExchangeFees.sol
9ac3b696baa8ba09305cfc83d3c08f
17d9d528e1

fees/MixinExchangeManager.sol
46f48136a49919cdb5588dc1b3d64c9
77c3367f2

immutable/MixinConstants.sol
97c2ac83ef97a09cfd485cb0d4b119b
a0902cc79

immutable/MixinDeploymentCo
nstants.sol

424f22c45df8e494c4a78f239ea07ff0
400d694b

immutable/MixinStorage.sol
8ad475b0e424e7a3ff65eedf2e999cb
a98f414c8

interfaces/IStaking.sol
ec1d7f214e3fd40e14716de412deee976
9359bc0

interfaces/IStakingEvents.sol
25f16b814c4df9d2002316831c3f727d
858456c4

interfaces/IStakingProxy.sol
02e35c6b51e08235b2a01d30a8082d
60d9d61bee

interfaces/IStorage.sol
eeaa798c262b46d1874e904cf7de042
3d4132cee

interfaces/IStorageInit.sol
b9899b03e474ea5adc3b4818a4357f7
1b8d288d4

interfaces/IStructs.sol
fee17d036883d641a�b1222b75eec842
7f3cdb96

29.03.2021 0x v3 Staking | ConsenSys Diligence

https://consensys.net/diligence/audits/2019/10/0x-v3-staking/ 3/59

File Name SHA-1 Hash

interfaces/IZrxVault.sol
9067154651675317e000cfa92de9741
e50c1c809

libs/LibCobbDouglas.sol
242d62d71cf8bc09177d240c0db59b8
3f9bb4e96

libs/LibFixedMath.sol
36311e7be09a947fa4e6cd8c544cacd
13d65833c

libs/LibFixedMathRichErrors.sol
39cb3e07bbce3272bbf090e87002d5
834d288ec2

libs/LibProxy.sol
29abe52857a782c8da39b053cc54e0
2e295c1ae2

libs/LibSafeDowncast.sol
ae16ed2573d64802793320253b060b
9507729c3d

libs/LibStakingRichErrors.sol
f5868ef6066a18277c932e59c0a516e
c58920b00

stake/MixinStake.sol
ade59ed356fe72521ffd2ef12ff8896c8
52f11f8

stake/MixinStakeBalances.sol
cde6ca1a6200570ba18dd6d392ffabf
68c2bb464

stake/MixinStakeStorage.sol
cadf34d9d341efd2a85dd13ec3cd4ce
8383e0f73

staking_pools/MixinCumulativeR
ewards.sol

664ea3e35376c81492457dc17832a4d
0d602c8ae

staking_pools/MixinStakingPool.
sol

74ba9cb2db29b8dd6376d112e9452d1
17a391b18

staking_pools/MixinStakingPool
Rewards.sol

a3b4e5c9b1c3568c94923e2dd9a930
90ebdf8536

sys/MixinAbstract.sol
99fd4870c20d8fa03cfa30e8055d3df
b348ed5cd

sys/MixinFinalizer.sol
cc658ed07241c1804cec75b12203be3
cd8657b9b

29.03.2021 0x v3 Staking | ConsenSys Diligence

https://consensys.net/diligence/audits/2019/10/0x-v3-staking/ 4/59

File Name SHA-1 Hash

sys/MixinParams.sol
7b395f4da7ed787d7aa4eb915f153777
25ff8168

sys/MixinScheduler.sol
2fab6b83a6f9e1d0dd1b1bdcea4b129
d166aef1d

The audit activities can be grouped into the following three broad categories:

�. Security: Identifying security related issues within the contract.

�. Architecture: Evaluating the system architecture through the lens of
established smart contract best practices.

�. Code quality: A full review of the contract source code. The primary
areas of focus include:

Correctness

Readability

Scalability

Code complexity

Quality of test coverage

3 System Overview
The staking contracts are a mechanism for distributed protocol fees
collected by the 0x Exchange. Fees are distributed to pools of ZRX
stakeholders according to a formula that takes into account:

�. how much ZRX is being staked by the pool and

�. the amount of protocol fees generated by liquidity providers (“makers”)
in that pool.

The v3 staking speci�ication is the best available documentation for
understanding how the staking contract system works.

4 Risk Assessment
The code that handles staking is very complex. We remain uncomfortable
with parts of the code that were too di�icult to audit effectively. That said,

https://github.com/0xProject/0x-protocol-specification/blob/3.0/staking/staking-specification.md

29.03.2021 0x v3 Staking | ConsenSys Diligence

https://consensys.net/diligence/audits/2019/10/0x-v3-staking/ 5/59

this doesn’t mean it’s unsafe to interact with the contract. There are three
types of interactions where funds are potentially at risk:

�. ZRX deposits and withdrawals by stakers.

�. The staking contracts hold WETH (wrapped ether) that is collected as
protocol fees from the Exchange contracts.

�. Collected WETH is distributed to stakers according to the internal logic
of the staking contract.

We can assess the risk associated with all three:

�. ZRX deposits and withdrawals make use of a fairly simple ZrxVault

contract, which includes a fail-safe mechanism which can be triggered
by 0x if needed to allow stakers to directly withdraw their ZRX. Excluding
malicious action by 0x themselves, ZRX deposits and withdrawals have
low risk of fund loss.

�. Although WETH needs to be approved to the staking contracts, the only
WETH actually held by the staking contracts is what is collected in
payProtocolFee , which is invoked by the Exchange. There’s low risk of

WETH being inappropriately transferred from users.

�. Most of the complexity of the staking contracts deals with how the
collected fees are distributed. This is the part of the code the audit team
has less con�idence in, meaning there’s a relatively higher risk of errors
being made here.

This risk assessment means that the most likely type of bug to encounter is
one where rewards are paid out incorrectly, or a bug prevents paying out
rewards altogether. Those outcomes are no worse for stakers than simply not
staking at all.

5 Issues
Each issue has an assigned severity:

Minor issues are subjective in nature. They are typically suggestions
around best practices or readability. Code maintainers should use their
own judgment as to whether to address such issues.

Medium issues are objective in nature but are not security vulnerabilities.
These should be addressed unless there is a clear reason not to.

29.03.2021 0x v3 Staking | ConsenSys Diligence

https://consensys.net/diligence/audits/2019/10/0x-v3-staking/ 6/59

Major issues are security vulnerabilities that may not be directly
exploitable or may require certain conditions in order to be exploited. All
major issues should be addressed.

Critical issues are directly exploitable security vulnerabilities that need to
be �ixed.

5.1 Anyone can remove a maker’s pending pool join status
Major ✓ Fixed

Resolution

This is �ixed in 0xProject/0x-monorepo#2250 by removing the two-step
handshake for a maker to join a pool.

Description

Using behavior described in issue 5.6, it is possible to delete the pending join
status of any maker in any pool by passing in NIL_POOL_ID to
removeMakerFromStakingPool . Note that the attacker in the following example must

not be a con�irmed member of any pool:

�. The attacker calls addMakerToStakingPool(NIL_POOL_ID, makerAddress) . In this
case, makerAddress can be almost any address, as long as it has not called
joinStakingPoolAsMaker (an easy example is address(0)). The key goal of this

call is to increment the number of makers in pool 0:

code/contracts/staking/contracts/src/staking_pools/MixinStakingPool.
sol:L262

�. The attacker calls removeMakerFromStakingPool(NIL_POOL_ID, targetAddress) . This
function queries getStakingPoolIdOfMaker(targetAddress) and compares it to
the passed-in pool id. Because the target is an uncon�irmed maker, their
staking pool id is NIL_POOL_ID :

_poolById[poolId].numberOfMakers = uint256(pool.numberOfMakers).safeAdd(

https://github.com/0xProject/0x-monorepo/pull/2250

29.03.2021 0x v3 Staking | ConsenSys Diligence

https://consensys.net/diligence/audits/2019/10/0x-v3-staking/ 7/59

code/contracts/staking/contracts/src/staking_pools/MixinStakingPool.
sol:L166-L173

The check passes, and the target’s _poolJoinedByMakerAddress struct is deleted.
Additionally, the number of makers in pool 0 is decreased:

code/contracts/staking/contracts/src/staking_pools/MixinStakingPool.sol:
L176-L177

This can be used to prevent any makers from being con�irmed into a pool.

Recommendation

See issue 5.6 .

5.2 Delegated stake weight reduction can be bypassed by
using an external contract Major Won't Fix

Resolution

From the development team:

Although it is possible to bypass the weight reduction via
external smart contracts, we believe there is some value to
having a lower delegated stake weight as the default behavior.

bytes32 makerPoolId = getStakingPoolIdOfMaker(makerAddress);
if (makerPoolId != poolId) {
 LibRichErrors.rrevert(LibStakingRichErrors.MakerPoolAssignmentError(
 LibStakingRichErrors.MakerPoolAssignmentErrorCodes.MakerAddressN
 makerAddress,
 makerPoolId
));
}

delete _poolJoinedByMakerAddress[makerAddress];
_poolById[poolId].numberOfMakers = uint256(_poolById[poolId].numberOfMakers)

29.03.2021 0x v3 Staking | ConsenSys Diligence

https://consensys.net/diligence/audits/2019/10/0x-v3-staking/ 8/59

This can still approximate the intended behavior and should
give a very slight edge to pool operators that own their stake.

Description

Staking pools allow ZRX holders to delegate their staked ZRX to a market
maker in exchange for a con�igurable percentage of the stake reward
(accrued over time through exchange fees). When staking as expected
through the 0x contracts, the protocol favors ZRX staked directly by the
operator of the pool, assigning a lower weight (90%) to ZRX staked by
delegation. In return, delegated members receive a con�igurable portion of
the operator’s stake reward.

Using a smart contract, it is possible to represent ZRX owned by any number
of parties as ZRX staked by a single party. This contract can serve as the
operator of a pool with a single member—itself. The advantages are clear for
ZRX holders:

ZRX staked through this contract will be given full (100%) stake weight.

Because stake weight is a factor in reward allocation, the ZRX staked
through this contract receives a higher proportion of the stake reward.

Recommendation

Remove stake weight reduction for delegated stake.

5.3 MixinParams.setParams bypasses safety checks
made by standard StakingProxy upgrade path. Medium
✓ Fixed

Resolution

This is �ixed in 0xProject/0x-monorepo#2279. Now the parameter validity
is asserted in setParams() .

Description

https://github.com/0xProject/0x-monorepo/pull/2279

29.03.2021 0x v3 Staking | ConsenSys Diligence

https://consensys.net/diligence/audits/2019/10/0x-v3-staking/ 9/59

The staking contracts use a set of con�igurable parameters to determine the
behavior of various parts of the system. The parameters dictate the duration
of epochs, the ratio of delegated stake weight vs operator stake, the
minimum pool stake, and the Cobb-Douglas numerator and denominator.
These parameters can be con�igured in two ways:

�. An authorized address can deploy a new Staking contract (perhaps with
altered parameters), and con�igure the StakingProxy to delegate to this
new contract. This is done by calling

StakingProxy.detachStakingContract :

code/contracts/staking/contracts/src/StakingProxy.sol:L82-L90

/// @dev Detach the current staking contract.
/// Note that this is callable only by an authorized address.
function detachStakingContract()
 external
 onlyAuthorized
{
 stakingContract = NIL_ADDRESS;
 emit StakingContractDetachedFromProxy();
}

StakingProxy.attachStakingContract(newContract) :

code/contracts/staking/contracts/src/StakingProxy.sol:L72-L80

During the latter call, the StakingProxy performs a delegatecall to
Staking.init , then checks the values of the parameters set during

initialization:

code/contracts/staking/contracts/src/StakingProxy.sol:L208-L219

/// @dev Attach a staking contract; future calls will be delegated to
/// Note that this is callable only by an authorized address.
/// @param _stakingContract Address of staking contract.
function attachStakingContract(address _stakingContract)
 external
 onlyAuthorized
{
 _attachStakingContract(_stakingContract);
}

29.03.2021 0x v3 Staking | ConsenSys Diligence

https://consensys.net/diligence/audits/2019/10/0x-v3-staking/ 10/59

�. An authorized address can call MixinParams.setParams at any time and set
the contract’s parameters to arbitrary values.

The latter method introduces the possibility of setting unsafe or nonsensical
values for the contract parameters: epochDurationInSeconds can be set to 0,
cobbDouglassAlphaNumerator can be larger than cobbDouglassAlphaDenominator ,
rewardDelegatedStakeWeight can be set to a value over 100% of the staking

reward, and more.

Note, too, that by using MixinParams.setParams to set all parameters to 0, the
Staking contract can be re-initialized by way of Staking.init . Additionally, it

can be re-attached by way of StakingProxy.attachStakingContract , as the
delegatecall to Staking.init will succeed.

Recommendation

Ensure that calls to setParams check that the provided values are within the
same range currently enforced by the proxy.

5.4 Authorized addresses can indefinitely stall
ZrxVaultBackstop catastrophic failure mode Medium ✓ Fixed

Resolution

This is �ixed in 0xProject/0x-monorepo#2295 by removing the
ZrxVaultBackstop and read-only mode altogether.

// Call `init()` on the staking contract to initialize storage.
(bool didInitSucceed, bytes memory initReturnData) = stakingContract.del
 abi.encodeWithSelector(IStorageInit(0).init.selector)
);
if (!didInitSucceed) {
 assembly {
 revert(add(initReturnData, 0x20), mload(initReturnData))
 }
}

// Assert initialized storage values are valid
_assertValidStorageParams();

https://github.com/0xProject/0x-monorepo/pull/2295

29.03.2021 0x v3 Staking | ConsenSys Diligence

https://consensys.net/diligence/audits/2019/10/0x-v3-staking/ 11/59

Description

The ZrxVaultBackstop contract was added to allow anyone to activate the
staking system’s “catastrophic failure” mode if the StakingProxy is in “read-
only” mode for at least 40 days. To enable this behavior, the StakingProxy

contract was modi�ied to track the last timestamp at which “read-only” mode
was activated. This is done by way of StakingProxy.setReadOnlyMode :

code/contracts/staking/contracts/src/StakingProxy.sol:L92-L104

/// @dev Set read-only mode (state cannot be changed).
function setReadOnlyMode(bool shouldSetReadOnlyMode)
 external
 onlyAuthorized
{
 // solhint-disable-next-line not-rely-on-time
 uint96 timestamp = block.timestamp.downcastToUint96();
 if (shouldSetReadOnlyMode) {
 stakingContract = readOnlyProxy;
 readOnlyState = IStructs.ReadOnlyState({
 isReadOnlyModeSet: true,
 lastSetTimestamp: timestamp
 });

Because the timestamp is updated even if “read-only” mode is already active,
any authorized address can prevent ZrxVaultBackstop from activating
catastrophic failure mode by repeatedly calling setReadOnlyMode .

Recommendation

If “read-only” mode is already active, setReadOnlyMode(true) should result in a
no-op.

5.5 Pool 0 can be used to temporarily prevent makers from
joining another pool Medium ✓ Fixed

Resolution

This is �ixed in 0xProject/0x-monorepo#2250. Pool IDs now start at 1.

https://github.com/0xProject/0x-monorepo/pull/2250

29.03.2021 0x v3 Staking | ConsenSys Diligence

https://consensys.net/diligence/audits/2019/10/0x-v3-staking/ 12/59

Description

removeMakerFromStakingPool reverts if the number of makers currently in the pool
is 0, due to safeSub catching an under�low:

code/contracts/staking/contracts/src/staking_pools/MixinStakingPool.sol:
L177

Because of this, edge behavior described in issue 5.6 can allow an attacker to
temporarily prevent makers from joining a pool:

�. The attacker calls addMakerToStakingPool(NIL_POOL_ID, victimAddress) . This sets
the victim’s MakerPoolJoinStatus.confirmed �ield to true and increases the
number of makers in pool 0 to 1:

code/contracts/staking/contracts/src/staking_pools/MixinStakingPool.
sol:L257-L262

�. The attacker calls removeMakerFromStakingPool(NIL_POOL_ID, randomAddress) . The
net effect of this call simply decreases the number of makers in pool 0 by
1, back to 0:

code/contracts/staking/contracts/src/staking_pools/MixinStakingPool.
sol:L176-L177

_poolById[poolId].numberOfMakers = uint256(_poolById[poolId].numberOfMakers)

poolJoinStatus = IStructs.MakerPoolJoinStatus({
 poolId: poolId,
 confirmed: true
});
_poolJoinedByMakerAddress[makerAddress] = poolJoinStatus;
_poolById[poolId].numberOfMakers = uint256(pool.numberOfMakers).safeAdd(

delete _poolJoinedByMakerAddress[makerAddress];
_poolById[poolId].numberOfMakers = uint256(_poolById[poolId].numberOfMak

29.03.2021 0x v3 Staking | ConsenSys Diligence

https://consensys.net/diligence/audits/2019/10/0x-v3-staking/ 13/59

Typically, the victim should be able to remove themselves from pool 0 by
calling removeMakerFromStakingPool(NIL_POOL_ID, victimAddress) , but because the
attacker can set the pool’s number of makers to 0, the aforementioned
under�low causes this call to fail. The victim must �irst understand what is
happening in MixinStakingPool before they are able to remedy the situation:

�. The victim must call addMakerToStakingPool(NIL_POOL_ID, randomAddress2) to
increase pool 0’s number of makers back to 1.

�. The victim can now call removeMakerFromStakingPool(NIL_POOL_ID, victimAddress) ,
and remove their con�irmed status.

Additionally, if the victim in question currently has a pending join, the
attacker can use issue 5.1 to �irst remove their pending status before locking
them in pool 0.

Recommendation

See issue 5.1.

5.6 Recommendation: Fix weak assertions in
MixinStakingPool stemming from use of NIL_POOL_ID
Medium ✓ Fixed

Resolution

This is �ixed in 0xProject/0x-monorepo#2250. Pool IDs now start at 1.

Description

The modi�ier onlyStakingPoolOperatorOrMaker(poolId) is used to authorize actions
taken on a given pool. The sender must be either the operator or a con�irmed
maker of the pool in question. However, the modi�ier queries
getStakingPoolIdOfMaker(maker) , which returns NIL_POOL_ID if the maker’s
MakerPoolJoinStatus struct is not con�irmed. This implicitly makes anyone a

maker of the nonexistent “pool 0”:

https://github.com/0xProject/0x-monorepo/pull/2250

29.03.2021 0x v3 Staking | ConsenSys Diligence

https://consensys.net/diligence/audits/2019/10/0x-v3-staking/ 14/59

code/contracts/staking/contracts/src/staking_pools/MixinStakingPool.sol:
L189-L200

joinStakingPoolAsMaker(poolId) makes no existence checks on the provided pool
id, and allows makers to become pending makers in nonexistent pools.

addMakerToStakingPool(poolId, maker) makes no existence checks on the provided
pool id, allowing makers to be added to nonexistent pools (as long as the
sender is an operator or maker in the pool).

Recommendation

�. Avoid use of 0x00...00 for NIL_POOL_ID . Instead, use 2**256 - 1 .

�. Implement stronger checks for pool existence. Each time a pool id is
supplied, it should be checked that the pool id is between 0 and
nextPoolId .

�. onlyStakingPoolOperatorOrMaker should revert if poolId == NIL_POOL_ID or if
poolId is not in the valid range: (0, nextPoolId).

5.7 LibFixedMath functions fail to catch a number of
overflows Medium ✓ Fixed

Resolution

This is �ixed in 0xProject/0x-monorepo#2255 and 0xProject/0x-
monorepo#2311.

function getStakingPoolIdOfMaker(address makerAddress)
 public
 view
 returns (bytes32)
{
 IStructs.MakerPoolJoinStatus memory poolJoinStatus = _poolJoinedByMakerA
 if (poolJoinStatus.confirmed) {
 return poolJoinStatus.poolId;
 } else {
 return NIL_POOL_ID;
 }
}

https://github.com/0xProject/0x-monorepo/pull/2255
https://github.com/0xProject/0x-monorepo/pull/2311

29.03.2021 0x v3 Staking | ConsenSys Diligence

https://consensys.net/diligence/audits/2019/10/0x-v3-staking/ 15/59

Description

The __add() , __mul() , and __div() functions perform arithmetic on 256-bit
signed integers, and they all miss some speci�ic over�lows.

Addition Over�lows

code/contracts/staking/contracts/src/libs/LibFixedMath.sol:L359-L376

/// @dev Adds two numbers, reverting on overflow.
function _add(int256 a, int256 b) private pure returns (int256 c) {
 c = a + b;
 if (c > 0 && a < 0 && b < 0) {
 LibRichErrors.rrevert(LibFixedMathRichErrors.BinOpError(
 LibFixedMathRichErrors.BinOpErrorCodes.SUBTRACTION_OVERFLOW,
 a,
 b
));
 }
 if (c < 0 && a > 0 && b > 0) {
 LibRichErrors.rrevert(LibFixedMathRichErrors.BinOpError(
 LibFixedMathRichErrors.BinOpErrorCodes.ADDITION_OVERFLOW,
 a,
 b
));
 }
}

The two over�low conditions it tests for are:

�. Adding two positive numbers shouldn’t result in a negative number.

�. Adding two negative numbers shouldn’t result in a positive number.

__add(-2**255, -2**255) returns 0 without reverting because the over�low
didn’t match either of the above conditions.

Multiplication Over�lows

code/contracts/staking/contracts/src/libs/LibFixedMath.sol:L332-L345

29.03.2021 0x v3 Staking | ConsenSys Diligence

https://consensys.net/diligence/audits/2019/10/0x-v3-staking/ 16/59

The function checks via division for most types of over�lows, but it fails to
catch one particular case. __mul(-2**255, -1) returns -2**255 without error.

Division Over�lows

code/contracts/staking/contracts/src/libs/LibFixedMath.sol:L347-L357

It does not check for over�low. Due to this, __div(-2**255, -1) erroneously
returns -2**255 .

Recommendation

For addition, the speci�ic case of __add(-2**255, -2**255) can be detected by
using a >= 0 check instead of > 0 , but the below seems like a clearer check
for all cases:

/// @dev Returns the multiplication two numbers, reverting on overflow.
function _mul(int256 a, int256 b) private pure returns (int256 c) {
 if (a == 0) {
 return 0;
 }
 c = a * b;
 if (c / a != b) {
 LibRichErrors.rrevert(LibFixedMathRichErrors.BinOpError(
 LibFixedMathRichErrors.BinOpErrorCodes.MULTIPLICATION_OVERFLOW,
 a,
 b
));
 }
}

/// @dev Returns the division of two numbers, reverting on division by zero.
function _div(int256 a, int256 b) private pure returns (int256 c) {
 if (b == 0) {
 LibRichErrors.rrevert(LibFixedMathRichErrors.BinOpError(
 LibFixedMathRichErrors.BinOpErrorCodes.DIVISION_BY_ZERO,
 a,
 b
));
 }
 c = a / b;
}

29.03.2021 0x v3 Staking | ConsenSys Diligence

https://consensys.net/diligence/audits/2019/10/0x-v3-staking/ 17/59

// if b is negative, then the result should be less than a
if (b < 0 && c >= a) { /* subtraction overflow */ }

// if b is positive, then the result should be greater than a
if (b > 0 && c <= a) { /* addition overflow */ }

For multiplication and division, the speci�ic values of -2**255 and -1 are the
only missing cases, so that can be explicitly checked in the __mul() and
__div() functions.

5.8 Recommendation: Remove MixinAbstract and fold
MixinStakingPoolRewards into MixinFinalizer and
MixinStake Minor Won't Fix

Resolution

The development team investigated this suggestion, but they were
ultimately uncomfortable making such a large change in this cycle. This
can be considered again in a future version of the code.

Description

After implementing issue 5.12, issue 5.11, issue 5.10, and issue 5.9,
MixinAbstract serves little utility except as a way to pull functionality from
MixinFinalizer into MixinStakingPoolRewards . The abstract pattern adds

unnecessary cognitive overhead and should be eliminated if possible. One
possible method for this is as follows:

�. Move MixinStakingPoolRewards.withdrawDelegatorRewards into MixinStake . As per
the comments above this function, its behavior is very similar to
functions in MixinStake :

code/contracts/staking/contracts/src/staking_pools/MixinStakingPool
Rewards.sol:L35-L56

29.03.2021 0x v3 Staking | ConsenSys Diligence

https://consensys.net/diligence/audits/2019/10/0x-v3-staking/ 18/59

�. Move the rest of the MixinStakingPoolRewards functions into MixinFinalizer .
This change allows the MixinStakingPoolRewards and MixinAbstract �iles to be
removed. MixinStakingPool can now inherit directly from MixinFinalizer .

After implementing all recommendations mentioned here, the inheritance
graph of the staking contracts is much simpler. The previous graph is
pictured here:

/// @dev Syncs rewards for a delegator. This includes transferring WETH
/// rewards to the delegator, and adding/removing
/// dependencies on cumulative rewards.
/// This is used by a delegator when they want to sync their rewards
/// without delegating/undelegating. It's effectively the same as
/// delegating zero stake.
/// @param poolId Unique id of pool.
function withdrawDelegatorRewards(bytes32 poolId)
 external
{
 address member = msg.sender;

 _withdrawAndSyncDelegatorRewards(
 poolId,
 member
);

 // Update stored balance with synchronized version; this prevents
 // redundant withdrawals.
 _delegatedStakeToPoolByOwner[member][poolId] =
 _loadSyncedBalance(_delegatedStakeToPoolByOwner[member][poolId])
}

29.03.2021 0x v3 Staking | ConsenSys Diligence

https://consensys.net/diligence/audits/2019/10/0x-v3-staking/ 19/59

The new graph is pictured here:

Further improvements may consider:

�. Having MixinStorage inherit MixinConstants and IStakingEvents

�. Moving _loadCurrentBalance into MixinStorage . Currently MixinStakeBalances

only inherits from MixinStakeStorage because of this function.

�. After implementing the above, MixinExchangeFees is no longer dependent
on MixinStakingPool and can inherit directly from MixinExchangeManager

A sample inheritance graph including the above is pictured below:

5.9 Recommendation: remove confusing access to
activePoolsThisEpoch Minor ✓ Fixed

29.03.2021 0x v3 Staking | ConsenSys Diligence

https://consensys.net/diligence/audits/2019/10/0x-v3-staking/ 20/59

Resolution

This is �ixed in 0xProject/0x-monorepo#2276. Along with other state
cleanup, these functions and epoch % 2 indexing altogether were
removed.

Description

MixinFinalizer provides two functions to access activePoolsThisEpoch :

�. _getActivePoolsFromEpoch returns a storage pointer to the mapping:

code/contracts/staking/contracts/src/sys/MixinFinalizer.sol:L211-L225

�. _getActivePoolFromEpoch invokes _getActivePoolsFromEpoch , then loads an
ActivePool struct from a passed-in poolId :

code/contracts/staking/contracts/src/sys/MixinFinalizer.sol:L195-L209

/// @dev Get a mapping of active pools from an epoch.
/// This uses the formula `epoch % 2` as the epoch index in order
/// to reuse state, because we only need to remember, at most, two
/// epochs at once.
/// @return activePools The pools that were active in `epoch`.
function _getActivePoolsFromEpoch(
 uint256 epoch
)
 internal
 view
 returns (mapping (bytes32 => IStructs.ActivePool) storage activePool
{
 activePools = _activePoolsByEpoch[epoch % 2];
 return activePools;
}

https://github.com/0xProject/0x-monorepo/pull/2276

29.03.2021 0x v3 Staking | ConsenSys Diligence

https://consensys.net/diligence/audits/2019/10/0x-v3-staking/ 21/59

/// @dev Get an active pool from an epoch by its ID.
/// @param epoch The epoch the pool was/will be active in.
/// @param poolId The ID of the pool.
/// @return pool The pool with ID `poolId` that was active in `epoch`.
function _getActivePoolFromEpoch(
 uint256 epoch,
 bytes32 poolId
)
 internal
 view
 returns (IStructs.ActivePool memory pool)
{
 pool = _getActivePoolsFromEpoch(epoch)[poolId];
 return pool;
}

Ultimately, the two functions are syntax sugar for activePoolsThisEpoch[epoch % 2]

, with the latter also accessing a value within the mapping. Because of the
naming similarity, and because one calls the other, this abstraction is more
confusing that simply accessing the state variable directly.

Additionally, by removing these functions and adopting the long-form syntax,
MixinExchangeFees no longer needs to inherit MixinFinalizer .

5.10 Recommendation: remove
MixinFinalizer._getUnfinalizedPoolRewardsFromS
tate
Minor Won't Fix

Resolution

The development team decided to keep this function for its optimization
on storage loads. It’s will still be used internally by getters that are
important for client-side code.

Description

MixinFinalizer._getUnfinalizedPoolRewardsFromState is a simple wrapper around the
library function LibCobbDouglas.cobbDouglas :

29.03.2021 0x v3 Staking | ConsenSys Diligence

https://consensys.net/diligence/audits/2019/10/0x-v3-staking/ 22/59

code/contracts/staking/contracts/src/sys/MixinFinalizer.sol:L250-L286

After implementing issue 5.11, this function is only called a single time, in
MixinFinalizer.finalizePool :

code/contracts/staking/contracts/src/sys/MixinFinalizer.sol:L119-L129

/// @dev Computes the reward owed to a pool during finalization.
/// @param pool The active pool.
/// @param state The current state of finalization.
/// @return rewards Unfinalized rewards for this pool.
function _getUnfinalizedPoolRewardsFromState(
 IStructs.ActivePool memory pool,
 IStructs.UnfinalizedState memory state
)
 private
 view
 returns (uint256 rewards)
{
 // There can't be any rewards if the pool was active or if it has
 // no stake.
 if (pool.feesCollected == 0) {
 return rewards;
 }

 // Use the cobb-douglas function to compute the total reward.
 rewards = LibCobbDouglas.cobbDouglas(
 state.rewardsAvailable,
 pool.feesCollected,
 state.totalFeesCollected,
 pool.weightedStake,
 state.totalWeightedStake,
 cobbDouglasAlphaNumerator,
 cobbDouglasAlphaDenominator
);

 // Clip the reward to always be under
 // `rewardsAvailable - totalRewardsPaid`,
 // in case cobb-douglas overflows, which should be unlikely.
 uint256 rewardsRemaining = state.rewardsAvailable.safeSub(state.totalRew
 if (rewardsRemaining < rewards) {
 rewards = rewardsRemaining;
 }
}

29.03.2021 0x v3 Staking | ConsenSys Diligence

https://consensys.net/diligence/audits/2019/10/0x-v3-staking/ 23/59

// Noop if the pool was not active or already finalized (has no fees).
if (pool.feesCollected == 0) {
 return;
}

// Clear the pool state so we don't finalize it again, and to recoup
// some gas.
delete _getActivePoolsFromEpoch(prevEpoch)[poolId];

// Compute the rewards.
uint256 rewards = _getUnfinalizedPoolRewardsFromState(pool, state);

Because it is only used a single time, and because it obfuscates an essential
library call during the �inalization process, the function should be removed
and folded into finalizePool . Additionally, the �irst check for
pool.feesCollected == 0 can be removed, as this case is covered in finalizePool

already (see above).

5.11 Recommendation: remove complicating getters from
MixinStakingPoolRewards Minor Won't Fix

Resolution

These getters are useful for client-side code, such as the staking
interface.

Description

MixinStakingPoolRewards has two external view functions that contribute
complexity to essential functions, as well as the overall inheritance tree:

�. computeRewardBalanceOfOperator , used to compute the reward balance of a
pool’s operator on an un�inalized pool:

code/contracts/staking/contracts/src/staking_pools/MixinStakingPool
Rewards.sol:L55-L69

29.03.2021 0x v3 Staking | ConsenSys Diligence

https://consensys.net/diligence/audits/2019/10/0x-v3-staking/ 24/59

�. computeRewardBalanceOfDelegator , used to compute the reward balance of a
delegator for an un�inalized pool:

code/contracts/staking/contracts/src/staking_pools/MixinStakingPool
Rewards.sol:L80-L99

These two functions are the sole reason for the existence of
MixinFinalizer._getUnfinalizedPoolRewards , one of the two functions in

/// @dev Computes the reward balance in ETH of the operator of a pool.
/// @param poolId Unique id of pool.
/// @return totalReward Balance in ETH.
function computeRewardBalanceOfOperator(bytes32 poolId)
 external
 view
 returns (uint256 reward)
{
 // Because operator rewards are immediately withdrawn as WETH
 // on finalization, the only factor in this function are unfinalized
 // rewards.
 IStructs.Pool memory pool = _poolById[poolId];
 // Get any unfinalized rewards.
 (uint256 unfinalizedTotalRewards, uint256 unfinalizedMembersStake) =
 _getUnfinalizedPoolRewards(poolId);

/// @dev Computes the reward balance in ETH of a specific member of a poo
/// @param poolId Unique id of pool.
/// @param member The member of the pool.
/// @return totalReward Balance in ETH.
function computeRewardBalanceOfDelegator(bytes32 poolId, address member)
 external
 view
 returns (uint256 reward)
{
 IStructs.Pool memory pool = _poolById[poolId];
 // Get any unfinalized rewards.
 (uint256 unfinalizedTotalRewards, uint256 unfinalizedMembersStake) =
 _getUnfinalizedPoolRewards(poolId);

 // Get the members' portion.
 (, uint256 unfinalizedMembersReward) = _computePoolRewardsSplit(
 pool.operatorShare,
 unfinalizedTotalRewards,
 unfinalizedMembersStake
);

29.03.2021 0x v3 Staking | ConsenSys Diligence

https://consensys.net/diligence/audits/2019/10/0x-v3-staking/ 25/59

MixinAbstract :

code/contracts/staking/contracts/src/sys/MixinAbstract.sol:L40-L52

/// @dev Computes the reward owed to a pool during finalization.
/// Does nothing if the pool is already finalized.
/// @param poolId The pool's ID.
/// @return totalReward The total reward owed to a pool.
/// @return membersStake The total stake for all non-operator members in
/// this pool.
function _getUnfinalizedPoolRewards(bytes32 poolId)
 internal
 view
 returns (
 uint256 totalReward,
 uint256 membersStake
);

These functions also necessitate two additional parameters in
MixinStakingPoolRewards._computeDelegatorReward , which are used a single time to

call _computeUnfinalizedDelegatorReward :

code/contracts/staking/contracts/src/staking_pools/MixinStakingPoolRew
ards.sol:L253-L259

// 1/3 Unfinalized rewards earned in `currentEpoch - 1`.
reward = _computeUnfinalizedDelegatorReward(
 delegatedStake,
 _currentEpoch,
 unfinalizedMembersReward,
 unfinalizedMembersStake
);

Note that computeRewardBalanceOfOperator and computeRewardBalanceOfDelegator

contain the only calls to _computeDelegatorReward with nonzero values for the
above parameters, unfinalizedMembersReward and unfinalizedMembersStake . For all
essential functions, the call to _computeUnfinalizedDelegatorReward is a no-op.

By removing the functions computeRewardBalanceOfOperator and
computeRewardBalanceOfDelegator , the following simpli�ications can be made:

_getUnfinalizedPoolRewards can be removed from both MixinAbstract and
MixinFinalizer

29.03.2021 0x v3 Staking | ConsenSys Diligence

https://consensys.net/diligence/audits/2019/10/0x-v3-staking/ 26/59

The parameters unfinalizedMembersReward and unfinalizedMembersStake can be
removed from _computeDelegatorReward

The function _computeUnfinalizedDelegatorReward can be removed

A branch of now-unused logic in _computeDelegatorReward can be removed

5.12 Recommendation: remove unneeded dependency on
MixinStakeBalances Minor Won't Fix

Resolution

From the development team:

We’re going to keep this abstraction to future-proof balance
queries.

Description

MixinStakeBalances has two functions used by inheriting contracts:

�. getStakeDelegatedToPoolByOwner , which provides shorthand to access
_delegatedStakeToPoolByOwner :

code/contracts/staking/contracts/src/stake/MixinStakeBalances.sol:L
84-L95

/// @dev Returns the stake delegated to a specific staking pool, by a giv
/// @param staker of stake.
/// @param poolId Unique Id of pool.
/// @return Stake delegated to pool by staker.
function getStakeDelegatedToPoolByOwner(address staker, bytes32 poolId)
 public
 view
 returns (IStructs.StoredBalance memory balance)
{
 balance = _loadCurrentBalance(_delegatedStakeToPoolByOwner[staker][p
 return balance;
}

29.03.2021 0x v3 Staking | ConsenSys Diligence

https://consensys.net/diligence/audits/2019/10/0x-v3-staking/ 27/59

�. getTotalStakeDelegatedToPool , which provides shorthand to access
_delegatedStakeByPoolId :

code/contracts/staking/contracts/src/stake/MixinStakeBalances.sol:L
97-L108

/// @dev Returns the total stake delegated to a specific staking pool,
/// across all members.
/// @param poolId Unique Id of pool.
/// @return Total stake delegated to pool.
function getTotalStakeDelegatedToPool(bytes32 poolId)
 public
 view
 returns (IStructs.StoredBalance memory balance)
{
 balance = _loadCurrentBalance(_delegatedStakeByPoolId[poolId]);
 return balance;
}

Each of these functions is used only a single time:

�. MixinExchangeFees.payProtocolFee :

code/contracts/staking/contracts/src/fees/MixinExchangeFees.sol:L78

�. MixinExchangeFees._computeMembersAndWeightedStake :

code/contracts/staking/contracts/src/fees/MixinExchangeFees.sol:L14
3-L146

uint256 operatorStake = getStakeDelegatedToPoolByOwner(
 _poolById[poolId].operator,
 poolId
).currentEpochBalance;

By replacing these function invocations in MixinExchangeFees with the long-form
access to each state variable, MixinStakeBalances will no longer need to be
included in the inheritance trees for several contracts.

uint256 poolStake = getTotalStakeDelegatedToPool(poolId).currentEpochBal

29.03.2021 0x v3 Staking | ConsenSys Diligence

https://consensys.net/diligence/audits/2019/10/0x-v3-staking/ 28/59

5.13 Misleading MoveStake event when moving stake
from UNDELEGATED to UNDELEGATED Minor ✓ Fixed

Resolution

This is �ixed in 0xProject/0x-monorepo#2280. If amount is 0 or the move
is from UNDELEGATED to UNDELEGATED , the function performs an early return.

Description

Although moving stake between the same status (UNDELEGATED <=> UNDELEGATED)
should be a no-op, calls to moveStake succeed even for invalid amount and
nonsensical poolId . The resulting MoveStake event can log garbage,
potentially confusing those observing events.

Examples

When moving between UNDELEGATED and UNDELEGATED , each check and function
call results in a no-op, save the �inal event:

�. Neither from nor to are StakeStatus.DELEGATED , so these checks are passed:

code/contracts/staking/contracts/src/stake/MixinStake.sol:L115-L129

if (from.status == IStructs.StakeStatus.DELEGATED) {
 _undelegateStake(
 from.poolId,
 staker,
 amount
);
}

if (to.status == IStructs.StakeStatus.DELEGATED) {
 _delegateStake(
 to.poolId,
 staker,
 amount
);
}

https://github.com/0xProject/0x-monorepo/pull/2280

29.03.2021 0x v3 Staking | ConsenSys Diligence

https://consensys.net/diligence/audits/2019/10/0x-v3-staking/ 29/59

�. The primary state changing function, _moveStake , immediately returns
because the from and to balance pointers are equivalent:

code/contracts/staking/contracts/src/stake/MixinStakeStorage.sol:L4
7-L49

if (_arePointersEqual(fromPtr, toPtr)) {
 return;
}

�. Finally, the MoveStake event is invoked, which can log completely invalid
values for amount , from.poolId , and to.poolId :

code/contracts/staking/contracts/src/stake/MixinStake.sol:L141-L148

emit MoveStake(
 staker,
 amount,
 uint8(from.status),
 from.poolId,
 uint8(to.status),
 to.poolId
);

Recommendation

If amount is 0 or if moving between UNDELEGATED and UNDELEGATED , this function
should no-op or revert. An explicit check for this case should be made near
the start of the function.

5.14 The staking contracts contain several artifacts of a
quickly-changing codebase Minor ✓ Fixed

Resolution

These issues were addressed in a variety of �ixes, most notably
0xProject/0x-monorepo#2262.

Examples

https://github.com/0xProject/0x-monorepo/pull/2262

29.03.2021 0x v3 Staking | ConsenSys Diligence

https://consensys.net/diligence/audits/2019/10/0x-v3-staking/ 30/59

�. address payable is used repeatedly, but payments use WETH:

MixinStakingPool.createStakingPool :

code/contracts/staking/contracts/src/staking_pools/MixinStaking
Pool.sol:L54

address payable operator = msg.sender;

ZrxVault.stakingProxyAddress :

code/contracts/staking/contracts/src/ZrxVault.sol:L38

address payable public stakingProxyAddress;

ZrxVault.setStakingProxy :

code/contracts/staking/contracts/src/ZrxVault.sol:L76

function setStakingProxy(address payable _stakingProxyAddress)

IZrxVault.setStakingProxy :

code/contracts/staking/contracts/src/interfaces/IZrxVault.sol:L53

function setStakingProxy(address payable _stakingProxyAddress)

struct IStructs.Pool :

code/contracts/staking/contracts/src/interfaces/IStructs.sol:L114

address payable operator;

MixinStake.stake :

code/contracts/staking/contracts/src/stake/MixinStake.sol:L38

address payable staker = msg.sender;

29.03.2021 0x v3 Staking | ConsenSys Diligence

https://consensys.net/diligence/audits/2019/10/0x-v3-staking/ 31/59

MixinStake.unstake :

code/contracts/staking/contracts/src/stake/MixinStake.sol:L63

address payable staker = msg.sender;

MixinStake.moveStake :

code/contracts/staking/contracts/src/stake/MixinStake.sol:L119

address payable staker = msg.sender;

MixinStake._delegateStake :

code/contracts/staking/contracts/src/stake/MixinStake.sol:L181

address payable staker,

MixinStake._undelegateStake :

code/contracts/staking/contracts/src/stake/MixinStake.sol:L210

address payable staker,

�. Some identi�iers are used multiple times for different purposes:

currentEpoch is:

A state variable:

code/contracts/staking/contracts/src/immutable/MixinStorag
e.sol:L86

uint256 public currentEpoch = INITIAL_EPOCH;

A function parameter:

29.03.2021 0x v3 Staking | ConsenSys Diligence

https://consensys.net/diligence/audits/2019/10/0x-v3-staking/ 32/59

code/contracts/staking/contracts/src/staking_pools/MixinStak
ingPoolRewards.sol:L323

uint256 currentEpoch,

A struct �ield:

code/contracts/staking/contracts/src/interfaces/IStructs.sol:L
62

uint32 currentEpoch;

�. Several comments are out of date:

Many struct comments reference fees and rewards denominated in
ETH, while only WETH is used:

code/contracts/staking/contracts/src/interfaces/IStructs.sol:L36-
L38

UnfinalizedState.totalFeesCollected should specify that it is tracking fees
attributed to a pool. Fees not attributed to a pool are still collected,
but are not recorded:

code/contracts/staking/contracts/src/interfaces/IStructs.sol:L41

UnfinalizedState.totalWeightedStake is copy-pasted from
totalFeesCollected :

code/contracts/staking/contracts/src/interfaces/IStructs.sol:L42

/// @param rewardsAvailable Rewards (ETH) available to the epoch
/// being finalized (the previous epoch). This is simply the b
/// of the contract at the end of the epoch.

/// @param totalFeesCollected The total fees collected for the epoc

29.03.2021 0x v3 Staking | ConsenSys Diligence

https://consensys.net/diligence/audits/2019/10/0x-v3-staking/ 33/59

Pool.initialized seems to be copy-pasted from an older version of
the struct StoredBalance or StakeBalance :

code/contracts/staking/contracts/src/interfaces/IStructs.sol:L108

�. The �inal contracts produce several compiler warnings:

Several functions are intentionally marked view to allow overriding
implementations to read from state. These can be silenced by
adding block.timestamp; or similar statements to the functions.

One function is erroneously marked view , and should be changed to
pure:

code/contracts/staking/contracts/src/staking_pools/MixinStaking
PoolRewards.sol:L315-L330

/// @param totalWeightedStake The total fees collected for the epoc

/// @param initialized True iff the balance struct is initialized.

/// @dev Computes the unfinalized rewards earned by a delegator in th
/// @param unsyncedStake Unsynced delegated stake to pool by staker
/// @param currentEpoch The epoch in which this call is executing
/// @param unfinalizedMembersReward Unfinalized total members reward
/// @param unfinalizedMembersStake Unfinalized total members stake (i
/// @return reward Balance in WETH.
function _computeUnfinalizedDelegatorReward(
 IStructs.StoredBalance memory unsyncedStake,
 uint256 currentEpoch,
 uint256 unfinalizedMembersReward,
 uint256 unfinalizedMembersStake
)
 private
 view
 returns (uint256)
{

29.03.2021 0x v3 Staking | ConsenSys Diligence

https://consensys.net/diligence/audits/2019/10/0x-v3-staking/ 34/59

5.15 Remove unneeded fields from StoredBalance and
Pool structs Minor ✓ Fixed

Resolution

This is �ixed in 0xProject/0x-monorepo#2248. As part of a larger refactor,
these �ields were removed.

Description

Both structs have �ields that are only written to, and never read:

�. StoredBalance.isInitialized :

code/contracts/staking/contracts/src/interfaces/IStructs.sol:L61

bool isInitialized;

�. Pool.initialized :

code/contracts/staking/contracts/src/interfaces/IStructs.sol:L113

bool initialized;

Recommendation

The unused �ields should be removed.

5.16 Remove unnecessary fallback function in Staking
contract Minor ✓ Fixed

Resolution

This is �ixed in 0xProject/0x-monorepo#2277.

https://github.com/0xProject/0x-monorepo/pull/2248
https://github.com/0xProject/0x-monorepo/pull/2277

29.03.2021 0x v3 Staking | ConsenSys Diligence

https://consensys.net/diligence/audits/2019/10/0x-v3-staking/ 35/59

Description

The Staking contract has a payable fallback function that is never used.
Because it is used with a proxy contract, this pattern introduces silent failures
when calls are made to the contract with no matching function selector.

Recommendation

Remove the fallback function from Staking .

5.17 Pool IDs can just be incrementing integers Minor ✓ Fixed

Resolution

This is �ixed in 0xProject/0x-monorepo#2250. Pool IDs now start at 1 and
increment by 1 each time.

Description

Pool IDs are currently bytes32 values that increment by 2**128 . After
discussion with the development team, it seems that this was in preparation
for a feature that was ultimately not used. Pool IDs should instead just be
incrementing integers.

Examples

code/contracts/staking/contracts/src/immutable/MixinConstants.sol:L30-
L34

code/contracts/staking/contracts/src/staking_pools/MixinStakingPool.sol:
L271-L280

// The upper 16 bytes represent the pool id, so this would be pool id 1. See M
bytes32 constant internal INITIAL_POOL_ID = 0x000000000000000000000000000000

// The upper 16 bytes represent the pool id, so this would be an increment of
uint256 constant internal POOL_ID_INCREMENT_AMOUNT = 0x000000000000000000000

https://github.com/0xProject/0x-monorepo/pull/2250

29.03.2021 0x v3 Staking | ConsenSys Diligence

https://consensys.net/diligence/audits/2019/10/0x-v3-staking/ 36/59

/// @dev Computes the unique id that comes after the input pool id.
/// @param poolId Unique id of pool.
/// @return Next pool id after input pool.
function _computeNextStakingPoolId(bytes32 poolId)
 internal
 pure
 returns (bytes32)
{
 return bytes32(uint256(poolId).safeAdd(POOL_ID_INCREMENT_AMOUNT));
}

Recommendation

Make pool IDs uint256 values and simply add 1 to generate the next ID.

5.18 LibProxy.proxyCall() may overwrite important
memory Minor ✓ Fixed

Resolution

This is �ixed in 0xProject/0x-monorepo#2301. This function has been
rewritten in Solidity and now avoids manual memory management.

Description

LibProxy.proxyCall() copies from call data to memory, starting at address 0:

code/contracts/staking/contracts/src/libs/LibProxy.sol:L52-L71

https://github.com/0xProject/0x-monorepo/pull/2301

29.03.2021 0x v3 Staking | ConsenSys Diligence

https://consensys.net/diligence/audits/2019/10/0x-v3-staking/ 37/59

assembly {
 // store selector of destination function
 let freeMemPtr := 0
 if gt(customEgressSelector, 0) {
 mstore(0x0, customEgressSelector)
 freeMemPtr := add(freeMemPtr, 4)
 }

 // adjust the calldata offset, if we should ignore the selector
 let calldataOffset := 0
 if gt(ignoreIngressSelector, 0) {
 calldataOffset := 4
 }

 // copy calldata to memory
 calldatacopy(
 freeMemPtr,
 calldataOffset,
 calldatasize()
)

The �irst 64 bytes of memory are treated as “scratch space” by the Solidity
compiler. Writing beyond that point is dangerous, as it will overwrite the free
memory pointer and the “zero slot” which is where length-0 arrays point.

Although the current callers of proxyCall() don’t appear to use any memory
after calling proxyCall() , future changes to the code may introduce very
serious and subtle bugs due to this unsafe handling of memory.

Recommendation

Use the actual free memory pointer to determine where it’s safe to write to
memory.

6 Tool-Based Analysis
Several tools were used to perform automated analysis of the reviewed
contracts. These issues were reviewed by the audit team, and relevant issues
are listed in the Issue Details section.

6.1 MythX

MythX is a security analysis API for Ethereum smart contracts. It performs
multiple types of analysis, including fuzzing and symbolic execution, to

https://solidity.readthedocs.io/en/v0.5.11/miscellaneous.html#layout-in-memory

29.03.2021 0x v3 Staking | ConsenSys Diligence

https://consensys.net/diligence/audits/2019/10/0x-v3-staking/ 38/59

detect many common vulnerability types. The tool was
used for automated vulnerability discovery for all audited
contracts and libraries. More details on MythX can be
found at mythx.io.

The full set of MythX results for both the exchange and staking contracts are
available in a separate report.

6.2 Surya

Surya is an utility tool for smart contract systems. It provides a number of
visual outputs and information about structure of smart contracts. It also
supports querying the function call graph in multiple ways to aid in the
manual inspection and control �low analysis of contracts.

Below is a complete list of functions with their visibility and modi�iers:

Sūrya’s Description Report

Files Description Table

File Name SHA-1 Hash

ReadOnlyProxy.sol
6ec64526446ebff87ec5528ee3b2786
338cc4fa0

Staking.sol
67ddcb9ab75e433882e28d91868159
90b7084c61

StakingProxy.sol
248f562d014d0b1ca6de3212966af3e
52a7deef1

ZrxVault.sol
6c3249314868a2f5d0984122e8ab141
3a5b521c9

fees/MixinExchangeFees.sol
9ac3b696baa8ba09305cfc83d3c08f
17d9d528e1

fees/MixinExchangeManager.sol
46f48136a49919cdb5588dc1b3d64c9
77c3367f2

immutable/MixinConstants.sol
97c2ac83ef97a09cfd485cb0d4b119b
a0902cc79

https://mythx.io/
https://github.com/ConsenSys/0x-v3-mythx-report

29.03.2021 0x v3 Staking | ConsenSys Diligence

https://consensys.net/diligence/audits/2019/10/0x-v3-staking/ 39/59

File Name SHA-1 Hash

immutable/MixinDeploymentCo
nstants.sol

424f22c45df8e494c4a78f239ea07ff0
400d694b

immutable/MixinStorage.sol
8ad475b0e424e7a3ff65eedf2e999cb
a98f414c8

interfaces/IStaking.sol
ec1d7f214e3fd40e14716de412deee976
9359bc0

interfaces/IStakingEvents.sol
25f16b814c4df9d2002316831c3f727d
858456c4

interfaces/IStakingProxy.sol
02e35c6b51e08235b2a01d30a8082d
60d9d61bee

interfaces/IStorage.sol
eeaa798c262b46d1874e904cf7de042
3d4132cee

interfaces/IStorageInit.sol
b9899b03e474ea5adc3b4818a4357f7
1b8d288d4

interfaces/IStructs.sol
fee17d036883d641a�b1222b75eec842
7f3cdb96

interfaces/IZrxVault.sol
9067154651675317e000cfa92de9741
e50c1c809

libs/LibCobbDouglas.sol
242d62d71cf8bc09177d240c0db59b8
3f9bb4e96

libs/LibFixedMath.sol
36311e7be09a947fa4e6cd8c544cacd
13d65833c

libs/LibFixedMathRichErrors.sol
39cb3e07bbce3272bbf090e87002d5
834d288ec2

libs/LibProxy.sol
29abe52857a782c8da39b053cc54e0
2e295c1ae2

libs/LibSafeDowncast.sol
ae16ed2573d64802793320253b060b
9507729c3d

libs/LibStakingRichErrors.sol
f5868ef6066a18277c932e59c0a516e
c58920b00

29.03.2021 0x v3 Staking | ConsenSys Diligence

https://consensys.net/diligence/audits/2019/10/0x-v3-staking/ 40/59

File Name SHA-1 Hash

stake/MixinStake.sol
ade59ed356fe72521ffd2ef12ff8896c8
52f11f8

stake/MixinStakeBalances.sol
cde6ca1a6200570ba18dd6d392ffabf
68c2bb464

stake/MixinStakeStorage.sol
cadf34d9d341efd2a85dd13ec3cd4ce
8383e0f73

staking_pools/MixinCumulativeR
ewards.sol

664ea3e35376c81492457dc17832a4d
0d602c8ae

staking_pools/MixinStakingPool.
sol

74ba9cb2db29b8dd6376d112e9452d1
17a391b18

staking_pools/MixinStakingPool
Rewards.sol

a3b4e5c9b1c3568c94923e2dd9a930
90ebdf8536

sys/MixinAbstract.sol
99fd4870c20d8fa03cfa30e8055d3df
b348ed5cd

sys/MixinFinalizer.sol
cc658ed07241c1804cec75b12203be3
cd8657b9b

sys/MixinParams.sol
7b395f4da7ed787d7aa4eb915f153777
25ff8168

sys/MixinScheduler.sol
2fab6b83a6f9e1d0dd1b1bdcea4b129
d166aef1d

Contracts Description Table

Contract Type Bases

└
Function

Name
Visibility Mutability Modi�iers

ReadOnly
Proxy

Implementa
tion

MixinStorage

└ <Fallback> External ❗ 🛑 NO❗

29.03.2021 0x v3 Staking | ConsenSys Diligence

https://consensys.net/diligence/audits/2019/10/0x-v3-staking/ 41/59

Contract Type Bases

└
revertDeleg

ateCall
External ❗ 🛑 NO❗

Staking
Implementa

tion

IStaking,
MixinParams,
MixinStake,

MixinExchange
Fees

└ <Fallback> External ❗ 💵 NO❗

└ init Public ❗ 🛑
onlyAutho

rized

StakingPr
oxy

Implementa
tion

IStakingProxy,
MixinStorage

└
<Constructo

r>
Public ❗ 🛑

MixinStora
ge

└ <Fallback> External ❗ 💵 NO❗

└
attachStakin

gContract
External ❗ 🛑

onlyAutho
rized

└
detachStaki
ngContract

External ❗ 🛑
onlyAutho

rized

└
setReadOnl

yMode
External ❗ 🛑

onlyAutho
rized

└
batchExecut

e
External ❗ 🛑 NO❗

└
_assertValid
StoragePara

ms
Internal 🔒

└
_attachStaki
ngContract

Internal 🔒 🛑

29.03.2021 0x v3 Staking | ConsenSys Diligence

https://consensys.net/diligence/audits/2019/10/0x-v3-staking/ 42/59

Contract Type Bases

ZrxVault
Implementa

tion
Authorizable,

IZrxVault

└
<Constructo

r>
Public ❗ 🛑

Authorizab
le

└
setStakingPr

oxy
External ❗ 🛑

onlyAutho
rized

└
enterCatastr
ophicFailure

External ❗ 🛑
onlyAutho

rized

└ setZrxProxy External ❗ 🛑

onlyAutho
rized

onlyNotIn
Catastrop
hicFailure

└ depositFrom External ❗ 🛑

onlyStakin
gProxy

onlyNotIn
Catastrop
hicFailure

└
withdrawFro

m
External ❗ 🛑

onlyStakin
gProxy

onlyNotIn
Catastrop
hicFailure

└
withdrawAll

From
External ❗ 🛑

onlyInCata
strophicFa

ilure

└ balanceOf External ❗ NO❗

└
_withdrawFr

om
Internal 🔒 🛑

29.03.2021 0x v3 Staking | ConsenSys Diligence

https://consensys.net/diligence/audits/2019/10/0x-v3-staking/ 43/59

Contract Type Bases

└
_assertSend
erIsStakingP

roxy
Private 🔐

└
_assertInCat
astrophicFai

lure
Private 🔐

└
_assertNotIn
Catastrophi

cFailure
Private 🔐

MixinExch
angeFees

Implementa
tion

MixinExchange
Manager,

MixinStakingPo
ol,

MixinFinalizer

└
payProtocol

Fee
External ❗ 💵

onlyExcha
nge

└
getActiveSt
akingPoolTh

isEpoch
External ❗ NO❗

└

_computeM
embersAnd
WeightedSt

ake

Private 🔐

└
_assertValid
ProtocolFee

Private 🔐

MixinExch
angeMana

ger

Implementa
tion

IStakingEvents,
MixinStorage

└
addExchang

eAddress
External ❗ 🛑

onlyAutho
rized

29.03.2021 0x v3 Staking | ConsenSys Diligence

https://consensys.net/diligence/audits/2019/10/0x-v3-staking/ 44/59

Contract Type Bases

└
removeExch
angeAddres

s
External ❗ 🛑

onlyAutho
rized

MixinCons
tants

Implementa
tion

MixinDeployme
ntConstants

MixinDepl
oymentCo

nstants

Implementa
tion

└
getWethCon

tract
Public ❗ NO❗

└ getZrxVault Public ❗ NO❗

MixinStor
age

Implementa
tion

MixinConstants
, Authorizable

IStaking Interface

└ moveStake External ❗ 🛑 NO❗

└
payProtocol

Fee
External ❗ 💵 NO❗

└ stake External ❗ 🛑 NO❗

IStakingEv
ents

Interface

IStakingPr
oxy

Interface

└ <Fallback> External ❗ 💵 NO❗

└
attachStakin

gContract
External ❗ 🛑 NO❗

└
detachStaki
ngContract

External ❗ 🛑 NO❗

29.03.2021 0x v3 Staking | ConsenSys Diligence

https://consensys.net/diligence/audits/2019/10/0x-v3-staking/ 45/59

Contract Type Bases

IStorage Interface

└
stakingCont

ract
External ❗ NO❗

└
readOnlyPro

xy
External ❗ NO❗

└
readOnlyPro

xyCallee
External ❗ NO❗

└ nextPoolId External ❗ NO❗

└
numMakers

ByPoolId
External ❗ NO❗

└
currentEpoc

h
External ❗ NO❗

└
currentEpoc
hStartTimeI
nSeconds

External ❗ NO❗

└
protocolFee
sThisEpoch

ByPool
External ❗ NO❗

└
activePoolsT

hisEpoch
External ❗ NO❗

└
validExchan

ges
External ❗ NO❗

└
epochDurati
onInSecond

s
External ❗ NO❗

└
rewardDele
gatedStake

Weight
External ❗ NO❗

└
minimumPo

olStake
External ❗ NO❗

29.03.2021 0x v3 Staking | ConsenSys Diligence

https://consensys.net/diligence/audits/2019/10/0x-v3-staking/ 46/59

Contract Type Bases

└
maximumM
akersInPool

External ❗ NO❗

└
cobbDougla
sAlphaNum

erator
External ❗ NO❗

└
cobbDougla
sAlphaDeno

minator
External ❗ NO❗

IStorageIn
it

Interface

└ init External ❗ 🛑 NO❗

IStructs Interface

IZrxVault Interface

└
setStakingPr

oxy
External ❗ 🛑 NO❗

└
enterCatastr
ophicFailure

External ❗ 🛑 NO❗

└ setZrxProxy External ❗ 🛑 NO❗

└ depositFrom External ❗ 🛑 NO❗

└
withdrawFro

m
External ❗ 🛑 NO❗

└
withdrawAll

From
External ❗ 🛑 NO❗

└ balanceOf External ❗ NO❗

LibCobbD
ouglas

Library

29.03.2021 0x v3 Staking | ConsenSys Diligence

https://consensys.net/diligence/audits/2019/10/0x-v3-staking/ 47/59

Contract Type Bases

└
cobbDougla

s
Internal 🔒

LibFixedM
ath

Library

└ one Internal 🔒

└ add Internal 🔒

└ sub Internal 🔒

└ mul Internal 🔒

└ div Internal 🔒

└ mulDiv Internal 🔒

└ uintMul Internal 🔒

└ abs Internal 🔒

└ invert Internal 🔒

└ toFixed Internal 🔒

└ toFixed Internal 🔒

└ toFixed Internal 🔒

└ toFixed Internal 🔒

└ toInteger Internal 🔒

└ ln Internal 🔒

└ exp Internal 🔒

└ _mul Private 🔐

└ _div Private 🔐

└ _add Private 🔐

29.03.2021 0x v3 Staking | ConsenSys Diligence

https://consensys.net/diligence/audits/2019/10/0x-v3-staking/ 48/59

Contract Type Bases

LibFixedM
athRichErr

ors
Library

└
SignedValue

Error
Internal 🔒

└
UnsignedVal

ueError
Internal 🔒

└ BinOpError Internal 🔒

LibProxy Library

└ proxyCall Internal 🔒 🛑

LibSafeDo
wncast

Library

└
downcastTo

Uint96
Internal 🔒

└
downcastTo

Uint64
Internal 🔒

└
downcastTo

Uint32
Internal 🔒

LibStaking
RichErrors

Library

└
OnlyCallabl
eByExchang

eError
Internal 🔒

└
ExchangeM
anagerError

Internal 🔒

└
Insu�icientB
alanceError

Internal 🔒

29.03.2021 0x v3 Staking | ConsenSys Diligence

https://consensys.net/diligence/audits/2019/10/0x-v3-staking/ 49/59

Contract Type Bases

└

OnlyCallabl
eByPoolOpe
ratorOrMake

rError

Internal 🔒

└
MakerPoolA
ssignmentEr

ror
Internal 🔒

└
BlockTimest
ampTooLow

Error
Internal 🔒

└

OnlyCallabl
eByStaking
ContractErr

or

Internal 🔒

└

OnlyCallabl
eIfInCatastr
ophicFailure

Error

Internal 🔒

└

OnlyCallabl
eIfNotInCata
strophicFail

ureError

Internal 🔒

└
OperatorSh

areError
Internal 🔒

└
PoolExisten

ceError
Internal 🔒

└
InvalidProto
colFeePaym

entError
Internal 🔒

└
InvalidStake
StatusError

Internal 🔒

29.03.2021 0x v3 Staking | ConsenSys Diligence

https://consensys.net/diligence/audits/2019/10/0x-v3-staking/ 50/59

Contract Type Bases

└
Initialization

Error
Internal 🔒

└
InvalidPara

mValueError
Internal 🔒

└
ProxyDestin
ationCannot

BeNilError
Internal 🔒

└
PreviousEpo
chNotFinaliz

edError
Internal 🔒

MixinStak
e

Implementa
tion

MixinStakingPo
ol

└ stake External ❗ 🛑 NO❗

└ unstake External ❗ 🛑 NO❗

└ moveStake External ❗ 🛑 NO❗

└
_delegateSt

ake
Private 🔐 🛑

└
_undelegate

Stake
Private 🔐 🛑

└
_getBalance
PtrFromStat

us
Private 🔐

MixinStak
eBalances

Implementa
tion

MixinStakeStor
age

└
getGlobalAc

tiveStake
External ❗ NO❗

└
getGlobalIn
activeStake

External ❗ NO❗

29.03.2021 0x v3 Staking | ConsenSys Diligence

https://consensys.net/diligence/audits/2019/10/0x-v3-staking/ 51/59

Contract Type Bases

└
getGlobalDe
legatedStak

e
External ❗ NO❗

└
getTotalStak

e
External ❗ NO❗

└
getActiveSt

ake
External ❗ NO❗

└
getInactiveS

take
External ❗ NO❗

└
getStakeDel
egatedByO

wner
External ❗ NO❗

└
getWithdra
wableStake

Public ❗ NO❗

└
getStakeDel
egatedToPo
olByOwner

Public ❗ NO❗

└
getTotalStak
eDelegatedT

oPool
Public ❗ NO❗

└
_computeWi
thdrawableS

take
Internal 🔒

MixinStak
eStorage

Implementa
tion

MixinScheduler

└ _moveStake Internal 🔒 🛑

└
_loadSynced

Balance
Internal 🔒

└
_loadUnsync
edBalance

Internal 🔒

29.03.2021 0x v3 Staking | ConsenSys Diligence

https://consensys.net/diligence/audits/2019/10/0x-v3-staking/ 52/59

Contract Type Bases

└
_increaseCu
rrentAndNe
xtBalance

Internal 🔒 🛑

└
_decreaseC
urrentAndN
extBalance

Internal 🔒 🛑

└
_increaseNe
xtBalance

Internal 🔒 🛑

└
_decreaseN
extBalance

Internal 🔒 🛑

└
_storeBalanc

e
Private 🔐 🛑

└
_arePointers

Equal
Private 🔐

MixinCum
ulativeRe

wards

Implementa
tion

MixinStakeBala
nces

└
_initializeCu
mulativeRe

wards
Internal 🔒 🛑

└
_isCumulativ
eRewardSet

Internal 🔒

└
_forceSetCu
mulativeRe

ward
Internal 🔒 🛑

└

_computeM
emberRewar
dOverInterv

al

Internal 🔒

29.03.2021 0x v3 Staking | ConsenSys Diligence

https://consensys.net/diligence/audits/2019/10/0x-v3-staking/ 53/59

Contract Type Bases

└
_getMostRe
centCumula
tiveReward

Internal 🔒

└
_getCumulat
iveRewardAt

Epoch
Internal 🔒

MixinStaki
ngPool

Implementa
tion

MixinAbstract,
MixinStakingPo

olRewards

└
createStakin

gPool
External ❗ 🛑 NO❗

└
decreaseSta
kingPoolOp
eratorShare

External ❗ 🛑

onlyStakin
gPoolOper
atorOrMak

er

└
joinStakingP
oolAsMaker

External ❗ 🛑 NO❗

└
addMakerTo
StakingPool

External ❗ 🛑

onlyStakin
gPoolOper
atorOrMak

er

└
removeMak
erFromStaki

ngPool
External ❗ 🛑

onlyStakin
gPoolOper
atorOrMak

er

└
getStakingP
oolIdOfMak

er
Public ❗ NO❗

└
getStakingP

ool
Public ❗ NO❗

29.03.2021 0x v3 Staking | ConsenSys Diligence

https://consensys.net/diligence/audits/2019/10/0x-v3-staking/ 54/59

Contract Type Bases

└
_addMakerT
oStakingPoo

l
Internal 🔒 🛑

└
_computeNe
xtStakingPo

olId
Internal 🔒

└
_assertStaki
ngPoolExists

Internal 🔒

└
_assertNew
OperatorSh

are
Private 🔐

└

_assertSend
erIsPoolOpe
ratorOrMake

r

Private 🔐

MixinStaki
ngPoolRe

wards

Implementa
tion

MixinAbstract,
MixinCumulativ

eRewards

└
withdrawDel
egatorRewar

ds
External ❗ 🛑 NO❗

└

computeRe
wardBalanc
eOfOperato

r

External ❗ NO❗

└

computeRe
wardBalanc
eOfDelegato

r

External ❗ NO❗

29.03.2021 0x v3 Staking | ConsenSys Diligence

https://consensys.net/diligence/audits/2019/10/0x-v3-staking/ 55/59

Contract Type Bases

└

_withdrawA
ndSyncDele
gatorRewar

ds

Internal 🔒 🛑

└
_syncPoolRe

wards
Internal 🔒 🛑

└
_computePo
olRewardsS

plit
Internal 🔒

└
_computeDe
legatorRewa

rd
Private 🔐

└

_computeUn
�inalizedDel
egatorRewar

d

Private 🔐

└
_increasePo
olRewards

Private 🔐 🛑

└
_decreasePo
olRewards

Private 🔐 🛑

MixinAbst
ract

Implementa
tion

└ �inalizePool Public ❗ 🛑 NO❗

└
_getUn�inali
zedPoolRew

ards
Internal 🔒

MixinFinal
izer

Implementa
tion

MixinStakingPo
olRewards

└ endEpoch External ❗ 🛑 NO❗

└ �inalizePool Public ❗ 🛑 NO❗

29.03.2021 0x v3 Staking | ConsenSys Diligence

https://consensys.net/diligence/audits/2019/10/0x-v3-staking/ 56/59

Contract Type Bases

└
_getUn�inali
zedPoolRew

ards
Internal 🔒

└
_getActiveP
oolFromEpo

ch
Internal 🔒

└
_getActiveP
oolsFromEp

och
Internal 🔒

└ _wrapEth Internal 🔒 🛑

└
_getAvailabl
eWethBalan

ce
Internal 🔒

└

_getUn�inali
zedPoolRew
ardsFromSta

te

Private 🔐

└
_creditRewa
rdsToPool

Private 🔐 🛑

MixinPara
ms

Implementa
tion

IStakingEvents,
MixinStorage

└ setParams External ❗ 🛑
onlyAutho

rized

└ getParams External ❗ NO❗

└
_initMixinPar

ams
Internal 🔒 🛑

└
_assertPara

msNotInitiali
zed

Internal 🔒

└ _setParams Private 🔐 🛑

29.03.2021 0x v3 Staking | ConsenSys Diligence

https://consensys.net/diligence/audits/2019/10/0x-v3-staking/ 57/59

Contract Type Bases

MixinSche
duler

Implementa
tion

IStakingEvents,
MixinStorage

└

getCurrentE
pochEarliest
EndTimeInS

econds

Public ❗ NO❗

└
_initMixinSc

heduler
Internal 🔒 🛑

└
_goToNextE

poch
Internal 🔒 🛑

└
_assertSche
dulerNotIniti

alized
Internal 🔒

Legend

Symbol Meaning

🛑 Function can modify state

💵 Function is payable

Appendix 1 - Disclosure
ConsenSys Diligence (“CD”) typically receives compensation from one or
more clients (the “Clients”) for performing the analysis contained in these
reports (the “Reports”). The Reports may be distributed through other means,
including via ConsenSys publications and other distributions.

The Reports are not an endorsement or indictment of any particular project
or team, and the Reports do not guarantee the security of any particular
project. This Report does not consider, and should not be interpreted as
considering or having any bearing on, the potential economics of a token,
token sale or any other product, service or other asset. Cryptographic tokens
are emergent technologies and carry with them high levels of technical risk
and uncertainty. No Report provides any warranty or representation to any

29.03.2021 0x v3 Staking | ConsenSys Diligence

https://consensys.net/diligence/audits/2019/10/0x-v3-staking/ 58/59

Third-Party in any respect, including regarding the bugfree nature of code,
the business model or proprietors of any such business model, and the legal
compliance of any such business. No third party should rely on the Reports in
any way, including for the purpose of making any decisions to buy or sell any
token, product, service or other asset. Speci�ically, for the avoidance of
doubt, this Report does not constitute investment advice, is not intended to
be relied upon as investment advice, is not an endorsement of this project or
team, and it is not a guarantee as to the absolute security of the project. CD
owes no duty to any Third-Party by virtue of publishing these Reports.

PURPOSE OF REPORTS The Reports and the analysis described therein are
created solely for Clients and published with their consent. The scope of our
review is limited to a review of Solidity code and only the Solidity code we
note as being within the scope of our review within this report. The Solidity
language itself remains under development and is subject to unknown risks
and �laws. The review does not extend to the compiler layer, or any other
areas beyond Solidity that could present security risks. Cryptographic tokens
are emergent technologies and carry with them high levels of technical risk
and uncertainty.

CD makes the Reports available to parties other than the Clients (i.e., “third
parties”) – on its website. CD hopes that by making these analyses publicly
available, it can help the blockchain ecosystem develop technical best
practices in this rapidly evolving area of innovation.

LINKS TO OTHER WEB SITES FROM THIS WEB SITE You may, through
hypertext or other computer links, gain access to web sites operated by
persons other than ConsenSys and CD. Such hyperlinks are provided for your
reference and convenience only, and are the exclusive responsibility of such
web sites’ owners. You agree that ConsenSys and CD are not responsible for
the content or operation of such Web sites, and that ConsenSys and CD shall
have no liability to you or any other person or entity for the use of third party
Web sites. Except as described below, a hyperlink from this web Site to
another web site does not imply or mean that ConsenSys and CD endorses
the content on that Web site or the operator or operations of that site. You
are solely responsible for determining the extent to which you may use any
content at any other web sites to which you link from the Reports. ConsenSys
and CD assumes no responsibility for the use of third party software on the

29.03.2021 0x v3 Staking | ConsenSys Diligence

https://consensys.net/diligence/audits/2019/10/0x-v3-staking/ 59/59

Web Site and shall have no liability whatsoever to any person or entity for the
accuracy or completeness of any outcome generated by such software.

TIMELINESS OF CONTENT The content contained in the Reports is current as
of the date appearing on the Report and is subject to change without notice.
Unless indicated otherwise, by ConsenSys and CD.

https://consensys.net/diligence/audits/
https://consensys.net/diligence/blog/
https://consensys.net/diligence/tools/
https://consensys.net/diligence/research/
https://consensys.net/diligence/about/
https://consensys.net/diligence/contact/
https://consensys.net/open-roles/?discipline=32525
https://consensys.net/diligence/privacy-policy/
https://consensys.net/
https://consensys.net/diligence/contact/

