
Page of 1 72 Paladin Blockchain Security

Smart Contract
Security Assessment

For Avalaunch
25 February 2022

paladinsec.co info@paladinsec.co

Final Report

Table of Contents 
 
Table of Contents	
2

Disclaimer	
4

1 Overview	
5

1.1 Summary	
5

1.2 Contracts Assessed	
6

1.3 Findings Summary	
7

1.3.1 Admin	
8

1.3.2 Airdrop and AirdropAvax	
8

1.3.3 AirdropSale	
8

1.3.4 AvalaunchSale	
9

1.3.5 SalesFactory	
10

1.3.6 XavaToken	
10

1.3.7 DevToken	
10

1.3.8 AllocationStaking	
11

1.3.9 AvalaunchBadgeFactory	
12

2 Findings	
13

2.1 Admin	
13

2.1.1 Privileged Roles	
13

2.1.2 Issues & Recommendations	
14

2.2 Airdrop and AirdropAvax	
17

2.2.1 Issues & Recommendations	
18

2.3 AirdropSale	
21

2.3.1 Issues & Recommendations	
22

2.4 AvalaunchSale	
25

2.4.1 Privileged Roles	
26

2.4.2 Issues & Recommendations	
27

2.5 SalesFactory	
41

Page of 2 72 Paladin Blockchain Security

2.5.1 Privileged Roles	
41

2.5.2 Issues & Recommendations	
42

2.6 XavaToken	
45

2.6.1 Token Overview	
45

2.6.2 Issues & Recommendations	
46

2.7 DevToken	
50

2.8 AllocationStaking	
51

2.8.1 Privileged Roles	
51

2.8.2 Issues & Recommendations	
52

2.9 AvalaunchBadgeFactory	
68

2.9.1 Privileged Roles	
68

2.9.2 Issues & Recommendations	 69

Page of 3 72 Paladin Blockchain Security

Disclaimer

Paladin Blockchain Security (“Paladin”) has conducted an independent audit to verify the integrity
of and highlight any vulnerabilities or errors, intentional or unintentional, that may be present in
the codes that were provided for the scope of this audit. This audit report does not constitute
agreement, acceptance or advocation for the Project that was audited, and users relying on this
audit report should not consider this as having any merit for financial advice in any shape, form or
nature. The contracts audited do not account for any economic developments that may be pursued
by the Project in question, and that the veracity of the findings thus presented in this report relate
solely to the proficiency, competence, aptitude and discretion of our independent auditors, who
make no guarantees nor assurance that the contracts are completely free of exploits, bugs,
vulnerabilities or deprecation of technologies. Further, this audit report shall not be disclosed nor
transmitted to any persons or parties on any objective, goal or justification without due written
assent, acquiescence or approval by Paladin.

All information provided in this report does not constitute financial or investment advice, nor
should it be used to signal that any persons reading this report should invest their funds without
sufficient individual due diligence regardless of the findings presented in this report. Information is
provided ‘as is’, and Paladin is under no covenant to the completeness, accuracy or solidity of the
contracts audited. In no event will Paladin or its partners, employees, agents or parties related to
the provision of this audit report be liable to any parties for, or lack thereof, decisions and/or
actions with regards to the information provided in this audit report.

Cryptocurrencies and any technologies by extension directly or indirectly related to
cryptocurrencies are highly volatile and speculative by nature. All reasonable due diligence and
safeguards may yet be insufficient, and users should exercise considerable caution when
participating in any shape or form in this nascent industry.

The audit report has made all reasonable attempts to provide clear and articulate
recommendations to the Project team with respect to the rectification, amendment and/or revision
of any highlighted issues, vulnerabilities or exploits within the contracts provided. It is the sole
responsibility of the Project team to sufficiently test and perform checks, ensuring that the
contracts are functioning as intended, specifically that the functions therein contained within said
contracts have the desired intended effects, functionalities and outcomes of the Project team.

Paladin retains full rights over all intellectual property (including expertise and new attack or
exploit vectors) discovered during the audit process. Paladin is therefore allowed and expected to
re-use this knowledge in subsequent audits and to inform existing projects that may have similar
vulnerabilities. Paladin may, at its discretion, claim bug bounties from third-parties while doing so. 

Page of 4 72 Paladin Blockchain Security

1	 	 Overview

This report has been prepared for Avalaunch on the Avalanche network. Paladin
provides a user-centred examination of the smart contracts to look for
vulnerabilities, logic errors or other issues from both an internal and external
perspective.

1.1	 	 Summary

Project Name Avalaunch

URL https://avalaunch.app/

Platform Avalanche

Language Solidity

Page of 5 72 Paladin Blockchain Security

https://avalaunch.app/

1.2	 	 Contracts Assessed

*AllocationStaking: emergencyWithdraw was removed, and the functions

approveStakeOwnershipTransfer and claimApprovedStakeOwnership were not part of

the audit scope. 

Name Contract
Live Code
Match

Admin 0x68c58e1107bce9be240af941151d42101086af56

Airdrop Airdrop.sol

AirdropAvax AirdropAvax.sol

AirdropSale AirdropSale.sol

AvalaunchSale Proxy 
0x0450cfd41a9bba5349f50a75043d69e8d96f2f9e

Implementation 
0x0a1a9eb0d984f1c194c85bace2070724101272e3

(refer to 2nd audit report:
AvalaunchScopeExtension)

SalesFactory 0x29F351cdd647195553263924Cc3Abb017CB7fC7b

XavaToken 0xd1c3f94DE7e5B45fa4eDBBA472491a9f4B166FC4

DevToken DevToken.sol

AllocationStaking*

Proxy 
0xA6A01f4b494243d84cf8030d982D7EeB2AeCd329

Implementation 
0x897e8265454fd44CAC7D739827d6b46BF1D6A8ff

AvalaunchBadgeFact
ory

AvalaunchBadgeFactory.sol

MATCH

PENDING

PENDING

MATCH

MATCH

MATCH

PARTIAL

PENDING

PENDING

PENDING

Page of 6 72 Paladin Blockchain Security

1.3	 	 Findings Summary

Classification of Issues

 

Severity Found Resolved
Partially
Resolved

Acknowledged
(no change made)

2 1 - 1

6 3 - 3

10 4 - 6

45 12 4 29

Total 63 20 4 39

 High

 Medium

 Low

 Informational

Severity Description

Exploits, vulnerabilities or errors that will certainly or probabilistically lead
towards loss of funds, control, or impairment of the contract and its
functions. Issues under this classification are recommended to be fixed with
utmost urgency.

Bugs or issues with that may be subject to exploit, though their impact is
somewhat limited. Issues under this classification are recommended to be
fixed as soon as possible.

Effects are minimal in isolation and do not pose a significant danger to the
project or its users. Issues under this classification are recommended to be
fixed nonetheless.

Consistency, syntax or style best practices. Generally pose a negligible level
of risk, if any.

 High

 Medium

 Low

 Informational

Page of 7 72 Paladin Blockchain Security

1.3.1	 Admin

1.3.2	 Airdrop and AirdropAvax

1.3.3	 AirdropSale

ID Severity Summary Status

01 removeAdmin reverts early when trying to remove admins due to an
out-of-range exception

02 Excessive privilege: Any admin can remove and add admins

03 Lack of events for addAdmin and removeAdmin

04 Unnecessary and verbose usage of expensive while loops

INFO

INFO

INFO

ACKNOWLEDGED

ACKNOWLEDGED

INFO ACKNOWLEDGED

ACKNOWLEDGED

ID Severity Summary Status

05 SafeMath can be removed

06 admin and airdropToken can be made immutable

07 safeTransfer should be used within withdrawTokens

08 withdrawTokens can be made external

09 Usage of encodePacked is discouraged in critical code sections

ACKNOWLEDGED

INFO

ACKNOWLEDGED

ACKNOWLEDGED

INFO

INFO ACKNOWLEDGED

ACKNOWLEDGED

INFO

INFO

ID Severity Summary Status

10 Signature only validates the first amount, allowing an exploiter to
withdraw all other ERC20 tokens in the contract freely

11 SafeMath can only be used for uint256

12 Certain variables can be made immutable

13 Inconsistent usage of beneficiary

INFO

INFO

INFO

RESOLVED

RESOLVED

HIGH

PARTIAL

RESOLVED

Page of 8 72 Paladin Blockchain Security

1.3.4	 AvalaunchSale

ID Severity Summary Status

14 Contract does not inherit OpenZeppelin’s upgradeable contract
alternatives

15 salesowner can mark tokens as deposited without transferring in
any tokens if setSaleTokens was called before setSaleParams

16 Lack of SafeMath usage

17 Lack of on-chain overdraft protection

18 PostponeSale can shift round.startTime beyond sale.saleEnd

19 Governance can remove the sale.token

20 memory is used instead of calldata

21 Certain functions have undetermined gas usage which could cause
functions to become impossible to call

22 DepositTokens can unecessarily be called more than once

23 _unlockingTimes should only be possible after sale.saleEnd

24 Lack of events for certain functions

25 depositTokens does not work with fee on transfer tokens

26 Certain configurational functions remain callable even after the gate
is closed

27 closeGate should only be callable once

28 updateTokenPriceInAVAX will revert if
_updateTokenPriceInAVAXPercentageThreshold is > 100

29 withdrawUnusedFunds should only be called after the sale has
ended

30 Usage of revert instead of require

31 encodePacked should be avoided for signatures

INFO

INFO

RESOLVED

RESOLVED

PARTIAL

RESOLVED

RESOLVED

INFO

ACKNOWLEDGED

RESOLVED

LOW

RESOLVED

INFO

INFO

ACKNOWLEDGED

INFO

LOW

INFO

INFO

INFO

INFO

RESOLVED

RESOLVED

ACKNOWLEDGED

ACKNOWLEDGED

LOW

ACKNOWLEDGED

RESOLVED

MEDIUM

LOW

RESOLVED

INFO

INFO

LOW

RESOLVED

ACKNOWLEDGED

Page of 9 72 Paladin Blockchain Security

1.3.5	 SalesFactory

1.3.6	 XavaToken

1.3.7	 DevToken

Same as XavaToken above. 

ID Severity Summary Status

32 Contract does not inherit all functions from ISalesFactory

33 Low-level clone logic is included directly in the contract

34 Unused variables: saleOwnerToSale and tokenToSale

Unused event: SaleOwnerAndTokenSetInFactory

35 Lack of event for setAllocationStaking

36 admin and allocationStaking can be made immutable

37 setAllocationStaking can be made external

PARTIAL

RESOLVED

ACKNOWLEDGED

RESOLVEDINFO

ACKNOWLEDGED

INFO

INFO

ACKNOWLEDGED

INFO

LOW

INFO

ID Severity Summary Status

38 _decimals can be made immutable

39 Several functions can be made external, and since the contract is
deployed directly, the virtual keyword can be removed from all

functions

40 Unused function: _setupDecimals

41 The contract does not contain increaseAllowance while it does
contain decreaseAllowance

42 Gas optimization: Contract uses hardcoded strings in SafeMath
functions

INFO

ACKNOWLEDGED

ACKNOWLEDGED

ACKNOWLEDGED

ACKNOWLEDGED

INFO ACKNOWLEDGED

INFO

INFO

INFO

Page of 10 72 Paladin Blockchain Security

1.3.8	 AllocationStaking

ID Severity Summary Status

43 Governance privilege: The contract is upgradeable which allows
governance to withdraw all staked tokens

44 LP tokens might not necessarily be equal to the reward token, which
causes the contract to severely malfunction

45 emergencyWithdraw, deposit and withdraw are prone to
reentrancy attack

46 The deposit and fund functions do not support fee on transfer
tokens

47 verifySignature never verifies the function name

48 Fees are still granted on the own share

49 The fee of the first deposit does not get added towards the
erc20Reward

50 burnFromUser does not trigger within a deposit if
withdrawalFeePending is greater than zero and
withdrawalFeeDepositAmount is zero

51 The pending function will revert if totalAllocPoint is zero

52 Usage of encodePacked is discouraged in critical code sections

53 safeTransfer should be used within the erc20Transfer function

54 SafeMath is not used

55 Certain functions can be made external

56 salesRegistered can only be viewed on the contract in the
userInfo struct, however it is not possible to view it on the front-
end

57 Lack of events for certain functions

58 Lack of validation: startTimestamp should be in the future; add
function has no check for existing tokens

59 Unnecessary use of address(msg.sender)

INFO

MEDIUM

MEDIUM

ACKNOWLEDGED

ACKNOWLEDGED

LOW

INFO

ACKNOWLEDGED

INFO

INFO

LOW

ACKNOWLEDGED

INFO

MEDIUM

ACKNOWLEDGED

ACKNOWLEDGED

ACKNOWLEDGED

RESOLVED

ACKNOWLEDGED

MEDIUM

ACKNOWLEDGED

LOW

INFO

HIGH

ACKNOWLEDGED

ACKNOWLEDGED

ACKNOWLEDGED

INFO

INFO ACKNOWLEDGED

ACKNOWLEDGED

ACKNOWLEDGED

ACKNOWLEDGED

LOW

Page of 11 72 Paladin Blockchain Security

1.3.9	 AvalaunchBadgeFactory

ID Severity Summary Status

60 mintBadges mint receipt hook has an outdated
badgeIdMintedSupply which can be a cause of exploits in
derivative contracts

61 Certain functions can be made external

62 Lack of events for certain functions

63 Gas optimization: Usage of uint32 has causes extra gas usageINFO

RESOLVED

PARTIAL

RESOLVED

RESOLVED

MEDIUM

INFO

INFO

Page of 12 72 Paladin Blockchain Security

2	 	 Findings

2.1	 Admin

The admin contract is a dependency used to define and remove admins as well as
view all current admins. The deployer can add admins during the creation of the
contract.

2.1.1	 Privileged Roles

The following functions can be called by the owner:

• addAdmin

• removeAdmin

Page of 13 72 Admin Paladin Blockchain Security

2.1.2	 Issues & Recommendations

Issue #01 removeAdmin reverts early when trying to remove admins due to an
out-of-range exception

Severity

Location Lines 51-58

uint i = 0;

while(admins[i] != _adminAddress) {

 if(i == admins.length) {

 revert("Passed admin address does not exist");

 }

 i++;

}

Description The removeAdmin function loops over the admins to find the admin
index to remove (the location in the list of admins). However, this
looping behavior is flawed in case the admin does not exist in this
list. In this case, admins[i] would go out of range. The lines of code
that revert with “Passed admin address does not exist” can
therefore never be reached. It should also be noted that these lines
of code can never be reached anyways, since the functions starts
with an isAdmin requirement.

Recommendation Consider either using EnumerableSet to remove this while loop.
Alternatively, the if statement can be removed completely because
the isAdmin requirement already ensures that the array must
contain the admin at this point.

Resolution ACKNOWLEDGED

INFORMATIONAL

Page of 14 72 Admin Paladin Blockchain Security

Issue #02 Excessive privilege: Any admin can remove and add admins

Severity

Description Presently, any admin can add other admins and even remove
existing ones. If one of the admins ever turns malicious, they could
therefore remove everyone else and remain as the only admin in the
system. No admins can be added by the honest parties at this point,
nor can they remove the malicious admin.

Recommendation Consider having an owner role, which will be the only role that can
add or remove admins (this role can alternatively be called
ADMIN_MANAGEMENT).

It should be noted that such role-based management is easier done
using OpenZeppelins RBAC solutions.

Resolution ACKNOWLEDGED

INFORMATIONAL

Issue #03 Lack of events for addAdmin and removeAdmin

Severity

Description Functions that affect the status of sensitive variables should emit
events as notifications.

Recommendation Add events for the above functions. Consider also adding the
AdminAdded event to the constructor when admins are added.

Resolution ACKNOWLEDGED

INFORMATIONAL

Page of 15 72 Admin Paladin Blockchain Security

Issue #04 Unnecessary and verbose usage of expensive while loops

Severity

Description The while loop can cost a lot of gas while executing. Within the
remove function, as shown in a previous issue, it is used to find the
index of an admin in the internal array (list) of admins.

However, such logic is unnecessary as there exist common libraries
by OpenZeppelin that abstract away such logic and furthermore do
not use looping for removal. Instead, these libraries allow removal
of elements in O(1).

It should also be noted that getAllAdmins can run out of gas as well
(or the RPC doesn’t allow returning it), once the admin array
becomes too large.

Recommendation Consider using the EnumerableSet library by OpenZeppelin.
Alternatively and perhaps even more ideally, one can consider using
the RBAC solutions by OpenZeppelin, which render this whole
contract redundant.

Consider adding pagination to getAllAdmins.

Resolution

INFORMATIONAL

ACKNOWLEDGED

Page of 16 72 Admin Paladin Blockchain Security

2.2	 Airdrop and AirdropAvax

The Airdrop contract allows users to claim tokens for which they are eligible.
Governance can set the token to be airdropped during contract creation and need
to provide signatures of the airdrop allocations off-chain, which will be validated
on-chain when a user claims their airdrop. A signature by any of the registered
admins in the admin contract is valid. Each user can only claim once and signatures
are specific to the user.

This audit section has been combined with the AirdropAvax contract section in an
effort to manage the audit report size and to keep it accessible for all readers. Both
contracts are extremely similar and no additional issues were found within
AirdropAvax. Compared to Airdrop, AirdropAvax grants airdropped Avax tokens.

It should be noted that the zero address must never be added as an admin, as is
currently forbidden in the Admin contract that was audited by Paladin. This is
because any wrong signature will be marked as signed by this address.

Page of 17 72 Airdrop and AirdropAvax Paladin Blockchain Security

2.2.1	 Issues & Recommendations

Issue #05 SafeMath can be removed

Severity

Location Line 11

using SafeMath for *;

Description Right now SafeMath is used for every variable type within the
contract (*). This makes little sense as SafeMath is only designed to
work for uint256. In addition, SafeMath is not used anywhere
within this contract.

Recommendation Consider removing SafeMath.

Resolution ACKNOWLEDGED

INFORMATIONAL

Issue #06 admin and airdropToken can be made immutable

Severity

Description Variables that are only set in the constructor but never modified can
be indicated as such with the immutable keyword. This is
considered best practice since it makes the code more accessible
for third-party reviewers and saves gas.

Recommendation Consider making the above variables explicitly immutable.

Resolution ACKNOWLEDGED

INFORMATIONAL

Page of 18 72 Airdrop and AirdropAvax Paladin Blockchain Security

Issue #07 safeTransfer should be used within withdrawTokens

Severity

Location Lines 31-45

function withdrawTokens(bytes memory signature, uint256

amount) public {

 require(msg.sender == tx.origin, "Require that message

sender is tx-origin.");

 address beneficiary = msg.sender;

 require(checkSignature(signature, beneficiary, amount),

"Not eligible to claim tokens!");

 require(!wasClaimed[beneficiary], "Already claimed!");

 wasClaimed[msg.sender] = true;

 bool status = airdropToken.transfer(beneficiary,

amount);

 require(status, "Token transfer status is false.");

 totalTokensWithdrawn = totalTokensWithdrawn.add(amount);

 emit TokensAirdropped(beneficiary, amount);

}

Description In the withdrawTokens function, the transfer method is used to
transfer tokens. This will not work for non-compliant tokens without
a return value.

Recommendation Consider using safeTransfer instead of transfer.

Resolution

INFORMATIONAL

ACKNOWLEDGED

Page of 19 72 Airdrop and AirdropAvax Paladin Blockchain Security

Issue #08 withdrawTokens can be made external

Severity

Description Functions that are not used within the contract but only externally
can be marked as such with the external keyword. Apart from being
a best practice when the function is not used within the contract,
this can lead to a lower gas usage in certain cases.

Recommendation Consider marking the variable as external. The contract can then be
optimized for gas by replacing all memory sections with calldata
(this might require some redesign).

Resolution

INFORMATIONAL

ACKNOWLEDGED

Issue #09 Usage of encodePacked is discouraged in critical code sections

Severity

Location Line 49 

bytes32 hash = keccak256(abi.encodePacked(beneficiary,

amount, address(this)));

Description The signature validation scheme checks the signature over a
collection of bytes which is tightly packed. This is however not
encouraged for critical sections of code as it could allow for hash
collisions.

This issue has been marked as informational as hash collisions are
mainly an issue with variable length values (strings…) and the above
code section does not have these. We therefore do not believe that
there is any way to abuse this hash but would still like to
recommend the best practice which more effectively guarantees
this.

Recommendation Consider using abi.encode instead of abi.encodePacked.

Resolution

INFORMATIONAL

ACKNOWLEDGED

Page of 20 72 Airdrop and AirdropAvax Paladin Blockchain Security

2.3	 AirdropSale

The AirdropSale contract allows to airdrop multiple tokens as well as the native gas
token (AVAX) within a single airdrop transaction. It is very similar to Airdrop and
AirdropAvax in its structuring and implementation. We refer to those sections of the
report for further information about the airdrop mechanism.

All issues from Airdrop and AirdropAvax equally apply to this contract. To keep this
report brief and readable to third parties, they have not been repeated here.

Page of 21 72 Airdrop and AirdropAvax Paladin Blockchain Security

2.3.1	 Issues & Recommendations

Issue #10 Signature only validates the first amount, allowing an exploiter to
withdraw all other ERC20 tokens in the contract freely

Severity

Location Line 63 

require(checkSignature(signature, beneficiary, amounts[0]),

"Not eligible to claim tokens!");

Description The AirdropSale contract presently only validates that the user is
actually eligible to receive the first token amount. However, as many
tokens are distributed to users, the user can specify any and all
amounts for the other tokens without the function reverting. A
malicious user will simply add the total amount of tokens as their
“airdrop allocation” and they will receive the total airdropped
supply.

Recommendation Consider updating the checkSignature scheme to firstly use encode
instead of encodePacked, and secondly to validate the whole
amounts array.

Resolution RESOLVED

HIGH SEVERITY

Page of 22 72 Airdrop and AirdropAvax Paladin Blockchain Security

Issue #11 SafeMath can only be used for uint256

Severity

Location Line 12

using SafeMath for *;

Description Right now SafeMath is used for every variable type within the
contract (*). This makes little sense as SafeMath is only designed to
work for uint256.

Recommendation Consider using SafeMath only for uint256 instead of *

using SafeMath for uint256;

Resolution

INFORMATIONAL

RESOLVED

Issue #12 Certain variables can be made immutable

Severity

Description Variables that are only set in the constructor but never modified can
be indicated as such with the immutable keyword:

- admin

- _includesAvax

- includesERC20s

This is considered best practice since it makes the code more
accessible for third party reviewers and saves gas.

Recommendation Consider making the above variables explicitly immutable.

Resolution PARTIALLY RESOLVED

INFORMATIONAL

Page of 23 72 Airdrop and AirdropAvax Paladin Blockchain Security

Issue #13 Inconsistent usage of beneficiary

Severity

Location Line 67

wasClaimed[msg.sender] = true;

Description Within withdrawTokens, msg.sender gets assigned to the
beneficiary variable, however it is not used throughout the whole
function as it should be. Specifically, within wasClaimed,
msg.sender is still used.

Recommendation Consider using beneficiary throughout the function.

Resolution

INFORMATIONAL

RESOLVED

Page of 24 72 Airdrop and AirdropAvax Paladin Blockchain Security

2.4	 AvalaunchSale

The AvalaunchSale contract is a contract which is deployed by the SalesFactory for
every project which has its tokens sold on Avalaunch. It is the contract which users
send AVAX to, in order to eventually withdraw the launch project’s tokens.

There's a registration fee for every sale hat users participate in. Users have to
register before the sale starts. If they do participate, they receive this fee back. If
users decide not to purchase tokens after they have registered, the registration fee
goes to Avalaunch. It should be noted that users are solely able to participate with a
valid off-chain signature from the Avalaunch website. If the website were to go
offline, they might accidentally lose their registration fee. We hope and expect
Avalaunch to reimburse users in this unlikely scenario.

The contract is not designed to distribute fee on transfer tokens due to the
depositTokens function which does not account for them. The team should
remember to always exclude the sale from any potential transfer taxes. The team
should also keep in mind that tokenPriceInAvax has 18 decimals of precision.

Users can register for a specific allocation round. If the user registers for the staking
round, their stake in the AllocationStaking contract will be locked until the sale has
ended. Each sale has one round which is the allocation round. If the user
participates in this round, their locked allocation will be partially redistributed
within the AllocationStaking contract.

Finally, the contract contains logic to have multiple vesting cliffs of the purchased
tokens (for example once every month for 12 months).

Page of 25 72 AvalaunchSale Paladin Blockchain Security

2.4.1	 Privileged Roles

The following functions can be called by the owner:

• setVestingParams

• shiftVestingUnlockTimes

• setSaleParams

• setSaleToken

• setRounds

• updateTokenPriceInAvax

• postponeSale

• extendRegistrationPeriod

• setCapPerRound

• withdrawEarningsAndLeftover

• withdrawEarnings

• withdrawLeftover

• withdrawRegistrationFees

• withdrawUnusedFunds

Page of 26 72 AvalaunchSale Paladin Blockchain Security

2.4.2	 Issues & Recommendations

Issue #14 Contract does not inherit OpenZeppelin’s upgradeable contract
alternatives

Severity

Location Line 13 

contract AvalaunchSale is Initializable, ReentrancyGuard {

Description Even though the contract is deployed as a proxy clone, it currently
does not inherit from the upgradeable OpenZeppelin contracts.
This causes the constructor of both dependencies to never be
called.

This issue is marked as Medium compared to High as within the
present ReentrancyGuard implementation, the constructor does not
strictly need to be called. This might not be the case for all
implementations however.

Recommendation Consider using the upgradeable dependencies.

Resolution

ReentrancyGuard has been removed as a dependency.

RESOLVED

MEDIUM SEVERITY

Page of 27 72 AvalaunchSale Paladin Blockchain Security

Issue #15 salesowner can mark tokens as deposited without transferring in
any tokens if setSaleTokens was called before setSaleParams

Severity

Description The contract contains a function to override the sale token in
emergencies. If this function is called before setSaleParams, this
would allow the salesowner to deposit zero tokens but still mark
the contract as deposited, which might mislead other system
components.

Recommendation Consider requiring the sales params to be set before the sale token
can be set.

Resolution

depositTokens() now validates that the sale parameters have been
set.

RESOLVED

LOW SEVERITY

Issue #16 Lack of SafeMath usage

Severity

Location Line 193

sum += _percents[i];

Line 453

round.startTime + timeToShift < sale.saleEnd

Description Using raw addition or subtraction methods instead of SafeMath can
result in underflows or overflows. This issue is marked as low
severity as the user cannot abuse these portions of code — they are
limited to configurational sections of the contract.

Recommendation Consider using SafeMath throughout the contract.

Resolution RESOLVED

LOW SEVERITY

Page of 28 72 AvalaunchSale Paladin Blockchain Security

Issue #17 Lack of on-chain overdraft protection

Severity

Description Presently the contract lacks any notion of on-chain “sale cap”. This
logic is presumably handled off-chain.

Recommendation Consider adding a basic requirement in participate that no more
than the total sum of tokens can be handed out.

Resolution

The following validation was added which causes participation to
revert in case it causes excess allocation: 

amountOfTokensBuying <=

sale.amountOfTokensToSell.sub(sale.totalTokensSold)

RESOLVED

LOW SEVERITY

Issue #18 PostponeSale can shift round.startTime beyond sale.saleEnd

Severity

Location Lines 451-455

round.startTime = round.startTime.add(timeToShift);

require(

 round.startTime + timeToShift < sale.saleEnd,

 "Start time can not be greater than end time."

);

Description round.startTime gets extended by timeToShift before the
requirement takes place. This causes the requirement to use an
already increased startTime and revert in cases where it should
not.

Recommendation Consider placing the requirement before the extending of the
variable. The requirement should also use SafeMath once these are
inverted (although not strictly necessary since .add is still eventually
called).

Resolution

LOW SEVERITY

RESOLVED

Page of 29 72 AvalaunchSale Paladin Blockchain Security

Issue #19 Governance can remove the sale.token

Severity

Location Lines 274-282

function setSaleToken(

 address saleToken

)

 external

 onlyAdmin

 onlyIfGateOpen

{

 sale.token = IERC20(saleToken);

}

Description The function removeStuckTokens allows the governance to remove
any token in the contract besides the sale.token. However, it is
possible to change sale.token in the function setSaleToken to
some other token if the gate is still open and therefore drain the
actual sale.token.

This issue is marked as low severity given the reputation of the
client. If parties are unsure about the key management or
reputation of the client, they should of course still take this issue
seriously.

Recommendation Consider only allowing setSaleToken to be called if it is presently
set to zero.

Resolution ACKNOWLEDGED

LOW SEVERITY

Page of 30 72 AvalaunchSale Paladin Blockchain Security

Issue #20 memory is used instead of calldata

Severity

Location Example: Line 363

function registerForSale(bytes memory signature, uint256

roundId)

Example: Line 513

function participate(

 bytes memory signature,

 uint256 amount,

 uint256 amountXavaToBurn,

 uint256 roundId

)

Description Compared to the keyword memory, the use of calldata is
considered as best practice and saves gas. This is possible because
the EVM will directly access the bytes from the calldata instead of
first loading them into memory. The advantage of memory comes
into play if you need to actually edit certain portions of the memory,
as calldata is of course immutable.

Recommendation Consider using calldata instead of memory and rewriting the
contract to use calldata throughout all functions with immutable
bytes user inputs.

Resolution

INFORMATIONAL

calldata has been introduced in certain locations.

PARTIALLY RESOLVED

Page of 31 72 AvalaunchSale Paladin Blockchain Security

Issue #21 Certain functions have undetermined gas usage which could cause
functions to become impossible to call

Severity

Location Line 319

function setRounds

Description The function setRounds allows governance to set startTimes and
maxParticipations for each round. However, if in any case those
arrays are very long, it is possible that the function runs out of gas.
Since it is very unlikely that so many rounds are added, this will
remain informational.

Recommendation Consider adding a cap for the array lengths.

Resolution ACKNOWLEDGED

INFORMATIONAL

Issue #22 DepositTokens can unecessarily be called more than once

Severity

Location Line 501

sale.tokensDeposited = true;

Description In the function, sale.tokensDeposited is set to true — we believe
that the contract creator had the intention to make this function
only callable once, however, there is no check if
sale.tokensDeposited is != true.

Recommendation Consider adding require(!sale.tokensDeposited, “...”) at the
beginning of the function.

Resolution

The recommended requirement has been introduced.

RESOLVED

INFORMATIONAL

Page of 32 72 AvalaunchSale Paladin Blockchain Security

Issue #23 _unlockingTimes should only be possible after sale.saleEnd

Severity

Code function setVestingParams(

 uint256[] memory _unlockingTimes,

 uint256[] memory _percents,

 uint256 _maxVestingTimeShift

)

 external

 onlyAdmin

{

 require(

 vestingPercentPerPortion.length == 0 &&

 vestingPortionsUnlockTime.length == 0

);

 require(_unlockingTimes.length == _percents.length);

 require(portionVestingPrecision > 0, "Safeguard for

making sure setSaleParams get first called.");

 require(_maxVestingTimeShift <= 30 days, "Maximal shift

is 30 days.");

 // Set max vesting time shift

 maxVestingTimeShift = _maxVestingTimeShift;

 uint256 sum;

 // Set vesting portions percents and unlock times

 for (uint256 i = 0; i < _unlockingTimes.length; i++) {

 vestingPortionsUnlockTime.push(_unlockingTimes[i]);

 vestingPercentPerPortion.push(_percents[i]);

 sum += _percents[i];

 }

 require(sum == portionVestingPrecision, "Percent

distribution issue.");

}

Description Each sale gets its specific _unlockTimes[] as an array. However, all
unlockTimes should logically only occur after sale.saleEnds.

Recommendation Consider adding a require statement to validate this:

require(_unlockTime[0] > sale.SaleEnds)

INFORMATIONAL

Page of 33 72 AvalaunchSale Paladin Blockchain Security

Resolution

The recommended check alongside another safety check that
guarantees that the unlock times are in increasing order have been
added.

RESOLVED

Issue #24 Lack of events for certain functions

Severity

Description Functions that affect the status of sensitive variables should emit
events as notifications:

- setVestingParams

- shiftVestingUnlockingTimes

- setSaleToken

- postponeSale

- extendRegistrationPeriod

- depositTokens

- withdrawEarningsInternal

- withdrawLeftoverInternal

- withdrawRegistrationFees

- removeStuckTokens

- withdrawUnusedFunds

- setUpdateTokenPriceInAVAXParams

Recommendation Add events for the above functions.

Resolution ACKNOWLEDGED

INFORMATIONAL

Page of 34 72 AvalaunchSale Paladin Blockchain Security

Issue #25 depositTokens does not work with fee on transfer tokens

Severity

Location Lines 504-508

sale.token.safeTransferFrom(

 msg.sender,

 address(this),

 sale.amountOfTokensToSell

);

Description During safeTransferFrom, the sales.amountOfTokensToSell is
transferred from the msg.sender to the contract. However, with a
fee on transfer token, the contract would not receive the desired
amount.

Recommendation Consider avoiding fee on transfer tokens or exclude the contract
from the transfer tax if a token like that is ever used.

Resolution

INFORMATIONAL

ACKNOWLEDGED

Page of 35 72 AvalaunchSale Paladin Blockchain Security

Issue #26 Certain configurational functions remain callable even after the
gate is closed

Severity

Description Presently functions like shiftVestingUnlockingTime and
extendRegistrationPeriod can still be called after the gate is
closed. Closing the gate is supposed to lock in most of the
configurational aspects, hence we believe functions like the above
two might have accidentally been excluded from an isGateClosed
modifier.

Recommendation Consider whether these functions should be called after the gate is
closed. If not, add a modifier. The client should also go over the
whole contract as this list is non-exhaustive, the two functions
above were just the most likely to not be needed after the gate is
closed.

Resolution ACKNOWLEDGED

INFORMATIONAL

Page of 36 72 AvalaunchSale Paladin Blockchain Security

Issue #27 closeGate should only be callable once

Severity

Location Lines 906-927

function closeGate() external onlyAdmin {

 // Require that sale is created

 require(sale.isCreated, "closeGate: Sale not created.");

 // Require that sale token is set

 require(address(sale.token) != address(0), "closeGate:

Token not set.");

 // Require that tokens were deposited

 require(sale.tokensDeposited, "closeGate: Tokens not

deposited.");

 // Require that token price updating params are set

 require(

 updateTokenPriceInAVAXPercentageThreshold != 0 &&

updateTokenPriceInAVAXTimeLimit != 0,

 "closeGate: Params for updateTokenPriceInAvax not

set."

);

 // Require that registration times are set

 require(

 registration.registrationTimeStarts != 0 &&

registration.registrationTimeEnds != 0,

 "closeGate: Registration params not set."

);

 // Close the gate

 gateClosed = true;

 emit GateClosed(block.timestamp);

}

Description Currently, it is possible to call the function closeGate more than
once. From a logical point of view, It does not make any sense to
call this function more than once.

Recommendation Consider adding require(!gateClosed) at the beginning of the
function.

Resolution

INFORMATIONAL

The function can now only be called when the gate is open.

RESOLVED

Page of 37 72 AvalaunchSale Paladin Blockchain Security

Issue #28 updateTokenPriceInAVAX will revert if
_updateTokenPriceInAVAXPercentageThreshold is > 100

Severity

Location Line 422

price > sale.tokenPriceInAVAX.sub(maxPriceChange),

Description The function setUpdateTokenPriceInAVAXParams allows the
variable updateTokenPriceInAVAXPercentageThreshold to be >
100.

If that is the case, it is not possible to execute the function
updateTokenPriceInAVAX since it reverts in the line mentioned
above.

Recommendation Consider adding
require(updateTokenPriceInAVAXPercentageThreshold <= 100)
at the beginning of the setUpdateTokenPriceInAVAXParams
function.

Resolution

INFORMATIONAL

The recommended requirement has been added to
setUpdateTokenPriceInAVAXParams.

RESOLVED

Issue #29 withdrawUnusedFunds should only be called after the sale has
ended

Severity

Description As the function name indicates, this function is intended for the
withdrawal of funds which are not used, and should therefore only
be callable after the sale has ended.

Recommendation Consider adding require(block.timestamp >= sale.saleEnd) at
the beginning of the function.

Resolution ACKNOWLEDGED

INFORMATIONAL

Page of 38 72 AvalaunchSale Paladin Blockchain Security

Issue #30 Usage of revert instead of require

Severity

Location Line 641

{

 p.isPortionWithdrawn[portionId] = true;

 uint256 amountWithdrawing = p

 .amountBought

 .mul(vestingPercentPerPortion[portionId])

 .div(portionVestingPrecision);

  

 // Withdraw percent which is unlocked at that portion

 if(amountWithdrawing > 0) {

 sale.token.safeTransfer(msg.sender,

amountWithdrawing);

 emit TokensWithdrawn(msg.sender, amountWithdrawing);

 }

} else {

 revert("Tokens already withdrawn or portion not unlocked

yet.");

}

Description It is not necessary to extend the code through a revert pattern;
instead, a require pattern is the better and cleaner pratice.

Recommendation Consider using a require pattern instead of revert.

Resolution

The client now follows best practice by using a requirement instead
of the if statement.

RESOLVED

INFORMATIONAL

Page of 39 72 AvalaunchSale Paladin Blockchain Security

Issue #31 encodePacked should be avoided for signatures

Severity

Description The encodePacked function concatenates all data into one long
string. It is known to cause hash duplicates for variable length
concatenations. For example ab + c will have the same hash as a +
bc. Within the encode function, variables are more nicely separated
and hash collisions are generally avoided.

This issue has been marked as informational as the signatures in
question do not contain collisions as far as we are aware. However,
as encode is easier to justify and generally more trusted in these
scenarios, it is still recommended.

Recommendation Consider using encode instead of encodePacked.

Resolution

INFORMATIONAL

The client has indicated that they have carefully evaluated the
encoding of encodePacked and that it does not pose an issue here.

Paladin has undergone thorough testing of this functionality as well
and believes the usage of encodePacked is all right, although we still
prefer our clients to be safe and go with encode whenever they can.

RESOLVED

Page of 40 72 AvalaunchSale Paladin Blockchain Security

2.5	 SalesFactory

The SalesFactory contract allows governance to deploy new AvalaunchSale
contracts. These contracts are used by individual project token sales on avalaunch.
For a further description of such sales we refer to the AvalaunchSale section. This
contract finally also keeps a record of all sales in existence.

2.5.1	 Privileged Roles

The following functions can be called by the owner:

• setAllocationStaking

• deploySale

• setImplementation

Page of 41 72 SalesFactory Paladin Blockchain Security

2.5.2	 Issues & Recommendations

Issue #32 Contract does not inherit all functions from ISalesFactory

Severity

Description The audit contracts contain an interface called ISalesFactory. We
however believe that this interface is outdated as
setSaleOwnerAndToken is not implemented within SalesFactory.

Recommendation Consider explicitly implementing ISalesFactory and updating it to
match the correct functions.

Resolution ACKNOWLEDGED

LOW SEVERITY

Issue #33 Low-level clone logic is included directly in the contract

Severity

Description The contract includes low-level clone logic to allow for proxy
clones. Proxy clones are contracts that function like an upgradeable
proxy but without the upgradeability. They are used to save on gas
and refer to common implementations.

Within the SalesFactory, the cloning logic is copied in directly, which
can be verbose for third-party validators. Instead, by using a library
like OpenZeppelin, most validators will immediately understand
that this low-level code is correct.

Recommendation Consider using OpenZeppelin Clones: https://github.com/
OpenZeppelin/openzeppelin-contracts/blob/master/contracts/
proxy/Clones.sol

Also consider rewriting the low level .call to a normal initialize
call by wrapping the sale address in an interface.

Resolution

INFORMATIONAL

ACKNOWLEDGED

Page of 42 72 SalesFactory Paladin Blockchain Security

https://github.com/OpenZeppelin/openzeppelin-contracts/blob/master/contracts/proxy/Clones.sol

Issue #34 Unused variables: saleOwnerToSale and tokenToSale 
Unused event: SaleOwnerAndTokenSetInFactory

Severity

Description Variables defined in a contract but not used within said contract
could confuse third-party auditors. They also increase the contract
length and bytecode size unnecessarily.

Recommendation Consider removing the aforementioned variables to keep the
contract short and simple.

The event SaleOwnerAndTokenSetInFactory can also be removed
as this function appears to have been deleted and is no longer in
use.

Resolution

INFORMATIONAL

RESOLVED

Issue #35 Lack of event for setAllocationStaking

Severity

Description Functions that affect the status of sensitive variables should emit
events as notifications.

Recommendation Add events for the function.

Resolution

INFORMATIONAL

An event was added and is now emitted in the constructor.
However, it is not emitted in setAllocationStaking.

PARTIALLY RESOLVED

Page of 43 72 SalesFactory Paladin Blockchain Security

Issue #36 admin and allocationStaking can be made immutable

Severity

Description Variables that are only set in the constructor but never modified can
be indicated as such with the immutable keyword. This is
considered best practice since it makes the code more accessible
for third-party reviewers and saves gas.

Recommendation Consider making the above variables explicitly immutable.

Resolution

INFORMATIONAL

ACKNOWLEDGED

Issue #37 setAllocationStaking can be made external

Severity

Description Functions that are not used within the contract but only externally
can be marked as such with the external keyword. Apart from being
a best practice when the function is not used within the contract,
this can lead to a lower gas usage in certain cases.

Recommendation Consider marking the above variables as external.

Resolution RESOLVED

INFORMATIONAL

Page of 44 72 SalesFactory Paladin Blockchain Security

2.6	 XavaToken

The Xava Token is a simple ERC20 token with no minting function present.
However, it extends the standard ERC20 token by allowing anyone to call burn,
which removes the tokens out of circulation. This can only be done for the user’s
own balance.

The deployer can choose the total supply during contract creation. This supply is
minted to the deployer.

2.6.1	 Token Overview

Address 0xd1c3f94DE7e5B45fa4eDBBA472491a9f4B166FC4

Token Supply 100,000,000

Decimal Places 18

Transfer Max Size No maximum

Transfer Min Size No minimum

Transfer Fees None

Pre-mints 100,000,000

Page of 45 72 XavaToken Paladin Blockchain Security

2.6.2	 Issues & Recommendations

Issue #38 _decimals can be made immutable

Severity

Description Variables that are only set in the constructor but never modified can
be indicated as such with the immutable keyword. This is
considered best practice since it makes the code more accessible
for third-party reviewers and saves gas.

Recommendation Consider making the variable explicitly immutable.

Resolution ACKNOWLEDGED

INFORMATIONAL

Page of 46 72 XavaToken Paladin Blockchain Security

Issue #39 Several functions can be made external, and since the contract is
deployed directly, the virtual keyword can be removed from all
functions

Severity

Description Functions that are not used within the contract but only externally
can be marked as such with the external keyword:

- transfer

- approve

- burn

- transferFrom

- decreaseAllowance

- name

- allowance

- symbol

- decimals

- totalSupply

- balanceOf

Apart from being a best practice when the function is not used
within the contract, this can lead to a lower gas usage in certain
cases.

Recommendation Consider marking the above variables as external and consider
removing the virtual keyword from all functions.

Resolution

INFORMATIONAL

ACKNOWLEDGED

Page of 47 72 XavaToken Paladin Blockchain Security

Issue #40 Unused function: _setupDecimals

Severity

Description Functions defined in a contract but not used within the contract
could confuse third-party auditors. They also increase the contract
length and bytecode size unnecessarily.

Recommendation Consider removing the function to keep the contract short and
simple.

Resolution ACKNOWLEDGED

INFORMATIONAL

Issue #41 The contract does not contain increaseAllowance while it does
contain decreaseAllowance

Severity

Description Front-running became a very common problem when changing the
allowance which can lead to the problem of double spending.
Therefore, the functions increaseAllowance and
decreaseAllowance exist. From a logical and security point of view
the contract should not only contain decreaseAllowance but also
increaseAllowance.

Recommendation Consider adding a increaseAllowance function similar to
decreaseAllowance.

Resolution

INFORMATIONAL

ACKNOWLEDGED

Page of 48 72 XavaToken Paladin Blockchain Security

Issue #42 Gas optimization: Contract uses hardcoded strings in SafeMath
functions

Severity

Location XavaToken::45 (Example) 

_approve(sender, _msgSender(), _allowances[sender]

[_msgSender()].sub(amount, "ERC20: transfer amount exceeds

allowance"));

Description The contract injects the error message into SafeMath. This is known
to cost extra gas, even on the happy path, as it causes memory
allocation.

Recommendation Consider checking the identity explicitly using a require statement
and then using non-SafeMath to do the subtractions and additions
instead. SafeMath has also created the trySub and tryAdd
functions in more recent versions to address this gas usage concern.

Resolution

INFORMATIONAL

ACKNOWLEDGED

Page of 49 72 XavaToken Paladin Blockchain Security

2.7	 DevToken

The DevToken is a token which was included within the audit scope with no special
features. We expect it to be used for testing. As the source code is identical to
XavaToken, we refer to the XavaToken section of this report for the list of issues
and privileges that apply. 

Page of 50 72 DevToken Paladin Blockchain Security

2.8	 AllocationStaking

AllocationStaking is a Masterchef-like contract where users can stake lpToken to
earn a token to be set (erc20). Contrary to the traditional Masterchef they can
extend the reward time through a ‘fund’ function. The lpTokens will furthermore get
locked for a timeframe to be set in the ‘setTokensUnlockTime’ function, another
thing which should not be forgotten to mention is the distribution of the deposit fee
amongst the stakers in the ‘updatePoolWithFee’ function. A deposit and withdrawal
fee is only settable for the first pool, they can each be set up to 100% however.

It should furthermore be noted that withdrawals require an off-chain governance
signature. Emergency withdrawals are still allowed without such a signature.

Finally, the withdrawal fee on the zero pool reduces linearly over a configurable
time-period.

2.8.1	 Privileged Roles

The following functions can be called by the owner:

• setSalesFactory

• add

• setDepositFee

• set

• setPostSaleWithdrawPenaltyPercentAndLength

• setTokensUnlockTime (factory)

• redistributeXava (factory) 

Page of 51 72 AllocationStaking Paladin Blockchain Security

2.8.2	 Issues & Recommendations

Issue #43 Governance privilege: The contract is upgradeable which allows
governance to withdraw all staked tokens

Severity

Description The contract can be upgraded at any time, therefore malicious
functions might be added which can result in a total loss of user
funds. This could happen by less reputable projects in an attempt to
exit with a profit when the project doesn’t go as well as expected.
However, given that Avalaunch is quite reputable this is less of a
risk.

This issue is still marked as high risk since the possibility of keys
getting stolen or ending up in the wrong hands remains present.
Other governance privileges in the contract include:

- Deposit fees can be set up to 100%

- Tokens could become locked forever

- Withdrawal fees can be set up to 100%

- Lack of cap on the withdrawal penalty length (the duration)

Recommendation Consider whether upgradeability is desired, if so, consider setting
the admin to a multi-sig with doxxed participants.

Resolution

The client has indicated that they acknowledge this issue and are in
the process of setting up a new governance structure where they
can give specific wallets and contracts specific rights. Their goal is
to minimize the governance risk but as the contracts will remain
upgradable, larger investors should carefully assess the current
proxy admin who can upgrade these contracts.

ACKNOWLEDGED

HIGH SEVERITY

Page of 52 72 AllocationStaking Paladin Blockchain Security

Issue #44 LP tokens might not necessarily be equal to the reward token,
which causes the contract to severely malfunction

Severity

Description Within the XAVA distribution and compound functions, it is
assumed that all pools have the native token as their LP token, but
this is not guaranteed. In case this is not the case, the contract will
compound the native token into non-native pools.

Recommendation Consider removing the lpToken variable and always using erc20 (a
slight misnomer, rewardToken would be more adequate) as the
lpToken.

Resolution

The client has already carefully validated that these tokens are the
same within their process and would rather not make changes to
code which works within this process.

ACKNOWLEDGED

MEDIUM SEVERITY

Page of 53 72 AllocationStaking Paladin Blockchain Security

Issue #45 emergencyWithdraw, deposit and withdraw are prone to
reentrancy attack

Severity

Location Lines 395-407

Description The emergencyWithdraw function is used to allow the user to
withdraw funds without claiming rewards. However, it is vulnerable
to reentrancy attacks because the amount is only reset after the
token has been transferred. If a token allows for external code
execution, emergencyWithdraw could be called twice to withdraw
the user.amount twice.

To reiterate, in the emergencyWithdraw function, the lpTokens are
being transferred before the user.amount is set to zero. During a
reentrancy attack, a malicious hacker can use this vulnerability to
withdraw more tokens than he actually owns and therefore drain the
whole pool.

However, this is only possible with tokens that are vulnerable to
reentrancy and since this contract is designed to use the XAVA
Token (which is not vulnerable to this) as the main staking token we
will only mark this issue as medium severity.

Furthermore, within deposit and withdraw, the rewardDebt is only
updated after external calls have been made. If reentrancy is
permitted on these external calls (unlikely), then the rewards could
be inflated.

Recommendation Consider adding a reentrancy modifier and changing the logic of the
function by first setting the user.amount to zero and then only
transfer the lpTokens afterwards.

Consider adding reentrancy guards to deposit and withdraw or
rewriting them to adhere to checks-effects-interactions.

Resolution

MEDIUM SEVERITY

Avalaunch has indicated that they carefully vet the tokens they add
to their staking contract and have no intention to add more complex
tokens which could introduce reentrancy risk.

Given careful vetting of tokens, this issue will therefore not present
itself as it requires a token which allows for reentrancy.

ACKNOWLEDGED

Page of 54 72 AllocationStaking Paladin Blockchain Security

Issue #46 The deposit and fund functions do not support fee on transfer
tokens

Severity

Location Lines 395-407

function deposit(uint256 _pid, uint256 _amount) public {

 PoolInfo storage pool = poolInfo[_pid];

 UserInfo storage user = userInfo[_pid][msg.sender];

 [...]

 if (user.amount > 0) {

 uint256 pendingAmount =

user.amount.mul(pool.accERC20PerShare).div(1e36).sub(user.re

wardDebt);

 erc20Transfer(msg.sender, pendingAmount);

 }

 pool.lpToken.safeTransferFrom(address(msg.sender),

address(this), _amount);

 pool.totalDeposits =

pool.totalDeposits.add(depositAmount);

 user.amount = user.amount.add(depositAmount);

 user.rewardDebt =

user.amount.mul(pool.accERC20PerShare).div(1e36);

 emit Deposit(msg.sender, _pid, depositAmount);

}

Description Fee on transfer tokens differ from normal tokens in that the amount
sent does not equal the amount received. This often causes pools to
get exploited and drained due to a miscalculation of user.amount.

If the pool is using a fee on transfer token as lpToken, the contract
will only receive the amount after the transfer tax is deducted
during a deposit but the user.amount variable does not reflect this
loss. Due to this, there will not be enough tokens within the pool to
repay everyone and withdrawals might eventually break.

In addition, the fund function does not support fee on transfer
tokens either.

MEDIUM SEVERITY

Page of 55 72 AllocationStaking Paladin Blockchain Security

Recommendation Consider adding a before-after check: ​

uint256 balanceBefore =

pool.lpToken.balanceOf(address(this));

pool.lpToken.safeTransferFrom(msg.sender, address(this),

_amount);

depositAmount = pool.lpToken.balanceOf(address(this)) -

balanceBefore;

Resolution

The client has indicated that they will not support such tokens.
Given that the impact is much more modest than the previously
acknowledged issues, we are marking this issue as resolved.

RESOLVED

Issue #47 verifySignature never verifies the function name

Severity

Description The verifySignature method does not verify the provided function
name. If it was ever used for multiple functions, this could allow for
replay attacks.

Recommendation Consider adding the function name hash to the signature hash.

Resolution

As this issue only really presents itself if the contract is extended,
the client has decided to not fix it yet.

ACKNOWLEDGED

MEDIUM SEVERITY

Page of 56 72 AllocationStaking Paladin Blockchain Security

Issue #48 Fees are still granted on the own share

Severity

Location Lines 426-452

function compound(uint256 _pid) public {

 PoolInfo storage pool = poolInfo[_pid];

 UserInfo storage user = userInfo[_pid][msg.sender];

 [...]

 // Update accounting around burns

 burnFromUser(msg.sender, _pid, fee);

 // Update pool including fee for people currently staking

 updatePoolWithFee(_pid, fee);

 [...]

 emit CompoundedEarnings(msg.sender, _pid,

amountCompounding, user.amount);

}

Description After the user’s deposit fee gets deducted, the contract calls the
updatePoolWithFee function. This results in the increment of
pool.accERC20PerShare, therefore the user will receive a portion of
his deposit fee back.

The issue with the current design is that within the
redistributeXava function, the amount to redistribute is still
included in the user stake. They therefore receive back a larger part
of their fees than they should.

Recommendation Consider either accepting this or doing a two stage update. First,
the pool is updated with a zero distribution amount simply for the
harvest. After the balance and rewardDebt are adjusted, a second
update occurs to distribute the fees.

Resolution ACKNOWLEDGED

LOW SEVERITY

Page of 57 72 AllocationStaking Paladin Blockchain Security

Issue #49 The fee of the first deposit does not get added towards the
erc20Reward

Severity

Location Lines 250-279

function updatePoolWithFee(

 uint256 _pid,

 uint256 _depositFee

)

internal

{

 PoolInfo storage pool = poolInfo[_pid];

 uint256 lastTimestamp = block.timestamp < endTimestamp ?

block.timestamp : endTimestamp;

 if (lastTimestamp <= pool.lastRewardTimestamp) {

 lastTimestamp = pool.lastRewardTimestamp;

 }

 uint256 lpSupply = pool.totalDeposits;

 if (lpSupply == 0) {

 pool.lastRewardTimestamp = lastTimestamp;

 return;

 }

 uint256 nrOfSeconds =

lastTimestamp.sub(pool.lastRewardTimestamp);

 // Add to the reward fee taken, and distribute to all

users staking at the moment.

 uint256 reward = nrOfSeconds.mul(rewardPerSecond);

 uint256 erc20Reward =

reward.mul(pool.allocPoint).div(totalAllocPoint).add(_deposi

tFee);

 pool.accERC20PerShare =

pool.accERC20PerShare.add(erc20Reward.mul(1e36).div(lpSupply

));

 pool.lastRewardTimestamp = lastTimestamp;

}

LOW SEVERITY

Page of 58 72 AllocationStaking Paladin Blockchain Security

Description Due to the logical issue, there will be no distribution of the first
deposit fee towards the erc20Reward — the fee will simply be stuck
in the contract. If the deposit function on pool zero gets called it
will also call the updatePoolWithFee function.

This function is responsible for calculating the accERC20PerShare.
However, due to the fact that the lpSupply is zero before the first
deposit, it will return before the fee was added to erc20Reward.
This will result in a loss of the mentioned fee.

Recommendation Consider whether this scenario is acceptable, and if not, consider
handling this scenario more explicitly.

Resolution ACKNOWLEDGED

Issue #50 burnFromUser does not trigger within a deposit if
withdrawalFeePending is greater than zero and
withdrawalFeeDepositAmount is zero

Severity

Location Lines 404-406

if(withdrawalFeeDepositAmount > 0) {

 // Update accounting around burns

 burnFromUser(msg.sender, _pid,

withdrawalFeeDepositAmount.add(withdrawalFeePending));

Description The burnFromUser call within deposit can burn two different
amounts: the withdrawalFeeDepositAmount and the
withdrawalFeePending. The if statement however only causes the
burn to go through if the first amount is greater than zero. If this
amount were to be zero while the second amount is non-zero, the
burn would not occur.

Recommendation Consider whether this is desired. If not, consider updating the if
statement to include an or that the second amount must be non-
zero.

Resolution ACKNOWLEDGED

LOW SEVERITY

Page of 59 72 AllocationStaking Paladin Blockchain Security

Issue #51 The pending function will revert if totalAllocPoint is zero

Severity

Description In the pending function, at some point a division is made by the
totalAllocPoint variable. If all pools have their rewards set to
zero, this variable will be zero as well. The requests will then revert
with a division by zero error.

Recommendation Consider only calculating the accumulated rewards since the
lastRewardTimestamp if the totalAllocPoint variable is greater
than zero. This check can simply be added to the existing check that
verifies the block.timestamp and lpSupply, like so:

if (block.timestamp > pool.lastRewardTimestamp &&
lpSupply != 0 && totalAllocPoint > 0) {

Resolution

LOW SEVERITY

ACKNOWLEDGED

Page of 60 72 AllocationStaking Paladin Blockchain Security

Issue #52 Usage of encodePacked is discouraged in critical code sections

Severity

Location Lines 334, 360

bytes32 nonceHash = keccak256(abi.encodePacked(functionName,

nonce));

abi.encodePacked(msg.sender, _pid, _amount, nonce)

Description The signature validation scheme checks the signature over a
collection of bytes which is tightly packed. This is however not
encouraged for critical sections of code as it could allow for hash
collisions.

This issue has been marked as informational as hash collisions are
mainly an issue with variable length values (strings…) and the above
code section does not have these. We therefore do not believe that
there is any way to abuse this hash but would still like to
recommend the best practice which more effectively guarantees
this.

It should be noted that encodePacked is at some point used with a
variable length string, which is discouraged.

Recommendation Consider using abi.encode instead of abi.encodePacked.

Resolution ACKNOWLEDGED

INFORMATIONAL

Page of 61 72 AllocationStaking Paladin Blockchain Security

Issue #53 safeTransfer should be used within the erc20Transfer function

Severity

Location Line 410

Description In the erc20Transfer function, the transfer method is used to
transfer tokens from the contract to an external address. This will
not work for tokens that will return false on transfer (or malformed
tokens that do not have a return value).

Recommendation Consider using safeTransfer instead of transfer as is done
throughout most of this contract.

Resolution ACKNOWLEDGED

INFORMATIONAL

Issue #54 SafeMath is not used

Severity

Location Lines 129, 476

Description Using raw addition or subtraction instead of SafeMath can result in
underflow / overflow.

This issue has been marked as informational given that the locations
are non-critical and overflow is unlikely.

Recommendation Consider using SafeMath as in the rest of the contract.

Resolution

INFORMATIONAL

ACKNOWLEDGED

Page of 62 72 AllocationStaking Paladin Blockchain Security

Issue #55 Certain functions can be made external

Severity

Description Functions that are not used within the contract but only externally
can be marked as such with the external keyword:

- fund

- add

- setDepositFee

- set

- pending

- deposit

- withdraw

- compound

- emergencyWithdraw

- setPostSaleWithdrawPenaltyPercentAndLength

Apart from being a best practice when the function is not used
within the contract, this can lead to a lower gas usage in certain
cases.

Recommendation Consider marking the aforementioned variables as external.

Resolution

INFORMATIONAL

ACKNOWLEDGED

Issue #56 salesRegistered can only be viewed on the contract in the
userInfo struct, however it is not possible to view it on the front-
end

Severity

Description It is impossible to view salesRegistered on the front-end since
there is no view function for the variable.

Recommendation Consider either removing the array or adding a view function.

Resolution

INFORMATIONAL

ACKNOWLEDGED

Page of 63 72 AllocationStaking Paladin Blockchain Security

Issue #57 Lack of events for certain functions

Severity

Description Functions that affect the status of sensitive variables should emit
events as notifications:

- setSalesFactory

- fund

- add

- set

- setTokensUnlockTime

- redistributeXava

- setPostSaleWithdrawPenaltyPercentAndLength

- setAdmin

Recommendation Add events for the above functions.

Resolution ACKNOWLEDGED

INFORMATIONAL

Page of 64 72 AllocationStaking Paladin Blockchain Security

Issue #58 Lack of validation: startTimestamp should be in the future; add
function has no check for existing tokens

Severity

Description Lines 91-112

function initialize(

 IERC20 _erc20,

 uint256 _rewardPerSecond,

 uint256 _startTimestamp,

 address _salesFactory,

 uint256 _depositFeePercent,

 uint256 _depositFeePrecision

)

 initializer

 public

{

 __Ownable_init();

 erc20 = _erc20;

 rewardPerSecond = _rewardPerSecond;

 startTimestamp = _startTimestamp;

 endTimestamp = _startTimestamp;

 // Create sales factory contract

 salesFactory = ISalesFactory(_salesFactory);

 setDepositFeeInternal(_depositFeePercent,

_depositFeePrecision);

}

During the contract initialization, startTimestamp can be set to any
timestamp. It should be only set to a timestamp which is in the
future.

INFORMATIONAL

Page of 65 72 AllocationStaking Paladin Blockchain Security

Lines 135-151

function add(uint256 _allocPoint, IERC20 _lpToken, bool

_withUpdate) public onlyOwner {

 if (_withUpdate) {

 massUpdatePools();

 }

 uint256 lastRewardTimestamp = block.timestamp >

startTimestamp ? block.timestamp : startTimestamp;

 totalAllocPoint = totalAllocPoint.add(_allocPoint);

 // Push new PoolInfo

 poolInfo.push(

 PoolInfo({

 lpToken: _lpToken,

 allocPoint: _allocPoint,

 lastRewardTimestamp: lastRewardTimestamp,

 accERC20PerShare: 0,

 totalDeposits: 0

 })

);

}

Governance has the ability to add new pools using the add function.
However, there is no check if the _lpToken is an actual ERC20
token.

Recommendation Consider adding require(_startTimestamp >= block.timestamp)
to ensure the timestamp will be in the future.

Consider adding _lpToken.balanceOf(address(this)); to the
beginning of the function.

Resolution ACKNOWLEDGED

Page of 66 72 AllocationStaking Paladin Blockchain Security

Issue #59 Unnecessary use of address(msg.sender)

Severity

Location Lines 128, 323, 400, 464

Description It is not necessary to wrap msg.sender with address().

Recommendation Consider using msg.sender throughout the contract.

Resolution

INFORMATIONAL

ACKNOWLEDGED

Page of 67 72 AllocationStaking Paladin Blockchain Security

2.9	 AvalaunchBadgeFactory

The AvalaunchBadgeFactory is an ERC-1155 NFT contract where the governance
can define different badges with different multipliers using createBadges. Each
badge they can then mint to multiple users using mintBadges. The audit scope does
not contain more details about how these badges will be used.

2.9.1	 Privileged Roles

The following functions can be called by the owner:

• pause

• unpause

• setNewUri

• setNewContractUri

• createBadges

• mintBadges 

Page of 68 72 AvalaunchBadgeFactory Paladin Blockchain Security

2.9.2	 Issues & Recommendations

Issue #60 mintBadges mint receipt hook has an outdated
badgeIdToMintedSupply which can be a cause of exploits in
derivative contracts

Severity

Location Lines 145-149

_mint(receivers[i], badgeIds[i], 1, "0x0");

emit BadgeMint(badgeIds[i], receivers[i]);

// Increase total minted supply

badgeIdToMintedSupply[badgeIds[i]] =

badgeIdToMintedSupply[badgeIds[i]].add(1);

Description Within the mint function of the badge contract, the badge supply is
updated after _mint is called. However, during _mint, the
onERC1155Received function is called on the potentially malicious
receiver. At this point of time, the malicious receiver can reenter into
any part of the contract or the whole Avalaunch system at large.
This in itself is not an issue. However, since
badgeIdToMintedSupply has not been incremented yet, there is an
inconsistency at this point as the receiver has already received their
tokens.

This could specifically cause exploits if the badge supply is used for
critical functionalities in the derivative contracts outside of this
audit scope.

This vulnerability used to be present in the ERC-1155 totalSupply
extension by OpenZeppelin. It was reported by ChainSecurity and
their description of the issue can be read here. This issue has
caused significant panic for certain protocols where the supply had
significant importance in derivative contracts and where a
discrepancy like this could cause exploitation. As there were no
derivative contracts included within the audit scope, this issue is
marked as medium severity.

Recommendation Consider using the patched ERC1155Supply extension by
OpenZeppelin. Moving the supply addition to before the mint would
not really be a sufficient fix as the _beforeTokenTransfer hook
would be inconsistent at that point.

MEDIUM SEVERITY

Page of 69 72 AvalaunchBadgeFactory Paladin Blockchain Security

https://medium.com/chainsecurity/totalsupply-inconsistency-in-erc1155-nft-tokens-8f8e3b29f5aa

Resolution

This issue was resolved similarly to how OpenZeppelin resolved this
issue when it was disclosed within ERC1155Supply. Specifically, the
increment of the minted supply has been moved to the
_beforeTokenTransfer hook.

RESOLVED

Issue #61 Certain functions can be made external

Severity

Description Functions that are not used within the contract but only externally
can be marked as such with the external keyword:

- pause

- unpause

- setNewUri

- setNewContractUri

Apart from being a best practice when the function is not used
within the contract, this can lead to a lower gas usage in certain
cases.

Recommendation Consider marking the above functions as external.

Resolution

INFORMATIONAL

RESOLVED

Page of 70 72 AvalaunchBadgeFactory Paladin Blockchain Security

Issue #62 Lack of events for certain functions

Severity

Description Functions that affect the status of sensitive variables should emit
events as notifications:

- pause

- unpause

- setNewUri

- setNewContractUri

Recommendation Add events for the above functions.

Resolution

As setNewUri and setNewContractUri emit the same event, which
is generally considered bad practice, this issue is left partially open.

PARTIALLY RESOLVED

INFORMATIONAL

Issue #63 Gas optimization: Usage of uint32 has causes extra gas usage

Severity

Description Within a for loop in the contract, uint32 is used for the indices. This
has no advantage over using uint256 as the word size is 256 bits
within ethereum. In fact, if you were to do a gas usage comparison,
uint256 would turn out being cheaper as less conversions are
necessary.

Recommendation Consider using uint256 consistently. The only argument for smaller
data types is to pack them into structs. Further gas optimizations
can be made by replacing the memory parameters with calldata.

Resolution

INFORMATIONAL

uint32 was changed to uint.

RESOLVED

Page of 71 72 AvalaunchBadgeFactory Paladin Blockchain Security

Page of 72 72 AvalaunchBadgeFactory Paladin Blockchain Security

	Table of Contents
	Disclaimer
	1 Overview
	1.1 Summary
	1.2 Contracts Assessed
	1.3 Findings Summary
	1.3.1 Admin
	1.3.2 Airdrop and AirdropAvax
	1.3.3 AirdropSale
	1.3.4 AvalaunchSale
	1.3.5 SalesFactory
	1.3.6 XavaToken
	1.3.7 DevToken
	1.3.8 AllocationStaking
	1.3.9 AvalaunchBadgeFactory

	2 Findings
	2.1 Admin
	2.1.1 Privileged Roles
	2.1.2 Issues & Recommendations

	2.2 Airdrop and AirdropAvax
	2.2.1 Issues & Recommendations

	2.3 AirdropSale
	2.3.1 Issues & Recommendations

	2.4 AvalaunchSale
	2.4.1 Privileged Roles
	2.4.2 Issues & Recommendations

	2.5 SalesFactory
	2.5.1 Privileged Roles
	2.5.2 Issues & Recommendations

	2.6 XavaToken
	2.6.1 Token Overview
	2.6.2 Issues & Recommendations

	2.7 DevToken
	2.8 AllocationStaking
	2.8.1 Privileged Roles
	2.8.2 Issues & Recommendations

	2.9 AvalaunchBadgeFactory
	2.9.1 Privileged Roles
	2.9.2 Issues & Recommendations

