Audit Report

Apollo DAO Smart Contracts

Aug 18, 2021

Table of Contents

Table of Contents 2
License 3
Disclaimer 3
Introduction 5
Purpose of this Report 5
Codebase Submitted for the Audit 5
Methodology 6
Functionality Overview 6
How to read this Report 7
Summary of Findings 8
Code Quality Criteria 9
Detailed Findings 10
Users can withdraw and zap out all LP tokens from the autocompound strategy 10

Users might receive additional asset tokens during zap out 10

Users can still deposit, zap in and then execute, withdraw and zap out additional

tokens after an emergency withdrawal 1
Zapping in high amounts of base denom tokens leads to relatively big remainder of
tokens that can will be used by the next user for free 12

Half up tie breaking rule within rounding function will lead to last user being unable to
withdraw full bond 12
Hard-coded base token denom might break autocompound strategy execution 13
Updating the staking contract, base or asset token or the asset token pair in the
autocompound strategy may lead to inconsistent protocol state 13

Users may lose bonded tokens after emergency halt if Mirror’'s unstaking logic
changes in the future 14
Performance fee values greater than 1 will lead to failing execution 15
Storing config parameter as strings may lead to runtime errors 15
Overflow checks not set for release profile in most packages 16
Autocompound strategy execution will fail if total bond amount is zero 16

Coins other than UST sent to the factory are lost 17
Querying all strategies or user strategies of the factory might run out of gas 17
Warchest config value in factory contract cannot queried and updated 17
Factory’s TVL calculation queries each strategy’s TVL twice 18
Unnecessary storage of user info by base token within apollo-base-strategy 18
Unused factory contract field in collector config 18
Unused terraswap factory contract field in autocompound strategy config 19
Unused constants in factory state 19

License

©@ ® 06

THIS WORK IS LICENSED UNDER A CREATIVE COMMONS ATTRIBUTION-NODERIVATIVES
4.0 INTERNATIONAL LICENSE.

https://creativecommons.org/licenses/by-nd/4.0/
https://creativecommons.org/licenses/by-nd/4.0/
https://creativecommons.org/licenses/by-nd/4.0/

Disclaimer

THE CONTENT OF THIS AUDIT REPORT IS PROVIDED “AS IS”, WITHOUT REPRESENTATIONS
AND WARRANTIES OF ANY KIND.

THE AUTHOR AND HIS EMPLOYER DISCLAIM ANY LIABILITY FOR DAMAGE ARISING OUT
OF, OR IN CONNECTION WITH, THIS AUDIT REPORT.

COPYRIGHT OF THIS REPORT REMAINS WITH THE AUTHOR.

This audit has been performed by

Philip Stanislaus

Oak Security

h : k rity.i
info@oaksecurity.io

https://oaksecurity.io/
mailto:info@oaksecurity.io

Introduction

Purpose of this Report

Oak Security has been engaged by the Apollo team to perform a security audit of the Apollo
DAO smart contracts.

The objectives of the audit are as follows:

1. Determine the correct functioning of the protocol, in accordance with the project
specification.

2. Determine possible vulnerabilities, which could be exploited by an attacker.
3. Determine smart contract bugs, which might lead to unexpected behavior.
4. Analyze whether best practices have been applied during development.
5. Make recommendations to improve code safety and readability.

This report represents a summary of the findings.

As with any code audit, there is a limit to which vulnerabilities can be found, and unexpected
execution paths may still be possible. The author of this report does not guarantee complete
coverage (see disclaimer).

Codebase Submitted for the Audit

The audit has been performed on the following GitHub repository:

https://github.com/apollodao/apollo-contracts

Commit hash: b3f2e9a66e49f35d51aeeal0f68d20c8286737a39
The following directories were included in the audit:

contracts/*
packages/apollo-protocol/*

https://github.com/apollodao/apollo-contracts

Methodology

The audit has been performed in the following steps:

1.

Gaining an understanding of the code base’s intended purpose by reading the
available documentation.
Automated source code and dependency analysis.
Manual line by line analysis of the source code for security vulnerabilities and use of
best practice guidelines, including but not limited to:

a. Race condition analysis

b. Under-/overflow issues

c. Key management vulnerabilities
Report preparation

Functionality Overview

The Apollo DAO offers yield management strategies on the Terra blockchain. The audited
smart contracts implement simple auto-compounding vaults for mAsset pools on Mirror as
well as the MIR-UST pool on Mirror.

How to read this Report

This report classifies the issues found into the following severity categories:

Severity

Critical

Major

Informational

Description

A serious and exploitable vulnerability that can lead to loss of funds,
unrecoverable locked funds, or catastrophic denial of service.

A vulnerability or bug that can affect the correct functioning of the
system, lead to incorrect states or denial of service.

A violation of common best practices or incorrect usage of primitives,
which may not currently have a major impact on security, but may do so
in the future or introduce inefficiencies.

Comments and recommendations of design decisions or potential
optimizations, that are not relevant to security. Their application may
improve aspects, such as user experience or readability, but is not strictly
necessary. This category may also include opinionated
recommendations that the project team might not share.

The status of an issue can be one of the following: Pending, Acknowledged or Resolved.
Informational notes do not have a status, since we consider them optional recommendations.

Note, that audits are an important step to improve the security of smart contracts and can find
many issues. However, auditing complex codebases has its limits and a remaining risk is
present (see disclaimer).

Users of the system should exercise caution. In order to help with the evaluation of the
remaining risk, we provide a measure of the following key indicators: code complexity, code
readability, level of documentation, and test coverage. We include a table with these criteria

below.

Note, that high complexity or low test coverage does not necessarily equate to a higher risk,
although certain bugs are more easily detected in unit testing than a security audit and vice

versa.

Summary of Findings

No

10

11

12

13

14

Description

Users can withdraw and zap out all LP tokens from
the autocompound strategy

Users might receive additional asset tokens during
zap out

Users can still deposit, zap in and then execute,
withdraw and zap out additional tokens after an
emergency withdrawal

Zapping in high amounts of base denom tokens
leads to relatively big remainder of tokens that can
will be used by the next user for free

Half up tie breaking rule within rounding function
will lead to last user being unable to withdraw full
bond

Hard-coded base token denom might break
autocompound strategy execution

Updating the staking contract, base or asset token
or the asset token pair in the autocompound
strategy may lead to inconsistent protocol state

Users may lose bonded tokens after emergency
halt if Mirror’s unstaking logic changes in the future

Performance fee values greater than 1 will lead to
failing execution

Storing config parameter as strings may lead to
runtime errors

Overflow checks not set for release profile in most
packages

Autocompound strategy execution will fail if total
bond amount is zero

Coins other than UST sent to the factory are lost

Querying all strategies or user strategies of the
factory might run out of gas

Severity

Critical

Major

Major

Major

Informational

Informational

Informational

Status

Resolved

Resolved

Resolved

Resolved

Resolved

Resolved

Resolved

Resolved

Resolved

Resolved

Resolved

15

16

17

18

19

20

Warchest config value in factory contract cannot
queried and updated

Factory’s TVL calculation queries each strategy’s
TVL twice

Unnecessary storage of user info by base token
within apollo-base-strategy

Unused factory contract field in collector config

Unused terraswap factory contract field in
autocompound strategy config

Unused constants in factory state

Code Quality Criteria

Criteria Status

Code complexity

Code readability and clarity Medium-High

Level of Documentation

Test Coverage Medium-High

Informational

Informational

Informational

Informational

Informational

Informational

Comment

Detailed Findings

1 Users can withdraw and zap out all LP tokens from the
autocompound strategy

Severity: Critical

Both the autocompound strategy’s Withdraw and ZapOut messages allow any user to
withdraw all LP tokens from the strategy. Within the handlers of both messages, the
BaseStrategy’s withdraw function is called with the user supplied withdrawal amount.
That withdraw function calls the remove shares function, which reduces a user’s bond
by the given amount. If the amount is greater than the currently bonded tokens by the user,
the function gracefully reduces the bond to zero
contracts/apollo-base-strategy/src/strategy.rs:132. Then the withdraw
and zap_ out handlers in
contracts/apollo-base-strategy/src/strategy.rs:455 and 832 unstake and
send the full user supplied amount to the user, allowing the user to steal all LP tokens from
the protocol.

Recommendation

Instead of gracefully reducing the user’s bonds to zero if a user tries to withdraw more tokens
than they own, we recommend either returning an error in
contracts/apollo-base-strategy/src/strategy.rs:132 or returning the actual
amount the user can unbond and using that within the withdraw and zap out handlers.

Status: Resolved

2, Users might receive additional asset tokens during zap out

Severity: Major

During provision of liquidity within the autocompound strategy, it could happen that asset
tokens remain in the contract. This is caused since the amount of assets sent to TerraSwap
depends on the ratio of base to asset tokens in TerraSwap, which is determined in
contracts/strategies/autocompound/src/strategy.rs:366. If more asset
tokens were sent to TerraSwap, arbitrageurs could make a risk free profit. Such remaining
tokens are not kept in the contract though — they will be sold in
contracts/strategies/autocompound/src/strategy.rs:512 and then sent in
line 561 to the next user sending a ZapOut message.

This issue only affects asset tokens. For base tokens, a query is made at the beginning of the
zap out function in
contracts/strategies/autocompound/src/strategy.rs:847 to determine the

10

base token balance, and only the difference is sent to the the wuser, see
contracts/strategies/autocompound/src/strategy.rs:553.

Recommendation

As is currently implemented for base tokens, we recommend adding a query for the current
asset token balance at the beginning of the zap out function, and then just selling the asset
token difference in

contracts/strategies/autocompound/src/strategy.rs:512.

Status: Resolved

3. Users can still deposit, zap in and then execute, withdraw and
zap out additional tokens after an emergency withdrawal

Severity: Major

The current logic implementing the emergency withdrawal in
contracts/strategies/autocompound/src/strategy.rs:902 does not prevent
users from depositing and zapping in additional tokens, which also allows execution of the
strategy and withdrawal and zapping out of those additional tokens. This will lead to incorrect
states.

For example, strategy execution will distribute rewards to users that do not have bonded
tokens anymore through the increase stake amount function in
contracts/strategies/autocompound/src/strategy.rs:92.

Moreover, additionally added tokens cannot be withdrawn with another emergency
withdrawal, since unbonding is using total bond amount, which is higher than the actual
bonded amount.

Recommendation

We recommend preventing further deposits and zap ins after an emergency withdrawal —
either by setting deposits paused to true in the handle emergency withdraw
function in contracts/apollo-factory/src/contract.rs:304 or by adding a
similar flag to the autocompound strategy that will be set to false in the
emergency withdraw function in
contracts/strategies/autocompound/src/strategy.rs:902.

Status: Resolved

11

4, Zapping in high amounts of base denom tokens leads to
relatively big remainder of tokens that can will be used by the next
user for free

Severity: Major

During a zap in of the autocompound strategy, half of the provided base denom balance is
spent on TerraSwap to buy asset tokens in the buy asset function. Depending on the
amount of tokens swapped and the liquidity of the asset token/base token pair on TerraSwap,
there can be quite a sizable price impact. After buying the asset tokens, liquidity will be
provided at the current token ratio of the TerraSwap pair, see
contracts/strategies/autocompound/src/strategy.rs:367. Due to the price
impact, there will be base asset tokens remaining in the contract. If the amount of tokens
zapped in is big and the liquidity on TerraSwap is low, that remaining base asset balance will
be sizable.

The same issue occurs during execution of the strategy if the asset token is not equal to the
reward token, see contracts/strategies/autocompound/src/strategy.rs:199.
In that case, the buy asset function will run as well and will also lead to base asset tokens
being left in the contract.

In the current implementation, the next user that zaps into the strategy will be automatically
using these remaining tokens as part of their provided tokens.

Recommendation

We recommend adjusting the logic in the buy asset function to account for the price
impact, minimizing the amount of tokens being left in the contract after a swap.

Alternatively, the contract could use the amount of base denom tokens sent, rather than
assuming that all available base denom tokens the contract owns were provided by the
message sender. Any tokens that have not been used for liquidity provision could be
refunded to the sender. This will still imply though that users that send bigger amounts of
base denom tokens will experience a higher relative amount of lost tokens than users that
send smaller amounts.

Status: Resolved

5. Half up tie breaking rule within rounding function will lead to last
user being unable to withdraw full bond

The decimal rounding function defined in
packages/apollo-protocol/src/utils.rs:47 uses the round half up tie-breaking
rule. That rule has a positive bias. The function is used to determine how a user’s bonds

12

increase as rewards accumulate inthe calculate user bonds from index functionin
packages/apollo-protocol/src/utils.rs:53. The bias in the rounding function
used will lead to the sum of all user bonds being slightly bigger than the actual total bonded
amount. That will render the last user unable to withdraw all their bonds, since the balance in
the contract will be slightly smaller than the bond assigned to the user.

Even though this issue involves a loss of funds, we classify it as minor since the amount
affected is very small.

Recommendation

We recommend changing the rounding function to use an unbiased tie-breaking rule, such as
round half to even. Alternatively, any decimals could be truncated to change the bias such
that the contract will retain a tiny amount, rather than one user losing it.

Status: Resolved

6. Hard-coded base token denom might break autocompound
strategy execution

In contracts/strategies/autocompound/src/strategy.rs:303, the base token
denom is hard-coded to "uusd". This is problematic, since the autocompound strategy
allows a configurable base denom, see
contracts/strategies/autocompound/src/state.rs:17. If a base denom other
than "uusd" is configured, executing the strategy may fail.

Recommendation

We recommend using config.base denom instead of a hardcoded value in
contracts/strategies/autocompound/src/strategy.rs:303.

Status: Resolved

7. Updating the staking contract, base or asset token or the asset
token pair in the autocompound strategy may lead to inconsistent
protocol state

The UpdateConfig message of the autocompound strategy allows updates of most
configuration values, but the handler in
contracts/strategies/autocompound/src/strategy.rs:571 does not include
state migration to ensure a consistent protocol state. For example, an update of the
staking contract without migrating the staked tokens to the new contract will lead to a

13

failure of strategy execution and withdrawals. An update of the base token or
asset token without migration of the balances will lead to the same issues. An update to
the asset token pair contract without migrating the liquidity to the new contract will lead
to a failure of withdrawals.

Recommendation

We recommend removing the possibility to update those values and instead relying on
deploying a new strategy to ensure a consistent protocol state. Alternatively, state migration
could be added to the update config handler.

Status: Resolved

8. Users may lose bonded tokens after emergency halt if Mirror’s
unstaking logic changes in the future

In the return 1p function in
contracts/strategies/autocompound/src/strategy.rs:432, which is called by
the Withdraw message, the tokens to be returned to a user are set to the maximum
available tokens. After an emergency withdraw, that condition could be fulfilled, since the
bonded tokens by a user are still positive, while the actually available tokens are zero. In such
an instance, a user could lose access to their tokens.

Example: If a user had deposited 10 LP tokens before the emergency withdraw, then deposits
further 10 LP tokens after the emergency withdraw, and finally tries to withdraw 15 LP tokens,
they will only receive 10 LP tokens, but their balance in the storage would be reduced by 15
LP tokens.

The same issue exists in the withdraw liquidity function in
contracts/strategies/autocompound/src/strategy.rs:469, which is called by
the ZapOut message.

This issue is currently prevented by Mirror’s staking contract since it returns an error if a user
tries to unbond more LP tokens than currently bonded.

We still classify this issue as minor as it depends on an implementation detail of the Mirror
contract.

Recommendation

We recommend panicing or returning an error in
contracts/strategies/autocompound/src/strategy.rs:432 and 469 to
prevent a user receiving less tokens than requested.

Status: Resolved

14

o. Performance fee values greater than 1 will lead to failing
execution

The performance fee config parameter of the autocompound strategy in
contracts/strategies/autocompound/src/state.rs:24 is currently not
validated. If it is set to a value greater than 1, the autocompound strategy can not be
executed, since sending more than the available CW20 tokens will fail in
contracts/strategies/autocompound/src/strategy.rs:156orin 312

Recommendation

We recommend validating that performance fee is setto a value less than or equal to 1in

the init function in
contracts/strategies/autocompound/src/contract.rs:42 and in the
update config function in

contracts/strategies/autocompound/src/strategy.rs: 642

Status: Resolved

10. Storing config parameter as strings may lead to runtime errors

Several config parameters are stored as strings and converted to Decimals before they are
used. That leads to potential conversion failures at runtime of handlers and adds computation
overhead to regular message handlers. Instances are:

e performance fee in
contracts/apollo-base-strategy/src/state.rs:16
max spreadincontracts/collector/src/state.rs:18
max_spreadin contracts/strategies/autocompound/src/state.rs:18
slippage tolerance in
contracts/strategies/autocompound/src/state.rs:19

e performance fee in

contracts/strategies/autocompound/src/state.rs:24
Recommendation

We recommend storing those parameters as Decimals and do the conversion in the contracts’
init and config update functions.

Status: Resolved

15

1. Overflow checks not set for release profile in most packages

While set in the workspace’s Cargo.toml files, the following Cargo.toml files do not
enable overflow-checks forthe release profile:

contracts/apollo-base-strategy/Cargo.toml
contracts/apollo-factory/Cargo.toml
contracts/collector/Cargo.toml
contracts/strategies/autocompound/Cargo.toml
packages/apollo-protocol/Cargo.toml
packages/bignumber/Cargo.toml
packages/cw0O/Cargo.toml
packages/cw20/Cargo.toml
packages/schema/Cargo.toml
packages/std/Cargo.toml
packages/storage-plus/Cargo.toml
packages/storage/Cargo.toml
packages/terra-cosmwasm/Cargo.toml

packages/terraswap/Cargo.toml
Recommendation

Even though this check is implicitly applied to all packages from the workspace’s
Cargo.toml, we recommend also explicitly enabling overflow checks in every individual
package. That helps prevent unintended consequences when the codebase is refactored in
the future.

Status: Resolved

12. Autocompound strategy execution will fail if total bond amount is
zero

Severity: Informational

Execution of the autocompound strategy in
contracts/strategies/autocompound/src/strategy.rs: 737 will fail if the total
bond amount is zero. This is caused by a panic from a division by zero in
contracts/strategies/autocompound/src/strategy.rs:100.

Recommendation

While this panic has no security implication, we recommend handling division by zero
gracefully.

16

13. Coins other than UST sent to the factory are lost

Severity: Informational

The handle zap into strategy function in the factory contract filters sent coins for
"uusd" in contracts/apollo-factory/src/contract.rs:236, but ignores any
additional coins sent to the contract. Such additional coins will be inaccessible to anyone.

This issue is classified as informational since it originates from user error.
Recommendation

We recommend checking the number of sent coins and returning an error if any coins other
than "uusd" are received.

14. Querying all strategies or user strategies of the factory might run
out of gas

Severity: Informational

The factory’s GetStrategies and GetUserStrategies queries are using unbounded
storage iterators in contracts/apollo-factory/src/state.rs:91 and 132. As
more strategies are added to the factory, the gas cost of running those queries does increase.

This is not a security concern for Apollo, since those queries are not used anywhere within
the current codebase. Other projects could rely on the queries though. If they do, a high
amount of strategies could lead to the queries running out of gas.

Recommendation

We recommend adding pagination to the GetStrategies and GetUserStrategies
queries.

15. Warchest config value in factory contract cannot queried and
updated

Severity: Informational

The factory’s GetConfig query does return the owner in
contracts/apollo-factory/src/contract.rs:510, but not the warchest.

Likewise, the handle update config function allows an update of the owner in
contracts/apollo-factory/src/contract.rs: 343, but not of the warchest.

Recommendation

17

We recommend returning the warchest in the response to the GetConfig query and adding
the ability to update the warchest.

16. Factory’s TVL calculation queries each strategy’s TVL twice

Severity: Informational

The get total tvl function in
contracts/apollo-factory/src/contract.rs:531 queries the TVL for each
strategy in line 542, even though the TVL of each strategy has already been queried within
the read all strategies functioninline 534. That causes unnecessary queries.

Recommendation

We recommend summing up strategy.tvlinline 544 instead.

17. Unnecessary storage of user info by base token within
apollo-base-strategy

Severity: Informational

In the apollo-base-strategy contract in
contracts/apollo-base-strategy/src/state.rs:56 and 65, user info is stored in
a multilevel bucket, where each entry is accessed by both the user’s and the base token’s
canonical address. Since there is one strategy contract instance per base token and since
every CosmWasm contract uses their own storage namespace, using the base token as an
identifier is not necessary.

Recommendation

We recommend storing user info only by a user’s canonical address. That simplifies the code
and reduces computation.

18. Unused factory contract field in collector config

Severity: Informational

The field factory contract of the collector’s Config in
contracts/collector/src/contract.rs:23 is unused.

Recommendation

We recommend removing unused config entries to simplify the code and reduce gas cost.

18

19. Unused terraswap factory contract field in autocompound
strategy config

Severity: Informational

The field terraswap factory of the collector’s Config in
contracts/strategies/autocompound/src/state.rs:13 is unused.

Recommendation

We recommend removing unused config entries to simplify the code and reduce gas cost.

20. Unused constants in factory state

Severity: Informational

The constants STRATEGY KEY and STRATEGY COUNT KEY in
contracts/apollo-factory/src/state.rs:22 and 23 are unused.

Recommendation

We recommend removing unused constants to simplify the code and reduce gas cost.

19

