
Page of 1 20 Paladin Blockchain Security

Smart Contract
Security Assessment

paladinsec.co info@paladinsec.co

Final Report

For PIP
07 September 2022

Table of Contents 
 
Table of Contents	
2

Disclaimer	
3

1 Overview	
4

1.1 Summary	
4

1.2 Contracts Assessed	
4

1.3 Findings Summary	
5

1.3.1 BscPaymentSplitterDeploy	
6

2 Findings	
7

2.1 BscPaymentSplitterDeploy	
7

2.1.1 Privileged Functions	
8

2.1.2 Issues & Recommendations	 9

Page of 2 20 Paladin Blockchain Security

Disclaimer

Paladin Blockchain Security (“Paladin”) has conducted an independent audit to verify the integrity
of and highlight any vulnerabilities or errors, intentional or unintentional, that may be present in
the codes that were provided for the scope of this audit. This audit report does not constitute
agreement, acceptance or advocation for the Project that was audited, and users relying on this
audit report should not consider this as having any merit for financial advice in any shape, form or
nature. The contracts audited do not account for any economic developments that may be pursued
by the Project in question, and that the veracity of the findings thus presented in this report relate
solely to the proficiency, competence, aptitude and discretion of our independent auditors, who
make no guarantees nor assurance that the contracts are completely free of exploits, bugs,
vulnerabilities or deprecation of technologies. Further, this audit report shall not be disclosed nor
transmitted to any persons or parties on any objective, goal or justification without due written
assent, acquiescence or approval by Paladin.

All information provided in this report does not constitute financial or investment advice, nor
should it be used to signal that any persons reading this report should invest their funds without
sufficient individual due diligence regardless of the findings presented in this report. Information is
provided ‘as is’, and Paladin is under no covenant to the completeness, accuracy or solidity of the
contracts audited. In no event will Paladin or its partners, employees, agents or parties related to
the provision of this audit report be liable to any parties for, or lack thereof, decisions and/or
actions with regards to the information provided in this audit report.

Cryptocurrencies and any technologies by extension directly or indirectly related to
cryptocurrencies are highly volatile and speculative by nature. All reasonable due diligence and
safeguards may yet be insufficient, and users should exercise considerable caution when
participating in any shape or form in this nascent industry.

The audit report has made all reasonable attempts to provide clear and articulate
recommendations to the Project team with respect to the rectification, amendment and/or revision
of any highlighted issues, vulnerabilities or exploits within the contracts provided. It is the sole
responsibility of the Project team to sufficiently test and perform checks, ensuring that the
contracts are functioning as intended, specifically that the functions therein contained within said
contracts have the desired intended effects, functionalities and outcomes of the Project team.

Paladin retains full rights over all intellectual property (including expertise and new attack or
exploit vectors) discovered during the audit process. Paladin is therefore allowed and expected to
re-use this knowledge in subsequent audits and to inform existing projects that may have similar
vulnerabilities. Paladin may, at its discretion, claim bug bounties from third-parties while doing so. 

Page of 3 20 Paladin Blockchain Security

1	 	 Overview

This report has been prepared for PIP’s payment splitter contract on the BNB Smart
Chain. Paladin provides a user-centred examination of the smart contracts to look
for vulnerabilities, logic errors or other issues from both an internal and external
perspective.

1.1	 	 Summary

1.2	 	 Contracts Assessed

Project Name PIP

URL https://getpip.com

Network BNB Smart Chain

Language Solidity

Name Contract
Live Code
Match

BSCPaymentSp
litter

proxy: 
0x11454268cb62e0E574a08eC83be1dAed1813b240

implementation:
0x783b45978671d1148482980a9bb10552f2794016

MATCH

Page of 4 20 Paladin Blockchain Security

https://getpip.com

1.3	 	 Findings Summary

Classification of Issues

 

Severity Found Resolved
Partially
Resolved

Acknowledged
(no change made)

3 3 - -

3 2 - 1

3 1 - 2

5 4 1 -

Total 14 10 1 3

 High

 Informational

 Medium

 Low

Severity Description

Exploits, vulnerabilities or errors that will certainly or probabilistically lead
towards loss of funds, control, or impairment of the contract and its
functions. Issues under this classification are recommended to be fixed with
utmost urgency.

Bugs or issues that may be subject to exploit, though their impact is
somewhat limited. Issues under this classification are recommended to be
fixed as soon as possible.

Effects are minimal in isolation and do not pose a significant danger to the
project or its users. Issues under this classification are recommended to be
fixed nonetheless.

Consistency, syntax or style best practices. Generally pose a negligible level
of risk, if any.

 High

 Informational

 Medium

 Low

Page of 5 20 Paladin Blockchain Security

1.3.1	 BscPaymentSplitterDeploy

ID Severity Summary Status

01 Contract does not support tokens with a fee on transfer

02 A malicious to parameter can drain the contract

03 Lack of safeguards for feeAmount and gasAmount

04 Bnb sent to the contract via a fallback function can never be
withdrawn

05 Using transfer for the native token does not work for contracts or
multi-signature wallets

06 Gas token may not be withdrawable

07 Contract logic can be abused

08 Checks-effects-interactions pattern is not adhered to

09 Certain variables should be public

10 Unnecessary transfer

11 Unused declarations and events

12 Various functions can be made external

13 Typographical errors

14 Lack of safeTransfer

MEDIUM

RESOLVED

MEDIUM

RESOLVED

RESOLVED

ACKNOWLEDGED

RESOLVED

RESOLVED

INFO

INFO

PARTIAL

INFO

ACKNOWLEDGED

INFO

MEDIUM

HIGH RESOLVED

RESOLVED

LOW

HIGH

HIGH

RESOLVED

LOW

RESOLVED

RESOLVED

INFO

LOW

ACKNOWLEDGED

Page of 6 20 Paladin Blockchain Security

2	 	 Findings

2.1	 BscPaymentSplitterDeploy

BscPaymentSplitterDeploy is a distributor-like contract. Users have the ability to
send tips via this contract to other addresses either by a direct transfer or via an
escrow service.

For the direct transfer, the user can either call receiveNative or receiveToken
with isEscrow != 1. In the case of escrow (isEscrow ==1), the user has to pay a
feeAmount and a gasAmount in addition to the user’s tip. If the escrow service is not
used, the user simply pays the feeAmount.

For the escrow service, the user’s funds will be deposited into the contract and can
be sent via sendEscrow by the admin to any receiver address. There is no further
validation.

It is crucial to mention that none of these fees are validated. We assume that the
frontend is automatically calculating the gasAmount and the feeAmount. This of
course results in a security risk where the user can simply input an arbitrary
feeAmount and gasAmount. Furthermore, the user also has the ability to call
receiveNativeByPipService and receiveTokenByPipService since none of these
functions are safeguarded, thus they can execute what receiveNative and
receiveToken does in the case of a non-escrow transaction without any fee.

Page of 7 20 BscPaymentSplitterDeploy Paladin Blockchain Security

2.1.1	 Privileged Functions

• setGasFeeAddress

• getGasFeeAddress

• setPipFeeAddress

• getPipFeeAddress

• chkGasFee

• chkPipFee

• chkEscrowBalance

• withdrawGasFee

• withdrawPipFee

• sendEscrow

Page of 8 20 BscPaymentSplitterDeploy Paladin Blockchain Security

2.1.2	 Issues & Recommendations

Issue #01 Contract does not support tokens with a fee on transfer

Severity

Description Within receiveToken, the contract will increment _pipFees and
_escrowBalances with the initial amount. However, the contract
does not receive the full amount due to the tax deducted.

This will later result in issues when the admin sends the escrow
amount out via sendEscrow or transfers funds out via
withdrawPipFee. Both functions rely on the accounting variables
_pipFees and _escrowBalances which limits the amount that can
be transferred out.

If these two variables are being increased with the initial amount but
the contract only receives the amount after the tax, executing both
functions with the initial value will slowly drain the contract.

Recommendation Consider switching to a logic that supports tokens with a fee on
transfer or simply consider to not accept such tokens.

Resolution

HIGH SEVERITY

The client added a whitelist modifier for accepted tokens as well as
a safeTransferFromAndCheckBalance function which ensures that
the received amount is always the initial amount.

RESOLVED

Page of 9 20 BscPaymentSplitterDeploy Paladin Blockchain Security

Issue #02 A malicious to parameter can drain the contract

Severity

Description Within the functions withdrawPipFee and sendEscrow, there is an
approval made to the to address before a standard transfer. Since
the transfer does not adjust the approval, the to address can then
drain the contract via transferFrom.

This is especially risky for the sendEscrow function, since the to
address is most likely a third-party receiver.

Recommendation Consider removing the unnecessary approval.

Resolution

HIGH SEVERITY

RESOLVED

Issue #03 Lack of safeguards for feeAmount and gasAmount

Severity

Description receiveToken and receiveNative both lack validation for the input
parameters. Therefore, users can circumvent the fee by inputting a
very low feeAmount and gasAmount.

Recommendation We recommend to determine a standard gasAmount and to
calculate the feeAmount based on the tipAmount.

Resolution

HIGH SEVERITY

We suggested a different fix for this issue, however, the client
indicated that their fix logic works as desired.

RESOLVED

Page of 10 20 BscPaymentSplitterDeploy Paladin Blockchain Security

Issue #04 Bnb sent to the contract via a fallback function can never be
withdrawn

Severity

Description The fallback functions receive and fallback allow anyone to send
BNB directly to the contract, however, there is no way to withdraw
that amount because it was not accounted for.

Recommendation Consider removing the fallback functions

Resolution

MEDIUM SEVERITY

The client will remove these functions in the final version.

RESOLVED

Issue #05 Using transfer for the native token does not work for contracts or
multi-signature wallets

Severity

Description The use of transfer for the native gas token just forwards 2100 gas
to the recipient. If the recipient is a smart contract or a multi-
signature wallet, there is usually contract logic that gets executed as
a fallback function when receiving the gas token. However, in the
case of transfer, this will simply run out of gas and revert.

Recommendation Consider using call instead of transfer.

Resolution ACKNOWLEDGED

MEDIUM SEVERITY

Page of 11 20 BscPaymentSplitterDeploy Paladin Blockchain Security

Issue #06 Gas token may not be withdrawable

Severity

Description Within receiveNative and receiveToken, the gasAmount can be
chosen arbitrarily. If a user decides to pay a gasAmount > 0 for the
else cases, _gasFee will not get increased accordingly.

This exposes an issue with withdrawGasFees because this function
relies on the correct accounting of _gasFee.

Recommendation Consider accounting for _gasFee correctly if it is > 0.

Resolution

MEDIUM SEVERITY

receiveNative and receiveToken both require gasAmount to be
zero for nonEscrow cases. Additionally, an upper limit was
introduced to the setGasFee function and the bug within the
requirement was fixed.

RESOLVED

Issue #07 Contract logic can be abused

Severity

Description Since there are no safeguards for receiveTokenByPipService and
receiveNativeByPipService, users can simply call this function
instead of receiveToken and receiveNative and circumvent the
fee logic.

Recommendation Consider either acknowledging this or rethinking the contract logic.

Resolution ACKNOWLEDGED

LOW SEVERITY

Page of 12 20 BscPaymentSplitterDeploy Paladin Blockchain Security

Issue #08 Checks-effects-interactions pattern is not adhered to

Severity

Description Within the whole contract, the checks-effects-interactions pattern
is not adhered to. Even if all functions are safeguarded with the
nonReentrant modifier, Paladin always recommends adhering to
the checks-effects-interactions pattern (https://fravoll.github.io/
solidity-patterns/checks_effects_interactions.html).

Recommendation Consider changing the contract logic to adhere to the checks-
effects-interactions pattern.

Resolution ACKNOWLEDGED

LOW SEVERITY

Issue #09 Certain variables should be public

Severity

Description Important variables that third-parties might want to inspect should
be marked as public so that these third-parties can easily inspect
them through the explorer, web3 and derivative contracts.

The following variables should be marked as public:

- _escrowBalances

- _pipFees

- _gasFee

- _pipFeeAddress

- _gasFeeAddress

Recommendation Consider either making these variables public, or remove the
onlyAdmin modifier for the view functions.

Resolution

LOW SEVERITY

RESOLVED

Page of 13 20 BscPaymentSplitterDeploy Paladin Blockchain Security

https://fravoll.github.io/solidity-patterns/checks_effects_interactions.html

Issue #10 Unnecessary transfer

Severity

Location Line 249

payable(address(this)).call{value: msg.value};

Line 257

payable(address(this)).call{value: feeAmount};

Line 283

payable(address(this)).call{value: gasAmount};

Description Within several functions, the contract tries to send itself the gas
token via call . However, during the function call itself, msg.value
is automatically sent to the contract itself. This call is unnecessary
and just consumes gas.

Recommendation Consider removing the unnecessary calls.

Resolution

INFORMATIONAL

RESOLVED

Page of 14 20 BscPaymentSplitterDeploy Paladin Blockchain Security

Issue #11 Unused declarations and events

Severity

Description Declarations, variables, functions, events, etc. defined in a contract
but not used within said contract could confuse third-party
auditors. They also increase the contract length unnecessarily.

Lines 18-19

using SafeERC20Upgradeable for IERC20Upgradeable;

using StringsUpgradeable for string;

These declarations are not actively used within the contract,
although SafeERC20Upgradeable should be used.

Line 55-60

event Approve(string approveType, address indexed

toContract, address indexed spender, uint256 indexed

amount);

This event is not used.

Recommendation Consider removing all unused or unnecessary events and
declarations.

Resolution

INFORMATIONAL

RESOLVED

Page of 15 20 BscPaymentSplitterDeploy Paladin Blockchain Security

Issue #12 Various functions can be made external

Severity

Description Functions that are not used within the contract but only externally
can be marked as such with the external keyword. Apart from being
a best practice when the function is not used within the contract,
this can lead to a lower gas usage in certain cases.

The following functions can be made external:

- setGasFeeAddress

- getGasFeeAddress

- setPipFeeAddress

- getPipFeeAddress

- chkGasFee

- chkPipFee

- chkEscrowBalance

- withdrawGasFee

- withdrawPipFee

- sendEscrow

- receiveNative

- receiveToken

- receiveNativeByPipService

- receiveTokenByPipService

Recommendation Consider making the above functions external.

Resolution RESOLVED

INFORMATIONAL

Page of 16 20 BscPaymentSplitterDeploy Paladin Blockchain Security

Issue #13 Typographical errors

Severity

Description We have consolidated the typographical errors into a single issue to
keep the report brief and readable.

Line 176

function chkEscrowBalance(address target)

The parameter should be token.

 

Line 183

function withdrawGasFee(address payable to, uint256 amount)

public payable

The payable keyword for the function can be removed. Additionally,
the to parameter is unnecessary since it must always be
_gasFeeAddress.

Line 196

function withdrawPipFee(address symbol, address payable to,

uint256 amount) public payable

The payable keyword for the function can be removed.

symbol should be renamed to token, which would make it more
readable for third-party reviewers.

Additionally, the to parameter is unnecessary since it must always
be _pipFeeAddress.

Line 196

_pipFees[symbol] -= amount;

This can be done at the beginning of the function — there is no need
to do this two times for each case.

INFORMATIONAL

Page of 17 20 BscPaymentSplitterDeploy Paladin Blockchain Security

Line 216

function sendEscrow(address symbol, address payable to,

uint256 amount) public payable

The payable keyword for the function can be removed, we do not
expect that the admin wants to add any msg.value here.

symbol should be renamed to token, which would make it more
readable for third-party reviewers.

Line 223

payable(to).transfer(amount);

The to address is already wrapped with payable.

Line 241

function receiveNative(uint256 isEscrow, address payable

recipient, uint256 tipAmount, uint256 feeAmount, uint256

gasAmount)

isEscrow should be a boolean value. The same issue exists with the
receiveToken function.

Line 316

function receiveTokenByPipService(address toContract,

address recipient, uint256 amount, string memory payload)

public payable

The payable keyword for the function can be removed.

Recommendation Consider fixing the above typographical errors.

Resolution

Not all the errors have been fixed.

PARTIALLY RESOLVED

Page of 18 20 BscPaymentSplitterDeploy Paladin Blockchain Security

Issue #14 Lack of safeTransfer

Severity

Description Even if SafeERC20Upgradeable is imported correctly, it is not being
used. All transfers are made with transferFrom or transfer
instead of using safeTransferFrom or transferFrom. This does not
work for tokens that will return false on transfer (or malformed
tokens that do not have a return value).

Recommendation Consider using safeTransfer instead of transfer.

Resolution

The contract now uses safeTransfer and safeTransferFrom.

RESOLVED

INFORMATIONAL

Page of 19 20 BscPaymentSplitterDeploy Paladin Blockchain Security

Page of 20 20 BscPaymentSplitterDeploy Paladin Blockchain Security

	Table of Contents
	Disclaimer
	1 Overview
	1.1 Summary
	1.2 Contracts Assessed
	1.3 Findings Summary
	1.3.1 BscPaymentSplitterDeploy

	2 Findings
	2.1 BscPaymentSplitterDeploy
	2.1.1 Privileged Functions
	2.1.2 Issues & Recommendations

