Report Customer
Vi 1O Uniswap

Smart Contract Audit

Permit 2

16th November 2022 \/\ ABDK

, Consulting

Contents

1

2
3
4
5
6

Changelog
Introduction
Project scope
Methodology
Our findings

Critical Issues
CVF-26. FIXED . . . e e e e

Maijor Issues

CVF-3. FIXED . . . e e e e
CVF-4. FIXED . . o e e e e e e e e e e e e e e
CVF-10. FIXED e e e e e e
CVF-13. FIXED . . . o e e e e e e e e e
CVF-17. FIXED e e e e e e e e e e e e e
CVF-19. FIXED e e e e e e
CVF-21 INFO . . e e e e e e e e e
CVF-24. INFO e e e e s e e e e
CVF-27. FIXED e e e e e e e e e
CVF-35. FIXED e e e e e e
CVF-43. FIXED e e
CVF-50. FIXED . . . e e e

Moderate Issues

CVF-9. FIXED . . . e e e
CVF-12. FIXED . . . e e e e
CVF-14. FIXED . . . e e e e
CVF-15. FIXED . . . o e e e
CVE-20. FIXED . . . o e e
CVFE-30. FIXED . . o o e e
CVF-60. FIXED . . e e e

Minor Issues

CVF-1. FIXED . o o e
CVF-2. FIXED . . . e e e
CVF-5. FIXED . . o e e e
CVF-6. FIXED . . . e e
CVE-7. FIXED . . e e e
CVFE-8. FIXED . . . o e e e
CVF-11. FIXED . . o o e e e e

CVF-16. FIXED . . o o 20

CVF-18. FIXED .« o o 20
CVF-22. FIXED . . o 21
CVF-23. INFO . . . e 21
CVF-28. FIXED . . o 21
CVF-29. FIXED . . o 22
CVE-31.INFO . . . 22
CVF-32. FIXED . . 22
CVF-33. FIXED . . 23
CVF-34.INFO 23
CVF-36. INFO 23
CVF-37. FIXED . . . 23
CVE-38. FIXED . . o 24
CVF-39. FIXED . . o 24
CVF-40. FIXED . . . 24
CVF-41. FIXED . . o o 25
CVF-42. FIXED . . 25
CVF-44. FIXED . . . o 26
CVF-45. FIXED . o o 26
CVF-46. FIXED . . . 26
CVF-47. FIXED . . o o 27
CVF-48. FIXED . . o 27
CVF-40. FIXED . . . 27
CVE-51.INFO . o o 28
CVF-52. FIXED . . o 28
CVF-53. INFO . . . 28
CVF-54. INFO 29
CVE-55. FIXED . o o 29
CVE-56. INFO 29
CVF-57. FIXED . . o o 30
CVF-58. INFO . . . 30

CVF-59. FIXED . . o 31

1 Changelog

I S

16.11.22 A. Zveryanskaya Initial Draft
0.2 16.11.22 A. Zveryanskaya Minor revision
1.0 16.11.22 A. Zveryanskaya Release

ABDK 4

2 Introduction

The following document provides the result of the audit performed by ABDK Consulting
(Mikhail Vladimirov and Dmitry Khovratovich) at the customer request. The audit goal is
a general review of the smart contracts structure, critical/major bugs detection and
issuing the general recommendations.

The Uniswap Protocol is an open-source protocol for providing liquidity and trading
ERC20 tokens on Ethereum. It eliminates trusted intermediaries and unnecessary forms
of rent extraction, allowing for safe, accessible, and efficient exchange activity. The
protocol is non-upgradable and designed to be censorship resistant.

ABDK S)

3 Project scope

We were asked to review:
¢ Original Repository

o Fix Repository

Files:

/
AllowanceTransfer.sol EIP712.s0l Permit2.sol
PermitErrors.sol SignatureTransfer.sol

interfaces/
|IAllowanceTransfer.sol IDAIPermit.sol IERC1271.s0l
ISignatureTransfer.sol

libraries/

Allowance.sol Permit2Lib.sol PermitHash.sol

SignatureVerification.sol

ABDK

https://github.com/Uniswap/permit2/tree/748ea1439c74c85f98e19b89f4f194567f1b26b5
https://github.com/Uniswap/permit2/tree/16958a2e1a87d18bf88a49e88727e9ccb0c4b295

4 Methodology

The methodology is not a strict formal procedure, but rather a selection of methods and
tactics combined differently and tuned for each particular project, depending on the
project structure and technologies used, as well as on client expectations from the audit.

» General Code Assessment. The code is reviewed for clarity, consistency, style,
and for whether it follows best code practices applicable to the particular
programming language used. We check indentation, naming convention,
commented code blocks, code duplication, confusing names, confusing, irrelevant,
or missing comments etc. At this phase we also understand overall code structure.

« Entity Usage Analysis. Usages of various entities defined in the code are
analysed. This includes both: internal usages from other parts of the code as well
as potential external usages. We check that entities are defined in proper places
as well as their visibility scopes and access levels are relevant. At this phase, we
understand overall system architecture and how different parts of the code are
related to each other.

e Access Control Analysis. For those entities, that could be accessed externally,
access control measures are analysed. We check that access control is relevant
and done properly. At this phase, we understand user roles and permissions, as
well as what assets the system ought to protect.

» Code Logic Analysis. The code logic of particular functions is analysed for
correctness and efficiency. We check if code actually does what it is supposed to
do, if that algorithms are optimal and correct, and if proper data types are used.
We also make sure that external libraries used in the code are up to date and
relevant to the tasks they solve in the code. At this phase we also understand
data structures used and the purposes they are used for.

ABDK 7

5 Our findings

We found 1 critical, 12 major, and a few less important issues. All identified Critical
issues have been fixed. We have checked that the Major issues that have not been
fixed, do not pose a threat (see client’s comments in each case)

Issues

Severity

Critical

Major

Active

2

Fixed

10

Active Fixed

Moderate 0 7
. Active Fixed
Minor e} 30

ABDK

Fixed 48 out of 59 issues

6 Criticallssues

CVF-26. FIXED

o Category Overflow/Underflow e Source Permit2Lib.sol

Description Unchecked overflow is possible when converting “amount” to “uint160”.
Recommendation Consider using a checked conversion.

Client Comment This is patched. We now safecast in the Permit2Lib.

48 if (!success) PERMIT2.transferFrom(address(token), from, to, uintl60
— (amount));

118 amount: uintl160(amount),

ABDK 9

7 Major Issues

CVF-3. FIXED

+ Category Documentation » Source SignatureTransfer.sol

Description The logic, that sends funds to the spender in case the destination address
is zero, is not documented. This logic looks like an unnecessary overcomplication.

Recommendation Consider either documenting this logic clearly or removing it.

Client Comment This logic has been removed.

71 address recipient = to == address(0) ? permit.spender : to;

CVF-4. FIXED

+ Category Unclear behavior e Source SignatureTransfer.sol

Description The logic of handling zero destination address is different for single and
batch transfers.

Recommendation Consider applying the same logic for all transfers.

Client Comment This logic has been removed.
71 address recipient = to == address(0) ? permit.spender : to;

125 ERC20(permit.tokens[i]).safeTransferFrom(owner,
— toAmountPairs[i].to, requestedAmount);

ABDK 10

92

110

48

CVF-10. FIXED

+ Category Flaw * Source PermitHash.sol

Description A separator string between the witmess type name and the witness type
doesn’'t guarantee unambiguity, as a witness type name may contain “ witness)” as a
substring.

Recommendation Consider ensuring that “witnesTypeName” contains only alphanumeric
characters.

Client Comment This is now one parameter.

abi.encodePacked(PERMIT TRANSFER FROM WITNESS TYPEHASH STUB,
< witnessTypeName, " witness)", witnessType)

_PERMIT BATCH WITNESS TRANSFER FROM TYPEHASH STUB,
— witnessTypeName, " witness)", witnessType

CVF-13. FIXED

o Category Unclear behavior » Source AllowanceTransfer.sol

Description This will throw in case the batch is empty.

Recommendation Consider doing nothing or reverting with a meaningful error in such a
case.

Client Comment Removed the logic where we only check one nonce in the batched case
so this should be resolved.

PackedAllowance storage allowed = allowance[owner][permitData.tokens
— [@]][permitData.spender];

ABDK 1

95

114

13

CVF-17. FIXED

+ Category Documentation » Source AllowanceTransfer.sol

Description The logic that treats type(uint160).max allowance and unlimited is not doc-
umented and looks like an unnecessary overcomplication.

Recommendation Consider either clearly documenting this logic or removing it.

Client Comment Resolved.

if (maxAmount != type(uintl60).max) {

CVF-19. FIXED

+ Category Suboptimal e Source AllowanceTransfer.sol

Description The expression “allowances[msg.sender]” is calculated on every loop itera-
tion.

Recommendation Consider calculating once before the loop.

Client Comment Resolved by saving the msg.sender value outside of the loop.

allowance[msg.sender] [approvals[i].token][approvals[i].spender].
< amount = 0;

CVF-21. INFO

o Category Suboptimal » Source EIP712.s0l

Description The contract is named “EIP712” while the hash is calculated from the name
“Permit2”, which make the implementation non flexible.

Recommendation Consider passing the real contract’s name as a constructor argument,
hashing it in the constructor and storing in an immutable variable.

Client Comment Opted to not make this change as it is less readable. This change would
require having abstract functions in both allowance and signature transfer.

bytes32 private constant HASHED NAME = keccak256("Permit2");

PN

ABDK 12

22

84

21

41

CVF-24. INFO

+ Category Suboptimal e Source Permit2Lib.sol

Description Hardcoding mainnet addresses is a bad practice, as it makes it harder to test
the code.

Recommendation Consider passing the Permit2 address as an argument to each function
that needs it. Alternatively, turn this library into an extract contract, accept the Permit2
address as a constructor argument and store it in an internal variable.

Client Comment Opted to not make this change as it would either be more difficult from
an integrators perspective or require turning the lib into a contract.

Permit2 internal constant PERMIT2 = Permit2(address(0
— xCe71065D4017F316EC606Fe4422el11eB2c47c246));

CVF-27. FIXED

o Category Flaw » Source Permit2Lib.sol

Description Any return data size other than 32 should be treated as unsuccess, as it
breakes the function contract.

and(iszero(iszero(mload(0))), gt(returndatasize(), 31)),

CVF-35. FIXED

o Category Suboptimal » Source ISignatureTransfer.sol

Description These fields are redundant as their values always equal to “msg.sender”.

address spender;

address spender;

ABDK 13

98

113

13

CVF-43. FIXED

+ Category Suboptimal » Source ISignatureTransfer.sol

Description Only a destination address and an amount are specified for each transfer, so
the corresponding token address is supposed to be taken from the permit batch. This
assume a separate permit item for each transfer, which is suboptimal in case amounts of
the same token are transferred to several recipients.

Recommendation Consider passing a separate “tokens” argument, to allow the number
of permit items and the number of transfer to differ.

Client Comment You are right in that we did not edit this to allow for different number of
tokens specified. And you are correct that we do not handle the case where 1 permit on a
token canrelease N transfers. Itis still 1to 1. This fix makes it possible to essentially not do
a transfer on a token that was permitted if the spender does not need the permitted token,
meaning that the number of transfers is allowed to differ from the number of permits BUT
an owner still must permit a token N times if the spender wants to do N transfers of that
token. In this case, if we allowed this, we would have to check at each iteration of the
tokens array that that token address exists in the permitted tokens array and I'm not sure
there is an efficient way to do that. So | think we opted for maybe less optimal calldata
specification for more optimal runtime/gas.

ToAmountPair[] calldata ToAmountPairs,

ToAmountPair[] calldata ToAmountPairs,

CVF-50. FIXED

+ Category Suboptimal » Source |AllowanceTransfer.sol
Recommendation The “token” and “spender” parameters should be indexed.

event InvalidateNonces(address indexed owner, uint32 indexed toNonce
— , address token, address spender);

ABDK 14

49

51

76

78

117

119

46

8 Moderate Issues

CVF-9. FIXED

+ Category Suboptimal e Source PermitHash.sol

Description The ‘encodePacked’ function is not injective and thus may produce colliding
outputs for distinct inputs, thus yielding a hash collision.

Recommendation Consider using regular ‘encode’ here.

Client Comment encodePacked is standard for EIP712 but this was updated with using
nested structs in the typehash.

keccak256(abi.encodePacked(permit.tokens)),

keccak256 (abi.encodePacked(permit.amounts)),
keccak256 (abi.encodePacked(permit.expirations)),

keccak256 (abi.encodePacked(permit.tokens)),
keccak256(abi.encodePacked(permit.signedAmounts)),
keccak256 (abi.encodePacked(permit.tokens)),

keccak256 (abi.encodePacked(permit.signedAmounts)),

CVF-12. FIXED

« Category Unclear behavior » Source AllowanceTransfer.sol

n o«

Description There is no check to ensure that “permitData.tokens”, “permitData.amounts”,
and “permitData.expirations” arrays are of the same length. In case, the other arrays are
longer than “permitData.tokens” the remaining elements are silently ignored.

Recommendation Consider adding appropriate checks.

Client Comment This is resolved as we move to nested structs.

function permitBatch(address owner, PermitBatch calldata permitData,
— bytes calldata signature) external {

PN

ABDK 15

49

60

61

CVF-14. FIXED

« Category Unclear behavior » Source AllowanceTransfer.sol

Description The nonce is validated and updated only for the first permitin a batch. This s
error-prone and doesn’t guarantee transaction ordering. As the corresponding mapping
slots for all the permits are anyway read and written, it wouldn’t consume much additional
gas to check and update nonces for all the permits.

Recommendation Consider checking that the nonces of all the affected permits don’t
exceed the passed nonce, and at least for one permit the nonce equals to the passed
nonce. Then set the nonces for all the affected permits to the passed nonce plus one.
This would make the logic much more reasonable.

Client Comment This is resolved by using nested structs. We now require a nonce to be
passed for every batch permitted token.

~validatePermit(allowed.nonce, permitData.nonce, permitData.
< sigDeadline);

allowed.updateAmountAndExpiration(permitData.amounts[i],
— permitData.expirations[i]);

CVF-15. FIXED

+ Category Flaw » Source AllowanceTransfer.sol

Description The “Approval” event is not emitted for the first permit in a batch.

emit Approval(owner, permitData.tokens[i], permitData.spender,
— permitData.amounts[i]);

ABDK 16

127

18

121

CVF-20. FIXED

o Category Overflow/Underflow » Source AllowanceTransfer.sol

Description Overflow is indeed possible. One just needs to invalidate 65535 nonces
65538 times.

Recommendation Consider using a checked addition here.

Client Comment Resolved as we no longer add an amount. The argument is now the new
desired nonce. We still limit the number of nonces that can be invalidated.

newNonce = allowance[msg.sender][token][spender].nonce +=
< amountToInvalidate;

CVF-30. FIXED

» Category Overflow/Underflow » Source Allowance.sol

Description Overflow is possible here.
Recommendation Consider using a checked addition.

Client Comment Resolved. We opted to make nonces wider, so it would take a very large
amount of transactions to overflow.

storedNonce = nonce + 1;

CVF-60. FIXED

+ Category Suboptimal e Source |AllowanceTransfer.sol

Description The particular set of nonces invalidated by a call to this function depends on
the current nonce, which makes front-run attacks possible.

Recommendation Consider explicitly specifying the nonce to invalidate up to.

function invalidateNonces(address token, address spender, uint32
— amountToInvalidate)

PN

ABDK 17

9 Minorlssues

CVF-1. FIXED

+ Category Procedural » Source SignatureTransfer.sol

Description Specifying a particular compiler version makes it harder to migrate to newer
versions.

Recommendation Consider specifying as “*0.8.0”. Also relevant for: PermitHash.sol,
Permit2.sol, AllowanceTransfer.sol, EIP712.sol, PermitErrors.sol, Permit2Lib.sol, Signa-
tureVerification.sol, Allowance.sol, IERC1271.sol, IDAIPermit.sol, ISignatureTransfer.sol,
IAllowanceTransfer.sol.

Client Comment Added carets to interfaces and libraries.

2 | pragma solidity 0.8.17;

CVF-2. FIXED

o Category Documentation e Source SignatureTransfer.sol

Description The semantics of the keys and values in this mapping is unclear.

Recommendation Consider documenting.

19 | mapping(address => mapping(uint256 => uint256)) public nonceBitmap;

CVF-5. FIXED

o Category Suboptimal » Source SignatureTransfer.sol

Description In solidity, types narrower than 256 bits are less efficient in many cases than
256-bit types.

Recommendation Consider using “uint256” for the returned values.

143 | function bitmapPositions(uint256 nonce) private pure returns (
< uint248 wordPos, uint8 bitPos) {

N

ABDK 18

145

153

157

153

155

157

CVF-6. FIXED

+ Category Suboptimal e Source SignatureTransfer.sol

Recommendation The bitwise AND operator here is redundant, as conversion to “uint8”
would drop the digher bits..

bitPos = uint8(nonce & 255);

CVF-7. FIXED

+ Category Suboptimal » Source SignatureTransfer.sol

Description The mapping slot address is calculated twice.

Recommendation Consider calculating once.
uint256 bitmap = nonceBitmap[from] [wordPos];

nonceBitmap[from] [wordPos] = bitmap | (1 << bitPos);

CVF-8. FIXED

» Category Suboptimal » Source SignatureTransfer.sol

Recommendation This code could be optimized as: uint256 bit = 1 « bitPos; uint256
flipped = nonceBitmap[from][wordPos] = bit; if (flipped & bit == 0) revert InvalidNonce();

uint256 bitmap = nonceBitmap[from][wordPos];
if ((bitmap >> bitPos) & 1 == 1) revert InvalidNonce();

nonceBitmap[from] [wordPos] = bitmap | (1 << bitPos);

ABDK 19

CVF-11. FIXED

+ Category Documentation e Source Permit2.sol

Recommendation It is a good practice to put a comment into an empty block to explain
why the block is empty.

7 contract Permit2 is SignatureTransfer, AllowanceTransfer {}

CVF-16. FIXED

+ Category Suboptimal e Source AllowanceTransfer.sol

Description The “allowed.amount” value is read from the storage twice.

Recommendation Consider reusing the already read value.

94 | uint256 maxAmount = allowed.amount;

100 allowed.amount -= amount;

CVF-18. FIXED

o Category Unclear behavior » Source AllowanceTransfer.sol

Description This function should emit some event.

Client Comment Resolved, a lockdown event was added.

10 function lockdown(TokenSpenderPair[] calldata approvals) external {

ABDK 20

19

8

CVF-22. FIXED

+ Category Suboptimal * Source PermitErrors.sol

Recommendation These errors could be made more useful by adding some parameters
into them, such as the signature expiration time, expected nonce etc.

Client Comment Somewhat resolved as we opted to use errors with params where we
thought it might be more helpful.

error SignatureExpired();
error InvalidNonce();

CVF-23. INFO

+ Category Suboptimal * Source Permit2Lib.sol

Description Solidity compiler is smart e enough to calculate constant hash expressions
at compile time.

Recommendation Consider using a hash expression instead of a hardcoded hash value.

Client Comment Opted to not make this change.

bytes32 internal constant DAI DOMAIN SEPARATOR = 0

— xdbb8cf42elech028be3f3dbc922e1d878b9631f411dc388ced501601c60f7c6f7

> ;

CVF-28. FIXED

o Category Suboptimal » Source SignatureVerification.sol

Recommendation This error could be made more useful by adding the actual recovered
signer into it as a parameter.

Client Comment Resolved, some errors with parameters were edited.

error InvalidSigner();

ABDK 21

14

37

4

CVF-29. FIXED

« Category Unclear behavior » Source SignatureVerification.sol

Description There is no signature length check.

Recommendation Consider adding an explicit check to ensure that the signature length
is 65 bytes.

Client Comment Resolved, and we now support compact signatures.

uint8 v = uint8(signature[64]);

CVF-31. INFO

+ Category Suboptimal * Source Allowance.sol

Description This code could read and write the same storage slot twice.

Recommendation Consider reading it once in an assembly block, updating and writing
back.

Client Comment Opted to not make this change.
allowed.expiration = expiration == 0 ? uint64(block.timestamp)

< expiration;
allowed.amount = amount;

CVF-32. FIXED

o Category Bad naming » Source |IERC1271.s0l

Description This interface should contain the magic value constant.

Client Comment Resolved through documentation.

interface IERC1271 {

ABDK 22

CVF-33. FIXED

+ Category Documentation » Source |[ERC1271.s0l

Description The returned value is not documented.
Recommendation Consider documenting.

Client Comment Resolved through documentation.

8 function isValidSignature(bytes32 hash, bytes memory signature)
— external view returns (bytes4 magicValue);

CVF-34. INFO

+ Category Bad datatype e Source ISignatureTransfer.sol

Recommendation The type of this field should be “IERC20".

19 address token;

CVF-36. INFO
+ Category Bad datatype » Source ISignatureTransfer.sol
Recommendation The type of this field should be “IERC20[]".

39 |address[] tokens;

CVF-37. FIXED

+ Category Suboptimal e Source ISignatureTransfer.sol

Recommendation It would be more efficient to use a single array of structs with two
fields, rather than two parallel arrays. This would also make a length check unnecessary.

39 |address[] tokens;

43 uint256[] signedAmounts;

o

ABDK 23

CVF-38. FIXED

+ Category Documentation » Source ISignatureTransfer.sol

Description This comment doesn’t explain what this function actually does.
Recommendation Consider adding more details.

Client Comment Resolved with documentation

50

CVF-39. FIXED

» Category Bad naming e Source ISignatureTransfer.sol

Description The semantics of the arguments and the returned value are unclear.

Recommendation Consider giving descriptive names to the arguments and the returned
value and/or describing in the documentation comment.

Client Comment Resolved with documentation

52 | function nonceBitmap(address, uint256) external returns (uint256);

CVF-40. FIXED

o Category Suboptimal e Source ISignatureTransfer.sol

Recommendation This function should be declared as “view".

52 | function nonceBitmap(address, uint256) external returns (uint256);

ABDK 24

CVF-41. FIXED

+ Category Documentation » Source ISignatureTransfer.sol

Description It is unclear what happens when the signed amount is bigger than the re-
quested amount.

Recommendation Consider explaining.

Client Comment Resolved with documentation

59
75
98 ToAmountPair[] calldata ToAmountPairs,
113 ToAmountPair[] calldata ToAmountPairs,

CVF-42. FIXED

+ Category Suboptimal » Source ISignatureTransfer.sol

Description One of the arguments in each pair seems redundant.

Recommendation Consider leaving only one of them or clearly explaining why both are
required.

Client Comment Resolved with documentation

86 string calldata witnessTypeName,
string calldata witnessType,

15 string calldata witnessTypeName,
string calldata witnessType,

ABDK 25

98

113

8

CVF-44. FIXED

+ Category Documentation » Source ISignatureTransfer.sol

Description These arguments are not documented.
Recommendation Consider documenting.

Client Comment Resolved with documentation

ToAmountPair[] calldata ToAmountPairs,

ToAmountPair[] calldata ToAmountPairs,

CVF-45. FIXED

» Category Bad naming » Source |AllowanceTransfer.sol

Description The name is confusing. It seems that it represents a particular transfer, rather
than a contract that facilitate multiple transfers.

Recommendation Consider choosing a better name.

Client Comment Resolved with documentation

interface IAllowanceTransfer {

CVF-46. FIXED

+ Category Procedural » Source |AllowanceTransfer.sol

Recommendation These errors could be made more helpful by including additional pa-
rameters it them, such as the allowance expiration timestamp, the current and desired
allowances, and the excessive invalidation amount.

Client Comment Some custom error arguments were added. Specifically added for Al-
lowanceExpired and InsufficientAllowance.

error AllowanceExpired();
error InsufficientAllowance();

10 |error ExcessiveInvalidation();

PN

ABDK 26

13

13

CVF-47. FIXED

+ Category Suboptimal e Source |AllowanceTransfer.sol

Description The interface is missing getter functions for current allowances, nonces, etc.

Recommendation Consider adding getters to the interface.

interface IAllowanceTransfer {

CVF-48. FIXED

o Category Bad naming » Source |AllowanceTransfer.sol

Recommendation Events are usually named via n nouns, such as “Invalidations” or “Non-
celnvalidation”.

event InvalidateNonces(address indexed owner, uint32 indexed toNonce
— , address token, address spender);

CVF-49. FIXED

« Category Unclear behavior » Source |AllowanceTransfer.sol

Description The “toNonce” parameter is numerical. Usually, numerical parameters are
not indexed.

event InvalidateNonces(address indexed owner, uint32 indexed toNonce
— , address token, address spender);

ABDK 27

CVF-51. INFO

+ Category Bad datatype e Source |AllowanceTransfer.sol

Recommendation The type of the “token” parameters should be “IERC20".

13 \(event InvalidateNonces(address indexed owner, uint32 indexed toNonce\\
. < , address token, address spender);

16 (event Approval (address indexed owner, address indexed token, address
| — indexed spender, uintl60 amount);

N

CVF-52. FIXED

o Category Unclear behavior » Source |AllowanceTransfer.sol

Recommendation This event should include the “expiration” parameter.

-
\

16 \(event Approval(address indexed owner, address indexed token, address |
| — indexed spender, uintl60 amount); |

N

CVF-53. INFO

+ Category Bad datatype » Source |AllowanceTransfer.sol

Recommendation The type of this field should be “IERC20".

21 \‘/address token; \

64 [/address token; |

72 address token;

ABDK 28

CVF-54. INFO

« Category Unclear behavior » Source |AllowanceTransfer.sol
Description An allowance expiration timestamp uses a narrower type than a signature

expiration timestamp. This is weird, as verifying a signature when allowance is already
expired doesn’t make sense.

Recommendation Consider using the same type for both timestamps.

27 uint64 expiration;

31 uint256 sigDeadline;

CVF-55. FIXED

+ Category Documentation » Source |AllowanceTransfer.sol

Description It is unclear, how unique a nonce should be. Should it be globally unique, or
unique for a particular token owner, or what?

Recommendation Consider explaining. 32 bits is not that much for a unique thing.

Client Comment Resolved with documentation.

28
uint32 nonce;

44
uint32 nonce;

57
uint32 nonce;

CVF-56. INFO
+ Category Bad datatype » Source |AllowanceTransfer.sol
Recommendation The type of this field should be “IERC20[]".

37 |address[] tokens;

PN

ABDK 29

CVF-57. FIXED

+ Category Suboptimal e Source |AllowanceTransfer.sol

Recommendation It would be more efficient to have a single array of structs with three
fields, rather than three parallel arrays. This would also make length checks unnecessary.

Client Comment Resolved with nested structs.

37 \‘/yaddress [] tokens:

41 \ruint160[] amounts:

43 \‘/uint64[] expirations;

CVF-58. INFO

+ Category Bad datatype » Source |AllowanceTransfer.sol

Recommendation The type of the “token” arguments should be “IERC20".

85 /function approve(address token, address spender, uintl60 amount,
< uint64 expiration) external;

105 /function transferFrom(address token, address from, address to,
< uintl60 amount) external;

121rfunction invalidateNonces(address token, address spender, uint32
— amountToInvalidate)

ABDK 30

CVF-59. FIXED

+ Category Documentation » Source |AllowanceTransfer.sol

Description Some arguments are not documented.
Recommendation Consider documenting all the arguments.

Client Comment Resolved with documentation.

105 | function transferFrom(address token, address from, address to,
< uintl60 amount) external;

ABDK

31

ABDK

Consulting

About us

Established in 2016, is a leading service provider in the space of blockchain
development and audit. It has contributed to numerous blockchain projects, and co-
authored some widely known blockchain primitives like Poseidon hash function.

The ABDK Audit Team, led by Mikhail Vladimirov and Dmitry Khovratovich, has
conducted over 40 audits of blockchain projects in Solidity, Rust, Circom, C++,
JavaScript, and other languages.

Contact

X Email @ Website
dmitry@abdkconsulting.com abdk.consulting
W Twitter @ LinkedIn

twitter.com/ABDKconsulting linkedin.com/company/abdk-consulting

https://twitter.com/ABDKconsulting
https://abdk.consulting/
https://linkedin.com/company/abdk-consulting

	Changelog
	Introduction
	Project scope
	Methodology
	Our findings
	Critical Issues
	CVF-26. FIXED

	Major Issues
	CVF-3. FIXED
	CVF-4. FIXED
	CVF-10. FIXED
	CVF-13. FIXED
	CVF-17. FIXED
	CVF-19. FIXED
	CVF-21. INFO
	CVF-24. INFO
	CVF-27. FIXED
	CVF-35. FIXED
	CVF-43. FIXED
	CVF-50. FIXED

	Moderate Issues
	CVF-9. FIXED
	CVF-12. FIXED
	CVF-14. FIXED
	CVF-15. FIXED
	CVF-20. FIXED
	CVF-30. FIXED
	CVF-60. FIXED

	Minor Issues
	CVF-1. FIXED
	CVF-2. FIXED
	CVF-5. FIXED
	CVF-6. FIXED
	CVF-7. FIXED
	CVF-8. FIXED
	CVF-11. FIXED
	CVF-16. FIXED
	CVF-18. FIXED
	CVF-22. FIXED
	CVF-23. INFO
	CVF-28. FIXED
	CVF-29. FIXED
	CVF-31. INFO
	CVF-32. FIXED
	CVF-33. FIXED
	CVF-34. INFO
	CVF-36. INFO
	CVF-37. FIXED
	CVF-38. FIXED
	CVF-39. FIXED
	CVF-40. FIXED
	CVF-41. FIXED
	CVF-42. FIXED
	CVF-44. FIXED
	CVF-45. FIXED
	CVF-46. FIXED
	CVF-47. FIXED
	CVF-48. FIXED
	CVF-49. FIXED
	CVF-51. INFO
	CVF-52. FIXED
	CVF-53. INFO
	CVF-54. INFO
	CVF-55. FIXED
	CVF-56. INFO
	CVF-57. FIXED
	CVF-58. INFO
	CVF-59. FIXED

