ABDK
CONSULTING

SMART CONTRACT
AUDIT

Railgun

abdk.consulting

SMART CONTRACT AUDIT CONCLUSION

by Mikhail Vladimirov and Dmitry Khovratovich
18th June 2021

We've been asked to review Railgun smart contracts and circuits given in separate files.
We have found 2 critical and 5 major issues, as well as many other issues with lower severity.

Critical
Major

Moderate

1iid

Minor

o4

Findings

CVF-1 Minor Procedural Opened
CVF-2 Minor Flaw Opened
CVF-3 Minor Documentation Opened
CVF-4 Minor Bad naming Opened
CVF-5 Minor Bad datatype Opened
CVF-6 Minor Suboptimal Opened
CVF-7 Minor Bad datatype Opened
CVF-8 Minor Suboptimal Opened
CVF-9 Major Flaw Opened
CVF-10 Minor Bad datatype Opened
CVF-11 Minor Procedural Opened
CVF-12 Minor Bad naming Opened
CVF-13 Minor Flaw Opened
CVF-14 Minor Readability Opened
CVF-15 Minor Suboptimal Opened
CVF-16 Minor Bad datatype Opened
CVF-17 Moderate Suboptimal Opened
CVF-18 Minor Flaw Opened
CVF-19 Minor Suboptimal Opened
CVF-20 Critical Flaw Opened
CVF-21 Major Flaw Opened
CVF-22 Major Flaw Opened
CVF-23 Moderate Flaw Opened
CVF-24 Minor Flaw Opened
CVF-25 Minor Suboptimal Opened
CVF-26 Minor Readability Opened

CVF-27 Minor Bad naming Opened

CVF-28 Minor Readability Opened
CVF-29 Minor Procedural Opened
CVF-30 Minor Bad naming Opened
CVF-31 Minor Suboptimal Opened
CVF-32 Minor Suboptimal Opened
CVF-33 Minor Suboptimal Opened
CVF-34 Minor Flaw Opened
CVF-35 Minor Suboptimal Opened
CVF-36 Minor Suboptimal Opened
CVF-37 Minor Suboptimal Opened
CVF-38 Minor Procedural Opened
CVF-39 Minor Flaw Opened
CVF-40 Minor Suboptimal Opened
CVF-41 Minor Documentation Opened
CVF-42 Major Flaw Opened
CVF-43 Minor Suboptimal Opened
CVF-44 Minor Unclear behavior Opened
CVF-45 Minor Bad naming Opened
CVF-46 Minor Bad datatype Opened
CVF-47 Minor Bad datatype Opened
CVF-48 Minor Suboptimal Opened
CVF-49 Minor Flaw Opened
CVF-50 Minor Suboptimal Opened
CVF-51 Moderate Flaw Opened
CVF-52 Minor Suboptimal Opened
CVF-53 Minor Suboptimal Opened
CVF-54 Minor Suboptimal Opened
CVF-55 Minor Suboptimal Opened
CVF-56 Minor Suboptimal Opened

CVF-57 Minor Suboptimal Opened

CVF-58 Minor Procedural Opened
CVF-59 Critical Flaw Opened
CVF-60 Minor Suboptimal Opened
CVF-61 Major Flaw Opened
CVF-62 Minor Suboptimal Opened
CVF-63 Minor Bad datatype Opened

CVF-64 Minor Suboptimal Opened

Circom and Solidity

Review

Contents

1 Document properties 8

2 Introduction 9
2.1 About ABDK 9
2.2 Disclaimer 9
2.3 Methodology 10

3 Detailed Results 11
3.1 CVE-1 . 11
3.2 CVE-2 . 11
3.3 CVF-3 12
3.4 CVF-4 . . 12
3.5 CVE-b o 12
3.6 CVE-6 . . . 13
3.7 CVE-T 13
3.8 CVF-8 . . 13
3.9 CVF-9 . . 14
3.10 CVE-10 . . . 14
3.11 CVE-11 . 14
3.12 CVE-12 15
3.13 CVF-13 . 15
3.14 CVF-14 16
3.15 CVF-15 17
3.16 CVE-16 17
3.17 CVE-17 . o 18
3.18 CVFE-18 . . . 18
3.19 CVF-19 . . 18
3.20 CVE-20 . . . 19
3.21 CVE-21 . 19
3.22 CVE-22 19
3.23 CVF-23 . 20
3.24 CVE-24 . . . 20
3.25 CVE-25 . 20
3.26 CVE-26 21
3.27 CVE-27 . 21
3.28 CVE-28 . . . 21
3.20 CVF-29 . . 22
3.30 CVF-30 . . 22
3.31 CVE-31 . 22
3.32 CVE-32 23
3.33 CVE-33 . 23
3.34 CVE-34 . . 23
3.35 CVF-35 . 24
3.36 CVE-36 24
3.37 CVE-37 25

Circom and Solidity

Review
3.38 CVF-38 . . . 25
3.39 CVE-39 . 25
3.40 CVF-40 26
3.41 CVFE-41 . . . 26
3.42 CVE-42 . . 26
3.43 CVF-43 . . 27
3.44 CVE-44 . . . 27
3.45 CVE-45 . 28
3.46 CVF-46 28
3.47 CVE-AT . . 28
3.48 CVF-48 29
3.49 CVFE-49 . . 29
3.50 CVE-B0 . . . 29
3.51 CVFE-B1 . . . 30
3.52 CVE-52 . . 30
3.53 CVFE-53 . . 30
3.54 CVE-b4 . . 31
3.55 CVE-B5 . 31
356 CVF-b6 32
3.57 CVE-BT . 32
3.58 CVF-58 . . . 32
3.59 CVFE-59 . . 33
3.60 CVE-60 33
3.61 CVF-61 s 33
3.62 CVF-62 34
3.63 CVF-63 34
3.64 CVF-64 35

Circom and Solidity
Review ABDK

1 Document properties

Version
0.1 June 17, 2021 D. Khovratovich Initial Draft
0.2 June 17, 2021 D. Khovratovich Minor revision
1.0 June 18, 2021 D. Khovratovich Release
Contact

D. Khovratovich

khovratovich@gmail.com

Circom and Solidity
Review ABDK

2 Introduction

The following document provides the result of the audit performed by ABDK Consulting at
the customer request. The audit goal is a general review of the smart contracts structure,
critical/major bugs detection and issuing the general recommendations.

We have audited two repositories: contract at commit 6281cb and files:

e Commitments.sol;

RailgunLogic.sol;

Snark.sol;

TokenWhitelist.sol;

Types.sol;
o \erifier.sol.
as well as circuits at commit 2c3c31 and files:

e base/HashInputs.circom;

base/MerkleTree.circom;

JoinSplit.circom;

Large.circom;

Small.circom.

2.1 About ABDK

ABDK Consulting, established in 2016, is a leading service provider in the space of blockchain
development and audit. It has contributed to numerous blockchain projects, and co-authored
some widely known blockchain primitives like Poseidon hash function. The ABDK Audit
Team, led by Mikhail Vladimirov and Dmitry Khovratovich, has conducted over 40 audits of
blockchain projects in Solidity, Rust, Circom, C++, JavaScript, and other languages.

2.2 Disclaimer

Note that the performed audit represents current best practices and smart contract standards
which are relevant at the date of publication. After fixing the indicated issues the smart
contracts should be re-audited.

https://github.com/Railgun-Privacy/contract/commit/6281cb0dac6a6e0da743e3ba56c437803657872d
https://github.com/Railgun-Privacy/circuits/commit/2c3c3144635f72d3e1b7dd8d1f9c722c8ae3ff68
https://abdk.consulting
https://poseidon-hash.info

Circom and Solidity
Review ABDK

2.3 Methodology

The methodology is not a strict formal procedure, but rather a collection of methods and
tactics that combined differently and tuned for every particular project, depending on the
project structure and and used technologies, as well as on what the client is expecting from
the audit. In current audit we use:

e General Code Assessment. The code is reviewed for clarity, consistency, style, and
for whether it follows code best practices applicable to the particular programming lan-
guage used. We check indentation, naming convention, commented code blocks, code
duplication, confusing names, confusing, irrelevant, or missing comments etc. At this
phase we also understand overall code structure.

e Entity Usage Analysis. Usages of various entities defined in the code are analysed.
This includes both: internal usages from other parts of the code as well as potential
external usages. We check that entities are defined in proper places and that their
visibility scopes and access levels are relevant. At this phase we understand overall
system architecture and how different parts of the code are related to each other.

e Access Control Analysis. For those entities, that could be accessed externally, access
control measures are analysed. We check that access control is relevant and is done
properly. At this phase we understand user roles and permissions, as well as what assets
the system ought to protect.

e Code Logic Analysis. The code logic of particular functions is analysed for correctness
and efficiency. We check that code actually does what it is supposed to do, that
algorithms are optimal and correct, and that proper data types are used. We also check
that external libraries used in the code are up to date and relevant to the tasks they solve
in the code. At this phase we also understand data structures used and the purposes
they are used for.

10

78

94

122

227

78

94

Circom and Solidity
Review ABDK

3 Detailed Results

3.1 CVF-1
e Severity Minor e Status Opened
e Category Procedural e Source RailgunLogic.sol

Description This function always returns true.
Recommendation Consider removing the return value.

function changeTreasury(address payable treasury) public
< onlyOwner returns (bool success) {

function changeFee(uint256 fee) public onlyOwner returns (bool
< success) {

function transact(

function generateDeposit(

3.2 CVF-2
e Severity Minor e Status Opened
e Category Flaw e Source RailgunLogic.sol

Description This function emits an event even if the state has not changed.

function changeTreasury(address payable treasury) public
— onlyOwner returns (bool success) {

function changeFee(uint256 fee) public onlyOwner returns (bool
< success) {

11

111

130

130

Circom and Solidity

Review ABDK
3.3 CVF3

e Severity Minor e Status Opened

e Category Documentation e Source RailgunLogic.sol

Description This argument goes first in the function signature, but not in the documentation
comment.
Recommendation Consider describing arguments in the same order they are declared.

Listing 3:

* @param _ proof — snark proof

3.4 CVF-4
e Severity Minor e Status Opened
e Category Bad naming e Source RailgunLogic.sol

Recommendation The name is confusing. Should be ‘tokenAddress' or just ‘token’

Listing 4:
address _outputTokenField,

3.5 CVF-5
e Severity Minor e Status Opened
e Category Bad datatype e Source RailgunLogic.sol

Recommendation This argument should have type “IERC20".

Listing 5:
address outputTokenField,

146

155

Circom and Solidity

Review ABDK
3.6 CVF-6

e Severity Minor e Status Opened

e Category Suboptimal e Source RailgunLogic.sol
Recommendation This could be checked simply as: require (_adaptIDcontract == address

(0) || _adaptIDcontract == msg.sender);

Listing 6:
// If _adaptiDcontract is not zero check that it matches the

< caller
if (_adaptiDcontract != address(0)) {
require(adaptlDcontract = msg.sender, "AdaptID doesn’'t match

< caller contract");

-

3.7 CVF-7
e Severity Minor e Status Opened
e Category Bad datatype e Source RailgunLogic.sol

Recommendation The maximum deposit and withdraw amounts should be defined as named
constants.

Listing 7:

require (_depositAmount < 2%%120, "RailgunLogic: depositAmount
< too high");

require (_withdrawAmount < 2%%120, "RailgunlLogic: withdrawAmount
< too high");

3.8 CVF-8
e Severity Minor e Status Opened
e Category Suboptimal e Source RailgunLogic.sol

Recommendation This check is cheap and can be made in the beginning of the function.

Listing 8:

197 TokenWhitelist.tokenWhitelist|[outputTokenField],

228

230

231

24

Circom and Solidity

Review ABDK
3.9 CVF-9

e Severity Major e Status Opened

e Category Flaw e Source RailgunLogic.sol

Recommendation There must be a 2120 range check for the amount and field element
checks for public keys and serials.

Listing O:

uint256 [2] calldata _ pubkey,
uint256 serial ,

uint256 _amount,

address _ token

3.10 CVF-10
e Severity Minor e Status Opened
e Category Bad datatype e Source RailgunLogic.sol

Recommendation This argument should have type “IERC20".

Listing 10:

address _ token

3.11 CVF-11
e Severity Minor e Status Opened
e Category Procedural e Source Verifier.sol

Description This constant was already defined in to "Snark™ library.
Recommendation Consider using is from there to avoid code duplication.

Listing 11:
uint256 private constant SNARK SCALAR FIELD =
— 21888242871839275222246405745257275088548364400416034343698

%
204186575808495617;

Circom and Solidity

Review ABDK
3.12 CVF-12

e Severity Minor e Status Opened

e Category Bad naming e Source Verifier.sol

Description The terms “small” and “large” in names are too generic.
Recommendation Consider using more descriptive names, such as "2to3" and "10to3".

Listing 12:

27 VerifyingKey private vKeySmall;
VerifyingKey private vKeylarge;

3.13 CVF-13
e Severity Minor e Status Opened
e Category Flaw e Source Verifier.sol

Description There is no check for the lengths of these arrays, while it seems that the only
valid length is 3.
Recommendation Consider adding explicit checks.

Listing 13:

60 Commitment[] calldata commitmentsOut

165 Commitment[] calldata commitmentsOut

Circom and Solidity

Review ABDK
3.14 CVF-14

e Severity Minor e Status Opened

e Category Readability e Source Verifier.sol

Recommendation Array literal would make the code more readable and less error prone.

Listing 14:

63 uint256 [2] memory adaptiDhashPreimage;
adaptiDhashPreimage [0] = uint256(uint160(adaptiDcontract));
adaptiDhashPreimage[1] = adaptiDparameters;

70 uint256 [24] memory cipherTextHashPreimage;
// Commitment 0

cipherTextHashPreimage [0] = commitmentsOut [0]. senderPubKey [0];
cipherTextHashPreimage[1] = commitmentsOut[0].senderPubKey[1];
cipherTextHashPreimage[2] = commitmentsOut[0]. ciphertext [0];
cipherTextHashPreimage [3] = commitmentsOut[0]. ciphertext[1];
cipherTextHashPreimage [4] = commitmentsOut[0]. ciphertext [2];
cipherTextHashPreimage [5] = commitmentsOut[0]. ciphertext[3];
cipherTextHashPreimage [6] = commitmentsOut[0]. ciphertext [4];
cipherTextHashPreimage [7] = commitmentsOut[0]. ciphertext [5];

80 // Commitment 1
cipherTextHashPreimage [8] = commitmentsOut[1].senderPubKey [0];
cipherTextHashPreimage [9] = commitmentsOut[1].senderPubKey[1];
cipherTextHashPreimage[10] = commitmentsOut[1]. ciphertext[0];
cipherTextHashPreimage[11] = commitmentsOut[1]. ciphertext[1];
cipherTextHashPreimage[12] = commitmentsOut[1]. ciphertext[2];
cipherTextHashPreimage[13] = commitmentsOut[1]. ciphertext[3];
cipherTextHashPreimage[14] = commitmentsOut[1]. ciphertext[4];
cipherTextHashPreimage[15] = commitmentsOut[1]. ciphertext[5];
// Commitment 2

90 cipherTextHashPreimage[16] = commitmentsOut[2].senderPubKey[0];
cipherTextHashPreimage[17] = commitmentsOut[2].senderPubKey[1];
cipherTextHashPreimage[18] = commitmentsOut[2]. ciphertext[0];
cipherTextHashPreimage[19] = commitmentsOut[2]. ciphertext[1];
cipherTextHashPreimage [20] = commitmentsOut[2]. ciphertext [2];
cipherTextHashPreimage[21] = commitmentsOut[2]. ciphertext [3];
cipherTextHashPreimage [22] = commitmentsOut[2]. ciphertext [4];
cipherTextHashPreimage [23] = commitmentsOut[2]. ciphertext[5];

(101, 168, 175, 207)

16

63

70

101

168

175

207

70

101

175

207

Circom and Solidity

Review
3.15 CVF-15
e Severity Minor e Status Opened
e Category Suboptimal e Source Verifier.sol

Description These arrays are redundant.
Recommendation Just pass the values to the "abi.encodePacked" function.

Listing 15:

uint256 [2] memory adaptiDhashPreimage;
uint256 [24] memory cipherTextHashPreimage;
uint256 [12] memory inputsHashPreimage;
uint256 [2] memory adaptiDhashPreimage;
uint256 [24] memory cipherTextHashPreimage;

uint256 [18] memory inputsHashPreimage;

3.16 CVF-16

e Severity Minor e Status Opened

e Category Bad datatype e Source Verifier.sol

Recommendation The array lengths should be named constants.

Listing 16:

uint256 [24] memory cipherTextHashPreimage;
uint256 [12] memory inputsHashPreimage;
uint256 [24] memory cipherTextHashPreimage;

uint256 [18] memory inputsHashPreimage;

17

102

106

113

141

Circom and Solidity

Review ABDK
3.17 CVF-17

e Severity Moderate e Status Opened

e Category Suboptimal e Source Verifier.sol

Recommendation These values are not actually used in the circuit, so it will be more efficient
to hash them into a single value first and pass the output to the circuit.

Listing 17:
inputsHashPreimage [0] = adaptlDhash % SNARK SCALAR FIELD;

inputsHashPreimage[4] = uint256 (uintl60(outputEthAddress));

inputsHashPreimage[11] = cipherTextHash % SNARK SCALAR FIELD;

3.18 CVF-18
e Severity Minor e Status Opened
e Category Flaw e Source Verifier.sol

Recommendation This comment is misleading as the code does not check this condition.

Listing 18:

* Oparam _adaptliDcontract — contract address to this proof to (
< ignored if set to 0)

3.19 CVF-19
e Severity Minor e Status Opened
e Category Suboptimal e Source Verifier.sol

Description The code of this function largely duplicates that of ‘hashSmalllnputs’.
Recommendation Consider using a single function where the input length is just a parameter.

Listing 19:

153 function hashlLargelnputs(

224

277

282

285

Circom and Solidity

Review ABDK
3.20 CVF-20

e Severity Critical e Status Opened

e Category Flaw e Source Verifier.sol

Description Hashes of second and third commitments are missing.

Listing 20:

inputsHashPreimage[16] = commitmentsOut[0]. hash;
inputsHashPreimage[17] = cipherTextHash % SNARK SCALAR FIELD;

3.21 CVF-21
e Severity Major e Status Opened
e Category Flaw e Source Verifier.sol

Recommendation It should be checked that these parameters are valid field elements.

Listing 21:

uint256 depositAmount,
uint256 withdrawAmount,

uint256 [] calldata _ nullifiers ,
uint256 merkleRoot ,

Commitment [] calldata _commitmentsOut
3.22 CVF-22
e Severity Major e Status Opened
e Category Flaw e Source Verifier.sol

Recommendation It should be checked that the length of this array equals the number of
nullifiers

Listing 22:

285 Commitment[] calldata _commitmentsOut

343

381

372

410

75

Circom and Solidity

Review ABDK
3.23 CVF-23

e Severity Moderate e Status Opened

e Category Flaw e Source Verifier.sol

Recommendation This function should check that the verification key is a set of valid curve
points.

Listing 23:

function setVKeySmall(VerifyingKey calldata vKey) public
— onlyOwner returns (bool success) {

function setVKeylLarge(VerifyingKey calldata vKey) public
— onlyOwner returns (bool success) {

3.24 CVF-24
e Severity Minor e Status Opened
e Category Flaw e Source Verifier.sol

Description These functions always returns true.
Recommendation Consider removing the returned values.

Listing 24:

return true;

return true;

3.25 CVF-25
e Severity Minor e Status Opened
e Category Suboptimal e Source JoinSplit.circom

Recommendation Using ‘pathindices’ instead of serial numbers would simplify requirements
as the former are unique by definition.

Listing 25:

hasherNullifier[i].inputs[l] <= serialsIn[i];

99

137

Circom and Solidity

Review ABDK
3.26 CVF-26

e Severity Minor e Status Opened

e Category Readability e Source JoinSplit.circom

Recommendation There are logical gates in circomlib that could make boolean calculations
more readable and less error-prone.

(merkle[i].root — merkleRoot)*(1—isDummylnput[i].out) == O0;
outputTokenField == tokenField % (1—isShieldedTransaction.out);
3.27 CVF-27

e Severity Minor e Status Opened
e Category Bad naming e Source MerkleTree.circom

Recommendation ‘MerklePath’ or ‘MerkleProof' would be a better name

Listing 27:

MerkleTree(n levels) {
3.28 CVF-28
e Severity Minor e Status Opened
e Category Readability e Source MerkleTree.circom

Description There are multiplexor templates in circomlib.
Recommendation Consider using them to make the code more readable.

Listing 28:

20 hashers[i].inputs[0] <== index.out[i]*(pathElements[i] —

< levelHash) + levelHash;
hashers[i].inputs[1] <== index.out[i]*(levelHash — pathElements]|
< i]) + pathElements[i];

11

28

37

33

41

Circom and Solidity

Review ABDK
3.29 CVF-29

e Severity Minor e Status Opened

e Category Procedural e Source Commitments.sol

Description We didn't review this file.

Listing 29:
{ PoseidonT3, PoseidonT6 } from "./Poseidon.sol";

3.30 CVF-30
e Severity Minor e Status Opened
e Category Bad naming e Source Commitments.sol

Description The names are similar and it is hard to get what is the difference between these
two events.
Recommendation Consider using more specific names.

Listing 30:

event NewCommitment(

event NewGeneratedCommitment (

3.31 CVF-31
e Severity Minor e Status Opened
e Category Suboptimal e Source Commitments.sol

Recommendation A public key can be compressed to a single 256-bit value.

Listing 31:
uint256 [2] senderPubKey

uint256 [2] pubkey,

57

60

62

Circom and Solidity

Review ABDK
3.32 CVF-32

e Severity Minor e Status Opened

e Category Suboptimal e Source Commitments.sol

Recommendation Why this value is so little? Bigger batches should save more gas.

Listing 32:
uint256 internal constant MAX BATCH SIZE = 3;

3.33 CVF-33
e Severity Minor e Status Opened
e Category Suboptimal e Source Commitments.sol

Recommendation The "abi.encodePacked" invocation is redundant here. Just use keccak256
("Railgun").

Listing 33:

uint256 private constant ZERO_ VALUE = uint256 (keccak256(abi.
< encodePacked (" Railgun"))) % SNARK SCALAR FIELD;

3.34 CVF-34
e Severity Minor e Status Opened
e Category Flaw e Source Commitments.sol

Description The variable name and the comment are different.
Recommendation Consider changing the comment to something like this: // The next leaf
index, which is the same as the number of inserted leaves

Listing 34:

// The number of inserted leaves
uint256 private nextlLeaflndex = 0;

107

110

120

124

127

Circom and Solidity

Review ABDK
3.35 CVF-35

e Severity Minor e Status Opened

e Category Suboptimal e Source Commitments.sol

Recommendation This code could be simplified to: currentZero = ZERO _VALUE; for (i =
0; i < TREE_DEPTH; i++) { zeroValues [i] = currentZero; currentZero = hash (currentZero,
currentZero); } merkleRoot = currentZero;

Listing 35:

// Calculate zero values
zeros [0] = ZERO VALUE;
// Store the current zero value for the level we just calculated
<~ it for
uint256 currentZero = ZERO VALUE;
// Loop through each level
for (uint256 i = 1; i < TREE DEPTH; i++) {
// Calculate the zero value for this level
currentZero = hashLeftRight(currentZero, currentZero);
// Push it to zeros array
zeros[i] = currentZero;
}
// Calculate merkle root
merkleRoot = hashLeftRight(currentZero, currentZero);
3.36 CVF-36
e Severity Minor e Status Opened
e Category Suboptimal e Source Commitments.sol

Recommendation Here just stored variable "merkleRoot" is read from the storage twice.
While Solidity compiler could be smart enough to optimize this, it would be better to cache
the value in a local variable and reuse.

Listing 36:

rootHistory [merkleRoot] = true;

newTreeRoot = merkleRoot:

24

Circom and Solidity

Review ABDK
3.37 CVF-37

e Severity Minor e Status Opened

e Category Suboptimal e Source Commitments.sol

Recommendation This could be written as: return PoseidonT3.poseidon([_left, _right]);

Listing 37:

137 uint256 [2] memory input = |
_left,
_right
140 |;
return PoseidonT3.poseidon(input);
3.38 CVF-38
e Severity Minor e Status Opened
e Category Procedural e Source Commitments.sol
Description There is no range check for the ' count’.
Recommendation Consider adding an explicit check. Also. for © count == 0’ the function
could return earlier.
Listing 38:
153 function insertlLeaves(uint256 [MAX BATCH SIZE] memory leafHashes
— , uint256 count) private {
3.39 CVF-39
e Severity Minor e Status Opened
e Category Flaw e Source Commitments.sol
Recommendation This loop should iterate on the next level cells and process a pair of current
level elements on each iteration (the very first and the very last iteration could process one
current level element in case of odd indexes).
Listing 39:
189 for (uint256 insertionElement = 0; insertionElement < _count;

< insertionElement++) {

200

203

211

212

Circom and Solidity

Review ABDK
3.40 CVF-40

e Severity Minor e Status Opened

e Category Suboptimal e Source Commitments.sol

Description Here the storage is used to pass values between loop iterations, which is subop-
timal.
Recommendation Consider using a local variable instead.

Listing 40:

filledSubTrees[level] = leafHashes[insertionElement];

left = filledSubTrees[level];

3.41 CVF-41
e Severity Minor e Status Opened
e Category Documentation e Source Commitments.sol

Recommendation There shoulb be"hash", instead of "has".

Listing 41:

// Calculate the has for the next level

3.42 CVF-42
e Severity Major e Status Opened
e Category Flaw e Source Commitments.sol

Recommendation In case the current level insertion index is even and the element is no the
last one, this hash will be overwritten at the next loop iteration and thus will never be used.

Listing 42:

_leafHashes[nextLevelHashIndex] = hashLeftRight(left, right);

243

250

295

300

309
310

Circom and Solidity

Review ABDK
3.43 CVF-43

e Severity Minor e Status Opened

e Category Suboptimal e Source Commitments.sol

Recommendation This duplicated code should be extracted to a utility function.

Listing 43:

// Restore merkleRoot to newTreeRoot
merkleRoot = newTreeRoot;

// Existing values in filledSubtrees will never be used so
< overwriting them is unnecessary

// Reset next leaf index to 0
nextLeaflndex = 0;

// Increment tree number
treeNumber++;

// Restore merkleRoot to newTreeRoot
merkleRoot = newTreeRoot;

// Existing values in filledSubtrees will never be used so
< overwriting them is unnecessary

// Reset next leaf index to 0
nextLeaflndex = 0;

// Increment tree number

treeNumber+4+:
3.44 CVF-44
e Severity Minor e Status Opened
e Category Unclear behavior e Source Commitments.sol

Description It is not checked that the values are in field. Probably not an issue.

Listing 44:

_pubkey[0],
_pubkey[1],
_serial ,
__amount,

27

21

28

36

49

76

Circom and Solidity

Review ABDK
3.45 CVF-45

e Severity Minor e Status Opened

e Category Bad naming e Source TokenWhitelist.sol

Description Events are usually named via nouns. The names are too complicated. The name
“RemoveFromTokenUnwhitelist” is grammatically incorrect.

Recommendation Consider renaming to just “Addition” and “Removal” or “Listing” and
“Delisting”.

Listing 45:

event AddToTokenWhitelist(address indexed token);
event RemoveFromTokenUnwhitelist(address indexed token);

3.46 CVF-46
e Severity Minor e Status Opened
e Category Bad datatype e Source TokenWhitelist.sol

Recommendation The key type should be “IERC20".

Listing 46:
mapping(address => bool) public tokenWhitelist;

3.47 CVF-47
e Severity Minor e Status Opened
e Category Bad datatype e Source TokenWhitelist.sol

Recommendation The type of the “ tokens” argument should be “IERC20 [] calldata”.

Listing 47:

function initializeTokenWhitelist(address[] calldata _tokens)
< internal initializer {

function addToWhitelist(address[] calldata _tokens) public
< onlyOwner returns (bool success) {

function removeFromWhitelist(address|[] calldata _tokens)
< external onlyOwner returns (bool success) {

38

49

76

7

Circom and Solidity

Review ABDK
3.48 CVF-48

e Severity Minor e Status Opened

e Category Suboptimal e Source TokenWhitelist.sol

Description This function is guarded by the “onlyOwner’ modifier which effectively means
that the “initialize TokenWhitelist” function is also callable only by the owner of the smart
contract. This could cause problems in some scenarios.

Recommendation Consider moving the logic of the “addToWhitelist” into an unprotected
internal function, and calling this function from both, “initializeTokenWhitelist” and “ad-
dToWhitelist” functions.

Listing 48:
addToWhitelist(tokens);

3.49 CVF-49
e Severity Minor e Status Opened
e Category Flaw e Source TokenWhitelist.sol

Description This function always returns true.
Recommendation Consider removing the return values.

Listing 49:

function addToWhitelist(address[] calldata _tokens) public
— onlyOwner returns (bool success) {

function removeFromWhitelist(address|[] calldata _tokens)
< external onlyOwner returns (bool success) {

3.560 CVF-50
e Severity Minor e Status Opened
e Category Suboptimal e Source Snark.sol

Recommendation This library should be moved to a separate file named “Pairing.sol” or
should be merged with the “Snark” library.

Listing 50:
Pairing {

Circom and Solidity

Review ABDK
3.51 CVF-51

e Severity Moderate e Status Opened

e Category Flaw e Source Snark.sol

Description This produces an invalid point in case p.y % PRIME Q is zero.
Listing 51:
21 return GlPoint(p.x, PRIME Q — (p.y % PRIME _Q));

3.62 CVF-52
e Severity Minor e Status Opened
e Category Suboptimal e Source Snark.sol

Description The input size (0xc0) and the output size (0x60) are too big.
Recommendation The 0x80 and 0x40 respectively would be enough.

44 success := staticcall(sub(gas(), 2000), 6, input, OxcO, result,
< 0x60)
3.63 CVF-53
e Severity Minor e Status Opened
e Category Suboptimal e Source Snark.sol

Recommendation The “success’ flag could be checked outside the assembly block.

Listing 53:

46 switch success case 0 { invalid() }

73 switch success case 0 { invalid() }

51

78

71

Circom and Solidity

Review ABDK
3.54 CVF-54

e Severity Minor e Status Opened

e Category Suboptimal e Source Snark.sol

Recommendation This was already checked inside the assembly block, so this check could
never fail.

Listing 54:

require (success, "Pairing: Add Failed");

require (success, "Pairing: Scalar Multiplication Failed");
3.55 CVF-55

e Severity Minor e Status Opened

e Category Suboptimal e Source Snark.sol

Description The input size (0x80) and the output size (0x60) are too big.
Recommendation The 0x60 and 0x40 respectively would be enough.

Listing 55:

success := staticcall(sub(gas(), 2000), 7, input, 0x80, r, 0x60)

99
100

104

110

102

Circom and Solidity

Review ABDK
3.56 CVF-56

e Severity Minor e Status Opened

e Category Suboptimal e Source Snark.sol

Recommendation Here the input values are copied twice, which is suboptimal. Just create
a static array of 24 element and use 24 plain assignments without any loops.

Listing 56:

G1lPoint[4] memory pl = [al, bl, cl, di];
G2Point[4] memory p2 = [a2, b2, c2, d2];

for (uint256 i = 0; i < 4; i++) {
uint256 j =1 x 0;
input[j + 0] = pl[i].x;
input[j + 1] = pl[i].y;
input[j + 2] = p2[i].x[0];
input[j + 3] = p2[i].x[1];
input[j + 4] = p2[i].y[0];
input[j + 5] = p2[i].y[1];
}
3.57 CVF-57
e Severity Minor e Status Opened
e Category Suboptimal e Source Snark.sol

Recommendation Statically sized array would be more efficient here.

Listing 57:

uint256 [] memory input = new uint256 [](PAIRING INPUT SIZE);

3.58 CVF-58
e Severity Minor e Status Opened
e Category Procedural e Source Snark.sol

Recommendation The value calculated here is actually a constant and should be precom-
puted.

Listing 58:

123 mul (PAIRING INPUT SIZE, 0x20),

135

141

Circom and Solidity

Review
3.59 CVF-59

e Severity Critical e Status Opened

e Category Flaw e Source Snark.sol
Recommendation The function always returns true. It should return (out[0] != 0).

Listing 59:

return true;

3.60 CVF-60
e Severity Minor e Status Opened
e Category Suboptimal e Source Snark.sol

Description This constant was already defined in the “Pairing” library.
Recommendation Consider defining it only once and reusing. Libraries are able to use
constants defined in other libraries.

Listing 60:

uint256 private constant PRIME Q =
< 218882428718392752222464057452572750886963111572978236626890378946452
c_>
3.61 CVF-61
e Severity Major e Status Opened
e Category Flaw e Source Snark.sol

Recommendation The function does not verify that the proof elements are actually points
on a curve. This may lead to false positives on invalid inputs.

Listing 61:

150 SnarkProof memory proof,

157

160

163

166

8

Circom and Solidity

Review ABDK
3.62 CVF-62

e Severity Minor e Status Opened

e Category Suboptimal e Source Snark.sol

Description These long string literals increase the byte code size. The only important parts
in them are the variable reverences.
Recommendation Consider removing unimportant parts.

Listing 62:

require(proof.a.x < PRIME_Q, "Snark: Point a.x is greater than
— PRIME_Q");

require(_proof.a.y < PRIME_Q, "Snark: Point a.y is greater than
— PRIME_Q");

require(_proof.b.x[0] < PRIME_Q, "Snark: Point b[0].x is greater
< than PRIME_Q");

require(_proof.b.y[0] < PRIME_Q, "Snark: Point b[0].y is greater
< than PRIME_Q");

require(proof.b.x[1] < PRIME_Q, "Snark: Point b[1].x is greater
< than PRIME_Q");

require(_proof.b.y[1] < PRIME_Q, "Snark: Point b[1l].y is greater
< than PRIME_Q");

require(proof.c.x < PRIME_Q, "Snark: Point c.x is greater than
—» PRIME_Q");

require(proof.c.y < PRIME_Q, "Snark: Point c.y is greater than
— PRIME_Q");

3.63 CVF-63
e Severity Minor e Status Opened
e Category Bad datatype e Source Types.sol

Recommendation There should be named constants for the number of ciphertext words, as
well for the indexes of particular fields in the ciphertext.

Listing 63:

uint256 [6] ciphertext; // Ciphertext order: iv, recipient pubkey
— (2 x uint256), serial , amount, token

34

Circom and Solidity

Review ABDK
3.64 CVF-64

e Severity Minor e Status Opened

e Category Suboptimal e Source Hashlnputs.circom

Recommendation The current API makes the caller know the exact formula for SIZE. Con-
sider just passing SIZE as a single parameter.

Listing 64:

4 Hashlnputs(nlnputs, mOutputs){

6 var SIZE = 7 +nlnputs + mOutputs
signal input in[SIZE];

35

	Document properties
	Introduction
	About ABDK
	Disclaimer
	Methodology

	Detailed Results
	CVF-1
	CVF-2
	CVF-3
	CVF-4
	CVF-5
	CVF-6
	CVF-7
	CVF-8
	CVF-9
	CVF-10
	CVF-11
	CVF-12
	CVF-13
	CVF-14
	CVF-15
	CVF-16
	CVF-17
	CVF-18
	CVF-19
	CVF-20
	CVF-21
	CVF-22
	CVF-23
	CVF-24
	CVF-25
	CVF-26
	CVF-27
	CVF-28
	CVF-29
	CVF-30
	CVF-31
	CVF-32
	CVF-33
	CVF-34
	CVF-35
	CVF-36
	CVF-37
	CVF-38
	CVF-39
	CVF-40
	CVF-41
	CVF-42
	CVF-43
	CVF-44
	CVF-45
	CVF-46
	CVF-47
	CVF-48
	CVF-49
	CVF-50
	CVF-51
	CVF-52
	CVF-53
	CVF-54
	CVF-55
	CVF-56
	CVF-57
	CVF-58
	CVF-59
	CVF-60
	CVF-61
	CVF-62
	CVF-63
	CVF-64

