

AAVE Token Verification

1. Summary
This document describes the specification and verification of the AAVE token using the Certora Prover.
The work was undertaken from June 28th 2020 through June 30th, 2020. The latest commit that was
reviewed and run through the Certora Prover was 8139d24aca40144847671bed37b43293869b5d51.

The scope of the project was to check compliance of the AAVE token (AaveToken.sol) against a standard
ERC20 specification, with additional rule writing for extra functionalities in the AAVE token and the
Migrator contract (LendToAaveMigrator.sol).

The Certora Prover proved the AAVE token implementation to be correct with respect to the formal rules
written. During the verification process, the Certora Prover discovered a number of bugs in the code
listed in the table below in section 1.1. All the high severity issues were promptly corrected, and the fixes
were verified to satisfy the specifications. Section 2 formally defines high level specifications of the
protocol.

www.certora.com

1.1. Issues found

Bug Affected code Description Severity Fix

Nonces
don’t
increase

permit() function in
token contract

A call to permit() checks
if the nonces match, but
won’t increment it in
storage. This allows
replay attacks

High Changed safe
math call to a
postfix ++
operator

Wrong
snapshots
recorded on
self transfer

_beforeTokenTransfer() If a transfer is issued with
the recipient being equal
to the sender, the
snapshot recorded is
greater than the actual
balance after the
transfer, while it should
be unchanged.

High No snapshot is
recorded if
sender and
recipient are the
same.

Migrate
loses small
amount of
LEND for
users

migrateFromLEND()
function in migrator
contract

The amount of LEND is
divided by a ratio, so if
the LEND amount is not
a multiple of the ratio,
there is a round-down
and precision loss,
leading to LEND that is
not migrated to AAVE.

Medium - token
loss is possible,
probably miniscule
(for a ratio of 1000,
at most 999 wei
(10^-18) of LEND
can be lost per call
to migrate)

No action
needed - details
about the
considerations
leading to this
decision appear
in the README.

Expected
nonce is the
next nonce

permit() function in
token contract

The permit() function
checks that the nonce in
the message is the
nonce in the storage +1

Low Changed safe
math call to a
postfix ++
operator

Initialization
always
possible

initialize() function in
token and migrator
contracts

If the initializable field
becomes true outside of
initializer, then it will
always be possible to call
the initializer

Low - not
realizable in
current code, but
could be a risk
during contract
upgrades

Initialization
library simplified

Approve
front-runnin
g

approve / transferFrom A known issue in ERC20
of front-running the
approvals

Low - code
originated in
ERC20 standard
implementation

No action
needed

Transfer
functions
can revert

transfer / transferFrom Overflow in snapshot
count

Low - 2^256
overflow when
incrementing by 1
is not realistic

No action
needed

www.certora.com

1.2. Technology overview
The Certora Prover is based on well-studied techniques from the formal verification community.
Specifications define a set of rules that call into the contract under analysis and make various assertions
about their behavior. These rules, together with the contract under analysis, are compiled to a logical
formula called a verification condition, which is then proved or disproved by the solver Z3. If the rule is
disproved, the solver also provides a concrete test case demonstrating the violation.

The rules of the specification play a crucial role in the analysis. Without good rules, only very shallow
properties can be checked (e.g. that no assertions in the contract itself are violated). To make effective
use of Certora Prover, users must write rules that describe the high-level properties they wish to check of
their contract. Certora Prover cannot make any guarantees about cases that fall outside the scope of the
rules provided to it as input. Thus, in order to understand the results of this analysis, one must carefully
understand the specification’s rules.

1.3. Disclaimer
The Certora Prover takes as input a contract and a specification and formally proves that the contract
satisfies the specification in all scenarios. Importantly, the guarantees of the Certora Prover are scoped to
the provided specification, and any cases not covered by the specification are not checked by the Certora
Prover.

We hope that this information is useful, but provide no warranty of any kind, express or implied. The
contents of this report should not be construed as a complete guarantee that the AAVE token is secure in
all dimensions. In no event shall Certora or any of its employees be liable for any claim, damages or
other liability, whether in an action of contract, tort or otherwise, arising from, out of or in connection with
the results reported here.

www.certora.com

2. High Level Specification
The following properties were all verified for the AAVE token.

2.1. ERC20 related
Standard rules:

- Standard ERC20 functions (transfer, transferFrom, approve) are compliant with their standard
definitions:

- check the necessary preconditions, and revert if not met
- The onTransfer call may revert

- have the desired effects on the balances and allowances
- have no undesired changes to balances and allowances

- Impossible to subtract from a balance not owned by the transaction’s caller.
- Bounded supply - total amount of AAVE token in circulation is constant at value determined at

construction time, and cannot be changed. According to AAVE team, it will be 2,600,000 * 10^18.

2.2. Initialization
- An initialized contract cannot be re-initialized without code change

2.3. Signatures
- Nonces for pre-signed messages must be strictly increasing

2.4. Migration contract
- Every successful migration process must update the balances in both LEND and AAVE.

2.5. Miscellaneous
- No overflows and truncation

- In snapshot computation - impossible thanks to bounded supply
- In permit() and snapshot count - unrealistic overflow since values are increased by 1 per

transaction.
- Reentrancy

- In the transfer() flow, the call to onTransfer is after snapshots are updated and before
balances are updated. The call is by the Aave governance which is a trusted contract,
therefore no reentrancy guards were incorporated. Care should be taken in the design of
this contract so that any reentrancy it may introduce is not hazardous and keeps the state
consistent.

www.certora.com

