
05.09.2022

API3 SMART CONTRACT
AND 
WEB RESOURCES 
AUDIT REPORT

1



+44 1173 182250 info@hexens.io

⬢ Summary / 3

⬢ Scope / 3

⬢ Weaknesses / 4

⬡   Inconsistency between metadata and encoded EVM script: invisible 

contract call / 4

⬡   Inconsistency between metadata function signature and encoded 

EVM script function / 7

⬡   Exposed Sendgrid API key / 8

⬡   Quorum may get increasingly harder to reach until total governance 

deadlock in case of massive unstake / 9

⬡   Possible execution bypass during the voting phase / 11 

⬡   Externallink component doesn’t validate URLs / 16

⬡   Vulnerable dependencies / 17

CONTENTS

2



+44 1173 182250 info@hexens.io

TOTAL: 7

The analyzed resources are located on:
https://github.com/api3dao/api3-dao/commit/da7a1754e5ccc
ac0bc0e382225b5648c90ba0aef
https://github.com/api3dao/api3-dao-dashboard/commit/bc
8356f28ced64f971f1e035e6a0a2e5add9c7cd
https://api3.org

SUMMARY

SCOPE

3

HIGH

CRITICAL 

MEDIUM 

1

3

1

LOW 0

INFORMATIONAL 2

SEVERITY NUMBER OF FINDINGS 

https://github.com/api3dao/api3-dao
https://github.com/api3dao/api3-dao
https://github.com/api3dao/api3-dao-dashboard
https://github.com/api3dao/api3-dao-dashboard
https://api3.org


+44 1173 182250 info@hexens.io

1. INCONSISTENCY BETWEEN 
METADATA AND ENCODED EVM 
SCRIPT: INVISIBLE CONTRACT CALL 

SEVERITY: Critical

REMEDIATION: decodeEvmScript function before the line 216 
decode execution must check whether the callData variable 
contains redundant bytes or not

STATUS: fixed in the following PR

DESCRIPTION:

decodeEvmScript function on line 203 in the file encoding.ts lets a 

malicious actor create a proposal without using application’s UI, but with 

RPC calls to bypass the UI validations. He can also attach other contract’s 

function call inside the proposal’s EVM script. This works as the 

AragonOS’s execScript function on line 33 in the file CallsScript.sol can 

execute one or many functions. 

WEAKNESSES

4

This section contains the list of discovered 
weaknesses.

https://github.com/api3dao/api3-dao-dashboard/pull/320


+44 1173 182250 info@hexens.io 5

function execScript(bytes _script, bytes, address[] _blacklist) external isInitialized 

returns (bytes) {

       uint256 location = SCRIPT_START_LOCATION; // first 32 bits are spec id

       while (location < _script.length) {

           // Check there's at least address + calldataLength available

           require(_script.length - location >= 0x18, ERROR_INVALID_LENGTH);

…

           bool success;

           assembly {

               success := call(

                   sub(gas, 5000),       // forward gas left - 5000

                   contractAddress,      // address

                   0,                    // no value

                   calldataStart,        // calldata start

….

                   }¯

               }

               default { }

           }

       }



+44 1173 182250 info@hexens.io

decodeEvmScript function on line 216 slices second contract’s function 

call, so decodeEvmScript works without any exception.

6

const evmScriptPayload = utils.hexDataSlice(script, 4);

const callData = utils.hexDataSlice(evmScriptPayload, 24);

// Decode the parameters of the "execute" function:

// 

https://github.com/aragon/aragon-apps/blob/631048d54b9cc71058abb8bd7

c17f6738755d950/apps/agent/contracts/Agent.sol#L70

const executionParameters = utils.defaultAbiCoder.decode(

['address', 'uint256', 'bytes'],

utils.hexDataSlice(callData, 4)

);



+44 1173 182250 info@hexens.io

2. INCONSISTENCY BETWEEN 
METADATA’S FUNCTION 
SIGNATURE AND ENCOED EVM 
SCRIPT FUNCTION

SEVERITY: High

REMEDIATION: decodeEvmScript function must do a 
validation whether metadata’s target signature is the same 
as in the EVM script’s function after decoding

STATUS: fixed in the following PR

DESCRIPTION:

decodeEvmScript function on line 203 in the file encoding.ts lets a  

malicious actor create a proposal without using application’s UI, but 

with RPC calls to bypass the UI validations, and inside the proposal 

he can fake the metadata. Created proposal’s metadata function 

signature(targetSignature) can differ from the actual function 

inside the EVM script. So a normal user will vote for a proposal, but 

actually after the voting another function we be called.

7

https://github.com/api3dao/api3-dao-dashboard/pull/320


+44 1173 182250 info@hexens.io

3. EXPOSED SENDGRID API KEY

SEVERITY: High

PATH: api3.org/sendgrid.env

REMEDIATION: make the .env file private

STATUS: fixed

DESCRIPTION:

Sengrid is a service that is used for e-mail delivery. Below presented 

is a snippent of the leaked API key that can be used to authenticate 

into API3’s Sendgrid account.

SG.x7***gc4uGNeebuQ_TiA**8HH-RyBPU

Our team authenticated into the account using this token and listed 

the functionality that is available. Here's a snippet: 

As a result, a malicious actor that got the token could, for example, 

send e-mails on behalf of API3.

8

{“scopes”:[“alerts.create”,“alerts.read”,“alerts.update”,“alerts.delete”,“asm.gr

oups.create”,“asm.groups.read”,“asm.groups.update”,“asm.groups.delete”,“a

sm.groups.suppressions.create”,“asm.groups.suppressions.read”,“asm.grou

ps.suppressions.update”,“asm.groups.suppressions.delete”,“asm.suppressi

ons.global.create”,



+44 1173 182250 info@hexens.io

4. QUORUM MAY GET INCREASINGLY 
HARDER TO REACH, UNTIL TOTAL 
GOVERNANCE DEADLOCK IN CASE 
OF MASSIVE UNSTAKE

SEVERITY: High

REMEDIATION: keep track of how many shares are scheduled for 
unstake in total, and subtract it from total voting power when 
creating the proposal snapshot 

STATUS: acknowledged, see commentary

DESCRIPTION:

The user shares are immediately revoked, as well as any vote delegation, 

when the user schedules an unstake by calling scheduleUnstake 

function on line 73 in the file StakeUtils.sol, but the pool shares 

checkpoint is not updated. It gets updated when the user unstakes and 

triggers updateCheckpointArray on line 149, one week or more later. This 

design choice is duly motivated in the project documentation and 

understandably so in the context of rewards and fairness. The remaining 

users don't wish to share rewards nor give a voice to "programmed 

quitters", but the funds are still in the pool. This however poses a crucial 

problem in a bankrun scenario, which, however unlikely, might deal a fatal 

blow if not properly addressed.

9



+44 1173 182250 info@hexens.io 10

Imagine that a very large portion of the user base decides to schedule 

their unstake at once. All those votes are lost during a week, while the 

total voting power is still the same. If a vote is started after that mass 

departure signal, it will be harder to reach quorum.

This gets increasingly bad the more users leave until it gets critical at 1 - 

min_acceptance_quorum % of the users, at which point the proposal 

can never pass quorum, because there are simply not enough voters left.

Furthermore, users who scheduled their unstake could delay their unstake 

transaction indefinitely to continue blocking the governance. As long as 

they are willing to immobilize their stake, they can collectively keep any 

proposal from passing.

Commentary from client: 

“Stakers being able to abstain to block proposals from passing is intended 

behavior. The staking rewards become withdrawable after 1 year, which is 

intended to discourage the stakers from mis-governing in general. As a 

separate note, being able to pass time-critical proposals is not 

considered to be a requirement due to the scale of the DAO (as in, it is too 

decentralized to hope to achieve this). Therefore, not being able to pass 

any proposals during a potential bank-run scenario is not a requirement, 

and not being able to do so is not an issue.”



+44 1173 182250 info@hexens.io

5. POSSIBLE EXECUTION BYPASS 
DURING VOTING PHASE

SEVERITY: Medium

REMEDIATION: require supportRequiredPct >= PCT_BASE / 2

STATUS: acknowledged, see commentary

DESCRIPTION:

The function _canExecute on lines 352, 107 and 88 systematically 

gates the only way to execute an EVMScript, _unsafeExecuteVote, 

on lines 327 and 334. In turn, on line 347, _unsafeExecuteVote calls 

runScript with the passed vote's EVMScript as argument, and without 

any additional input, nor any blacklisted address, meaning the script 

can call any contract, including the app itself, giving it dangerous 

power.

Scripts can be executed either after the voting phase if they avoid all 

the exit conditions, or during the vote, but only if they satisfy the 

"bypassing condition" of _canExecute, namely:

11

 bytes memory input = new bytes(0); // TODO: Consider input for voting 

scripts

       runScript(vote_.executionScript, input, new address[](0));

line 360 paraphrased:

IF yes_votes_now / total_shares_at_snapshot > supportRequired 

ALLOW_EXECUTION

equivalent to :

IF current_quorum > supportRequired ALLOW_EXECUTION



+44 1173 182250 info@hexens.io 12

   function _canExecute(uint256 _voteId) internal view returns (bool) {

       Vote storage vote_ = votes[_voteId];

       if (vote_.executed) {

           return false;

       }

       // Voting is already decided

       if (_isValuePct(vote_.yea, vote_.votingPower, vote_.supportRequiredPct)) {

           return true;

       }

       // Vote ended?

       if (_isVoteOpen(vote_)) {

           return false;

       }

       // Has enough support?

       uint256 totalVotes = vote_.yea.add(vote_.nay);

       if (!_isValuePct(vote_.yea, totalVotes, vote_.supportRequiredPct)) {

           return false;

       }

       // Has min quorum?

       if (!_isValuePct(vote_.yea, vote_.votingPower, vote_.minAcceptQuorumPct)) {

           return false;

       }

       return true;

   }



+44 1173 182250 info@hexens.io 13

Following this logic, the current vote's `support >= quorum` 

systematically, since both depend on the number of yeas, and 

casted votes (divisor of support) can never exceed total voting power. 

E.g. for a total voting power of 1000, where 400 voted yea and 200 

nay:

- support = 400 / 600 = 2/3 = 0.666

- quorum = 400 / 1000 = 2/5 = 0.4

For reasons described below, supportRequiredPct should never be 

below 50%. Let's assume for now it is exactly 50%, keeping us in the 

simple majority case. 

When we take a closer look at the beginning of a vote, we notice that 

if it starts with a bunch of yea votes, support will keep being 1, while 

quorum slowly creeps towards supportRequiredPct. After that, each 

nay vote lowers the support, has no impact on quorum, and may 

suddenly block the proposal once nays surpass the level of yeas. 

During all this time the proposal cannot be executed though, except 

if `yeas/total_vp > supportRequiredPct`, meaning if *quorum* 

surpasses `supportRequiredPct`, because as seen above, this 

means automatically that *support* is also larger than 

`supportRequiredPct`, and implies that there is not enough voting 

power left to change that, so there's no need to count “nays” at all.



+44 1173 182250 info@hexens.io 14

In the case of supportRequiredPct = 50%, the logic works. If there 

are more than 50% of yeas over the whole voting power, there are not 

enough votes left to counter them.

If supportRequiredPct < 50%, this governance becomes very 

dangerous, as it allows supporters to try and rush a proposal 

through before opposers vote, and bypass the proper support and 

quorum check.

If supportRequiredPct > 50%, then the bypass gets harder to reach, 

because a smaller number of nays is sufficient to reject the 

proposal.

Note that `1 - support_required` % of the total voting power is 

sufficient to reject a proposal (make it impossible to execute). For 

example, if the target support is 80%, as soon as 20% of the total 

voting power votes nay, the proposal is gone. In conclusion, raising 

`supportRequiredPct` does not just make proposals harder/longer 

to pass, it makes them, more importantly, easier/faster to reject.



+44 1173 182250 info@hexens.io 15

Commentary from client: 

“On both of our voting apps, required support is initialized at 50% and 

has not been changed since. These values can be updated by a 

primary proposal (which requires a 50% quorum at the moment), and 

we will inform governance participants about the potential risks of 

decreasing this to a value below 50%.

As a note, the described implementation belongs to the original 

Aragon Voting app, and supportRequiredPct is enforced to be larger 

than or equal to minAcceptQuorumPct (and not 50%). We suspect 

that this is because requiring the majority to be in favor of a 

proposal for it to pass is deemed to be too opinionated for a DAO 

framework, so the case described in this finding is probably intended 

behavior.”



+44 1173 182250 info@hexens.io

6. EXTERNALLINK COMPONENT 
DOESN’T VALIDATE URLs

SEVERITY: Informational

REMEDIATION: use validation for the URL’s protocol

STATUS: fixed in the following PR

DESCRIPTION:

ExternalLink component in the file external-link.tsx contains an 

anchor tag, where the href’s value can be externally controlled. A 

malicious actor can use “javascript:” protocol (javascript:alert(1) for 

instance) to trigger an XSS. 

16

https://github.com/api3dao/api3-dao-dashboard/pull/321


+44 1173 182250 info@hexens.io

7. VULNERABLE DEPENDENCIES

SEVERITY: Informational

REMEDIATION: update the necessary dependencies

STATUS: fixed in the following PR

DESCRIPTION:

walletconnect/web3-provider dependency brings the following  

transitive dependencies: ansi-regex, async, json-schema, 

path-parse. In the yarn.lock file these dependencies are mentioned 

with vulnerable versions. It is recommended to update them to the 

following versions:

● ansi-regex to version 3.0.1, 4.1.1, 5.0.1, 6.0.1 or higher;

● async to version 2.6.4, 3.2.2 or higher;

● json-schema to version 0.4.0 or higher;

● path-parse to version 1.0.7 or higher.

17

https://github.com/api3dao/api3-dao-dashboard/pull/323


18


