
Audit Report

Terra Liquidity Bootstrapping
Pool

v1.0

December 23, 2021

1

Table of Contents
Table of Contents 2

License 3

Disclaimer 3

Introduction 5
Purpose of this Report 5

Codebase Submitted for the Audit 5

Methodology 6

Functionality Overview 6

How to read this Report 7

Summary of Findings 8
Code Quality Criteria 8

Detailed Findings 9
Pools with big but different token amounts allow attackers to extract free value with
minimal cost 9

Duplicate storage in two contracts could lead to inconsistencies 10

Migration of the pair contract is disabled 10

A pair’s asset infos are no longer stored sorted which might break other contracts 11

Unnecessary sub-messages introduce complexity 11

Contract name is not unique 12

Pair contract registration message in factory can be replaced with sub-message reply
12

Post initialize message in pair contract can be replaced with sub-message reply 13

2

License

THIS WORK IS LICENSED UNDER A CREATIVE COMMONS ATTRIBUTION-NODERIVATIVES
4.0 INTERNATIONAL LICENSE.

3

https://creativecommons.org/licenses/by-nd/4.0/
https://creativecommons.org/licenses/by-nd/4.0/
https://creativecommons.org/licenses/by-nd/4.0/

Disclaimer
THE CONTENT OF THIS AUDIT REPORT IS PROVIDED “AS IS”, WITHOUT REPRESENTATIONS
AND WARRANTIES OF ANY KIND.

THE AUTHOR AND HIS EMPLOYER DISCLAIM ANY LIABILITY FOR DAMAGE ARISING OUT
OF, OR IN CONNECTION WITH, THIS AUDIT REPORT.

COPYRIGHT OF THIS REPORT REMAINS WITH THE AUTHOR.

This audit has been performed by

Oak Security

https://oaksecurity.io/
info@oaksecurity.io

4

https://oaksecurity.io/
mailto:info@oaksecurity.io

Introduction

Purpose of this Report

Oak Security has been engaged by Delphi Labs Global Partners LLP to perform a security
audit of the Terra Liquidity Bootstrapping Pool smart contracts.

The objectives of the audit are as follows:

1. Determine the correct functioning of the protocol, in accordance with the project
specification.

2. Determine possible vulnerabilities, which could be exploited by an attacker.

3. Determine smart contract bugs, which might lead to unexpected behaviour.

4. Analyze whether best practices have been applied during development.

5. Make recommendations to improve code safety and readability.

This report represents a summary of the findings.

As with any code audit, there is a limit to which vulnerabilities can be found, and unexpected
execution paths may still be possible. The author of this report does not guarantee complete
coverage (see disclaimer).

Codebase Submitted for the Audit
The audit has been performed on the following GitHub repository:

https://github.com/astroport-fi/terraswap-lbp

Commit hash: a306cc498f3b55683dfd589afd4e94b08fdc32bf

5

https://github.com/astroport-fi/terraswap-lbp

Methodology
The audit has been performed in the following steps:

1. Gaining an understanding of the code base’s intended purpose by reading the
available documentation.

2. Automated source code and dependency analysis.
3. Manual line by line analysis of the source code for security vulnerabilities and use of

best practice guidelines, including but not limited to:
a. Race condition analysis
b. Under-/overflow issues
c. Key management vulnerabilities

4. Report preparation

Functionality Overview
The submitted code implements liquidity bootstrapping pool based on the Balancer model.
This code review focuses on updates implementing the changes necessary to comply with
the Terra network’s Columbus-5 update.

6

How to read this Report
This report classifies the issues found into the following severity categories:

Severity Description

Critical A serious and exploitable vulnerability that can lead to loss of funds,
unrecoverable locked funds, or catastrophic denial of service.

Major A vulnerability or bug that can affect the correct functioning of the
system, lead to incorrect states or denial of service.

Minor A violation of common best practices or incorrect usage of primitives,
which may not currently have a major impact on security, but may do so
in the future or introduce inefficiencies.

Informational Comments and recommendations of design decisions or potential
optimizations, that are not relevant to security. Their application may
improve aspects, such as user experience or readability, but is not strictly
necessary. This category may also include opinionated
recommendations that the project team might not share.

The status of an issue can be one of the following: Pending, Acknowledged or Resolved.
Informational notes do not have a status, since we consider them optional recommendations.

Note, that audits are an important step to improve the security of smart contracts and can find
many issues. However, auditing complex codebases has its limits and a remaining risk is
present (see disclaimer).

Users of the system should exercise caution. In order to help with the evaluation of the
remaining risk, we provide a measure of the following key indicators: code complexity, code
readability, level of documentation, and test coverage. We include a table with these criteria
below.

Note, that high complexity or low test coverage does not necessarily equate to a higher risk,
although certain bugs are more easily detected in unit testing than a security audit and vice
versa.

7

Summary of Findings

No Description Severity Status

1 Pools with big but different token amounts allow
attackers to extract free value with minimal cost

Critical Resolved

2 Duplicate storage in two contracts could lead to
inconsistencies

Minor Resolved

3 Migration of the pair contract is disabled Minor Resolved

4 A pair’s asset infos are no longer stored sorted
which might break other contracts

Minor Acknowledged

5 Unnecessary sub-messages introduce complexity Informational Resolved

6 Contract name is not unique Informational Resolved

7 Pair contract registration message in factory can be
replaced with sub-message reply

Informational Resolved

8 Post initialize message in pair contract can be
replaced with sub-message reply

Informational Resolved

Code Quality Criteria

Criteria Status Comment

Code complexity Medium-High -

Code readability and clarity Medium -

Level of Documentation Medium-High -

Test Coverage Medium-High -

8

Detailed Findings
1. Pools with big but different token amounts allow attackers to

extract free value with minimal cost

Severity: Critical

For big amounts of tokens in the offer and ask pools with different token values, the
calc_out_given_in function in contracts/terraswap_pair/src/math.rs:11
applies rounding, which opens a way for an attacker to extract value from a pool with a very
small cost.

As an example, imagine a pool with 5_000_000_000_000 A tokens, and a pool with
1_000_000_000 B tokens, with both weights set to 1 for simplicity. If a user now sends 1 B
token, we expect the user to get 5_000 A tokens back. When a user sends 1 A token, we
expect the user to get 0 B tokens back (actually 0.0002, but since we are dealing with
integers here, the remainder will be dropped). The current implementation incorrectly returns
1 B token though. Imagine further that the value of 1 B token is 5_000 USD, and the value of
1 A token is 1 USD, an attacker can now get a risk free return of around 4_999 USD (minus
transaction fees) per transaction. If the attacker repeats this attack, they will be able to drain
the pool. Even worse, whenever the attacker shifts the balance enough, other arbitrageurs will
be able to extract value by bringing the pool back to the 5_000 to 1 ratio, allowing the
attacker to repeat the attack from where they started.

Here is a failing test case demonstrating the example:

#[test]
fn compute_swap_rounding() {

let offer_pool = Uint128::from(5_000_000_000_000_u128);
let offer_weight = FixedFloat::from_num(1);
let ask_pool = Uint128::from();
let ask_weight = FixedFloat::from_num(1);
let offer_amount = Uint128::from(1_u128);

let return_amount = Uint128::from(0_u128);
let spread_amount = Uint128::from(0_u128);
let commission_amount = Uint128::from(0_u128);

assert_eq!(
compute_swap(offer_pool, offer_weight, ask_pool, ask_weight, offer_amount),
Ok((return_amount, spread_amount, commission_amount))

);
}

9

Recommendation

We recommend adjusting the calculation in the calc_out_given_in function to remove
the rounding issue described above. We also recommend adding test cases to the
calc_out_given_in and calc_in_given_out as well as compute_swap and
compute_offer_amount functions with a wide coverage of edge cases to ensure no other
rounding issues exist. A simple way to achieve this is by using a fuzzing library.

Status: Resolved

2. Duplicate storage in two contracts could lead to inconsistencies

Severity: Minor

Both factory and pair contracts store the information about pairs, i. e. asset_infos,
contract_addr, liquidity_token, start_time and end_time, in
contracts/terraswap_factory/src/state.rs:19 and in
contracts/terraswap_pair/src/state.rs:4. This duplicate storage might lead to
inconsistencies between the two contract states.

Recommendation

Consider using queries from one central place instead of state duplication in two contracts for
increased consistency and better maintainability.

Status: Resolved

3. Migration of the pair contract is disabled

Severity: Minor

In the Instantiate message for the pair contract, the admin field is set to None in
contracts/terraswap_factory/src/contract.rs:149. This implies that pair
contracts cannot be migrated.

Recommendation

Depending on the intention here, we recommend setting the admin field to the contract
owner to allow migrations.

Status: Resolved

10

4. A pair’s asset infos are no longer stored sorted which might
break other contracts

Severity: Minor

In the last version of TerraSwap LBP, the asset_infos stored in the FactoryPairInfo
struct of the factory contract in
contracts/terraswap_factory/src/contract.rs:139 were sorted. That is no
longer the case. That change is not a problem for the audited contracts, since they use a
pair_key helper function that generates a key based on the sorted asset_infos. This
change, however, might break other contracts that depend on the previous design of stored
sorted asset_infos.

Recommendation

We recommend storing the asset_infos sorted to minimize the probability of breaking
other contracts.

Status: Acknowledged

The Astroport team states that storing a pair in the order provided at creation is intentional as
it matches the implementation in the TerraSwap contracts.

5. Unnecessary sub-messages introduce complexity

Severity: Informational

Most contract interactions in the codebase are utilizing sub-messages, which have been
introduced to Terra with the Columbus-5 upgrade. Sub-messages have been added to allow
processing of the result of a call, for example, to handle errors. If the result of a call is not
processed, regular messages should be used. There is no security concern in the usage of
sub-messages, since they currently use the ReplyOn::Never value which causes a failure
to propagate to the caller.

Unnecessary usage of sub-messages can be found in:

● contracts/terraswap_factory/src/contract.rs:33, 145 and 172
● contracts/terraswap_pair/src/contract.rs:73, 101, 259, 307, 360,

370, 381 and 492
● contracts/terraswap_router/src/contract.rs:117 and 141
● contracts/terraswap_router/src/operations.rs:45, 59 and 97

11

Recommendation

We recommend using regular messages in the cases above to stick to best practices.

Status: Resolved

6. Contract name is not unique

Severity: Informational

In contracts/terraswap_token/src/contract.rs:16, the contract name from the
CW20 base contract is used in the following string declaration:

const CONTRACT_NAME: &str = "crates.io:cw20-base";

Recommendation

We recommend using a name unique to TerraSwap LBP.

Status: Resolved

7. Pair contract registration message in factory can be replaced with
sub-message reply

Severity: Informational

In contracts/terraswap_factory/src/contract.rs:156, a hook pattern is used
to register the newly created pair’s contract address in the factory. That pattern requires an
exposed Register message type in the factory contract. Sub-messages have been
introduced with the Columbus 5 upgrade of Terra to allow the processing of a reply without
the need to expose a public message handler.

Recommendation

We recommend replacing the hook pattern with a sub-message reply. At the same time, we
do not recommend the removal of the hooks from the messages, since that could break other
contracts.

Status: Resolved

12

8. Post initialize message in pair contract can be replaced with
sub-message reply

Severity: Informational

In contracts/terraswap_pair/src/contract.rs:86, a hook pattern is used to set
the newly created liquidity token contract address in the pair contract’s config. That pattern
requires an exposed PostInitialize message type in the pair contract.

Recommendation

As above, we recommend replacing the hook pattern with a sub-message reply. At the same
time, we do not recommend the removal of the hooks from the messages, since that could
break other contracts.

Status: Resolved

13

