

Formal Verification of Aave’s protocol-V2

Summary

This document describes the specification and verification using Certora Prover of Aave’s
protocol-V2. The work was undertaken from August 2nd through October 29th, 2020. The latest
commit that was reviewed and run through the Certora Prover was
750920303e33b66bc29862ea3b85206dda9ce786.

The scope was the Aave Protocol, a decentralized, open-source, and non-custodial money
market protocol. Depositors can deposit assets into the protocol and earn interest on their
deposits without relying on middlemen. The main contracts considered were the LendingPool,
AToken, StableDebtToken, and VariableDebtToken. In addition, the UserConfiguration library
was verified independently of the calling contracts.

The Certora Prover proved the implementation of the Aave protocol correct with respect to the
formal rules written by the Aave and the Certora teams. During the verification process, the
Certora Prover and the team’s manual review discovered a number of bugs in the code listed in
the table below in Section 1.1. All the high-severity issues were promptly corrected, and the
fixes were verified to satisfy the specifications up to limitations of the Certora Prover. These
limitations are currently being handled by the Certora development team. Section 2 formally
defines high level specifications of the protocol. All the rules are publically available in a public
github: https://github.com/aave/protocol-v2/tree/master/specs

List of Main Issues Discovered

Issue Rule
broken

Description Severity Mitigation

Loss of user’s
assets

Total assets
of user

The system does not return excess
payment in repay and deposit
transactions

High The ETH
specific code
has been
removed in
favor of a pull
payment
strategy using
ERC20

https://github.com/aave/protocol-v2/tree/master/specs

Lock of assets Deposit is
always
possible

Due to chains of links in redirection of
interest, user’s transaction reverts
without an option to remove the chain
and their assets are locked

High Postpone
redirection
feature to a
new version

System loss of
assets

Additive
burn
No gain due
to
redirection

Due to a missing update to a user’s
time-tracking property, a user burns
his entire balance, but is left with
some balance

High Postpone
redirection
feature to a
new version

Increase in user
debt

Additive
repay

Due to a missing update to a user’s
time-tracking property, a user pays
his debt, but in fact his debt grows

High Update user’s
property

Lock of assets balanceOf
should never
revert

Due to division by zero, balanceOf
reverts

High Different
calculation of
accrued
interest

Overestimating
system’s assets

 When repaying, the system neglects
the amount that is going to be
reimbursed when computing the new
interest rate

High Fixed
computation of
interest rate

System loss of
assets, user
gain of assets

Additive
burn
(AToken)

Due to rounding in conversions to
Atoken, if the conversion rate is high
enough, one can withdraw a small
amount that will result in the system
transferring underlying tokens but
burning zero ATokens of the user’s
account

Medium Fixed to avoid
transfer on
burn of zero
ATokens

System loss of
assets, user
gain of assets,
user loss of
assets

Additive mint
(Stable debt
token)

Due to rounding in conversions to
stable debt token, if the conversion
rate is high enough, one can deposit a
small amount that will result in the
system transferring underlying tokens
but minting debt tokens to the user’s
account

Medium Fixed to avoid
transfer on
mint/burn of
zero stable
debt tokens

Reduce health
factor,

Valid
operation

In case of a very low health factor, due
to having the bonus as a fixed

Medium Known issue
from V1.

Notations
1. ✔ indicates the rule is formally verified on the latest commit. We write ✔ * when the rule

was verified on a simplified version of the code that ignores rounding errors.
2. ✍ indicates the rule is not yet formally specified.
3. 🔁 indicates the rule is only applicable to a future version of the code with redirections.
4. We define ε to be the allowed rounding error and enforce a global invariant that ε ≤

normalizedIncome()/ray.
5. We use |.| to denote the absolute value of a numeric value.
6. We use Hoare triples of the form {p} C {q}, which means that if program C executes

starting in any state satisfying p, then it will end in a state satisfying q. In Solidity, p is
similar to require and q is similar to assert. The syntax {Pre} P1 ～ P2 {Post} is a
generalization of Hoare rules, called relational properties. Pre is a requirement on the
states before P1 and P2 and {Post} describes the states after their executions. Notice
that P1 and P2 operate in different states. As a special case, P1 ～g P2 , where g is a
getter function (e.g., getBalance()), indicating that P1 and P2 result in states in which
the value of g() is the same.
In a hoare triple {p} P1 ～ P2 {q}, we may refer to the value of a getter g() after P1 or P2 by
the notation of g1() or g2(), respectively.

System loss of
assets

with respect
to health
factor

percentage, the liquidation process
may result in an even worse health
factor. The system may lose assets

Unlikely in
practice, as
exploit requires
drastic
changes to
token prices

Incorrect
totalSupply
reported

Integrity of
totalSupply
(DebtToken)

Due to missing interest accumulation,
total supply reported is not the sum of
all balances

Medium Fixed to
include interest
accumulated

Assets locked
as collateral can
be withdrawn

Valid
operation
with respect
to health
factor

If the system changes the flag
indicating if a token is used as
collateral, one can withdraw regardless
of his health factor

Low System
controlled
functionality

Redundant line Coding in
LendingPool:redeemUnderlying

Low Fixed

https://en.wikipedia.org/wiki/Hoare_logic
http://software.imdea.org/~gbarthe/__introrelver.pdf

Verification of AToken

Functions:
totalSupply() : uint
Returns the total supply.

balanceOf(address u) : uint
Returns the balance of address u with interest and redirected interest.

normalizedIncome() : uint
Returns the reserve’s current normalized income index in high precision format (ray).

burn(address u, address t, uint x) : bool
Returns true if successfully burns x ATokens from the account of u and sends x underlying
tokens to t.

transfer(address u, address t, uint x)
Transfers x ATokens from the account of u to t.

Properties:
1. Integrity of totalSupply ✔ *

TotalSupply is the sum of all users’ balances.

totalSupply() = Σaddress u balanceOf(u)

2. Integrity of mint ✔
Minting an amount of x tokens for user u increases their balance by x, up to rounding
errors (ε).
{ b = balanceOf(u) } mint(u,x) { b + x - ε ≤ balanceOf(u) ≤ b + x + ε }

3. Additivity of mint ✔ *
Minting is additive, i.e., it can be performed either all at once or in steps.

mint(u,x); mint(u,y) ~ mint(u,x+y) { | balanceOf1(u) - balanceOf2(u) | ≤ 3ε }

4. Integrity of transfer ✔
Transferring x tokens from user u to user u’ changes the balance of u and u’ as
expected and does not change the underlying asset balance of any user or of the
system.

I. { u ≠ u’ ∧ bu = balanceOf(u) ∧ bu’ = balanceOf(u’) }

transfer(u, u’ x);
{ | balanceOf(u) - (bu - x) | ≤ ε ∧

 | balanceOf(u’) - (bu’ + x) | ≤ ε }

II. { b = underlyingAssetBalanceOf(u’’) }
transfer(u, u’ x);

{ b = underlyingAssetBalanceOf(u’’) }

5. Additivity of transfer ✔ *
Transfer is additive, i.e., it can be performed either all at once or in steps.
transfer(u, u’, x); transfer(u, u’, y) ~ transfer(u, u’, x+y)

6. Integrity of burn ✔

Transfer of x amount of tokens from a user u to a receiver user u’
{bu = balanceOf(u) ∧ ba = underlyingAssetBalanceOf(u’)}

burn(u, u’, x)
{ | balanceOf(u) - (bu - x) | ≤ ε ∧
 u’ ≠ AToken ⇒ | underlyingAssetBalanceOf(u’) - (ba + x) | ≤ ε }

 7. Additivity of burn ✔ *
Burning is additive, i.e., it can be performed either all at once or in steps.

burn(u, u’, x); burn(u, u’, y) ~ burn(u, u’, x+y) at the same timestamp

8. Revert characteristic of burn ✔ *
Burning of x token of user u when transferring underlying token to receiver t succeeds
when the following holds:

I. msg.sender is the LendingPoll contract and no value sent,
II. totalSupply in AToken is more than amount to burn,

III. The system has enough underlying tokens to transfer
IV. user u which burns his asset is valid and has enough balance
V. Receiver t is valid and transferring him underlying token will not overflow

{ msg.value = 0 ∧ msg.sender = LendingPool ∧
 totalSupply() ≥ x ∧
 underlyingAssetBalanceOf(AToken) > x ∧
 u ≠ 0 ∧ balanceOf(u) < x
 t ≠ 0 ∧ underlyingAssetBalanceOf(t) + x< MAXINT }

r = burn(u, to, x)
{ r }

Verification of StableDebtToken
9. Integrity of getUserLastUpdated ✔ *

The time of the last update to a user cannot lie in the future.

getUserLastUpdated(u) ≤ block.timestamp;

 10. Integrity of totalSupply ✔ *
TotalSupply is the sum of all users’ balances.

totalSupply(t) = Σaddress u balanceOf(u,t)

This is proven by showing properties 11 and 12 below:

11.No two balances updated ✔ *
Each possible operation changes the balance of at most one user.

12. Integrity balance and total supply ✔ *

Check that the changes to total supply are coherent with the changes to balance for
each operation.

13. Integrity of mint ✔ *
Minting an amount of x tokens for user u increases their balance by x, up to rounding
errors.

{ b = balanceOf(u, t) }

mint(u, x, index)
{ balanceOf(u, t) = b + x }

 14.Additivity of mint ✔ *
Minting is additive, i.e., it can be performed either all at once or in steps.

mint(u,x); mint(u,y) ~ mint(u,x+y)

15. Integrity of burn✔ *

Transfer of x amount of tokens from user u where receiver is user u’
{bu = balanceOf(u) }

burn(u, u’, x)
{balanceOf(u) = bu - x }

16.Additivity of burn ✔ *

Burning is additive, i.e., it can be performed either all at once or in steps.

burn(u, u’, x); burn(u, u’, y) ~ burn(u, u’, x+y)

17. Invertibility of mint and burn ✔ *
Minting and burning are inverse operations.

{bu = balanceOf(u) }

mint(u,x); burn(u, u, x)
{balanceOf(u) = bu }

Verification of VariableDebtToken

 18. Integrity of totalSupply ✔ *
TotalSupply is the sum of all users’ balances.

totalSupply(t) = Σaddress u balanceOf(u,t)

This is proven by showing properties 19 and 20 below:

19.No two balances updated ✔ *

Each possible operation changes the balance of at most one user.

20. Integrity balance and total supply ✔ *
The changes to total supply are coherent with the changes to balance for each
operation.

21. Integrity of mint ✔ *
Minting an amount of x tokens for user u increases their balance by x, up to rounding
errors.
{ b= balanceOf(u,t) }

mint(u,x,index)
{ balanceOf(u,t) = b + x }

22.Additivity of mint ✔ *

Minting is additive, i.e., it can be performed either all at once or in steps.

mint(u,x); mint(u,y) ~ mint(u,x+y)

23. Integrity of burn ✔ *

Transfer of x amount of tokens from user u where receiver is user u’
{ bu = balanceOf(u) }

burn(u, u’, x)
{ balanceOf(u) = bu - x }

24.Additivity of burn ✔ *

Minting is additive, i.e., it can be performed either all at once or in steps.

burn(u, u’, x); burn(u, u’, y) ~ burn(u, u’, x+y)

25. Inverse of mint and burn ✔ *
Minting and burning are inverse operations.

{ bu = balanceOf(u) }

mint(u,x); burn(u, u, x)
{ balanceOf(u) = bu }

Verification of UserConfiguration Library
This library implements a bitmap logic to handle the user configuration, it stores whether a user
has borrowed or/and deposited for collateral for each possible asset.

Functions:
setBorrowing(address u, uint256 reserveId, bool val)
Sets that user u borrowing flag for reserveId to val

setUsingAsCollateral(address u, uint256 reserveId, bool val)
Sets that user u is using reserveId as collateral to val

isUsingAsCollateralOrBorrowing(address u , uint256 reserveId) : bool
Returns true if the user u has been using a reserve reserveId for borrowing or as collateral

isBorrowing(address u , uint256 reserveId) : bool
Returns true if user u has been using a reserveId for borrowing

isUsingAsCollateral(address u , uint256 reserveId) : bool
Returns true if user u has been using a reserveId as collateral

isBorrowingAny(address u) : bool
Returns true if user u has been borrowing any reserve

 isEmpty(address u) : bool
Returns true if user u has been borrowing or using as collateral any reserve

Properties:
26. Integrity of getters ✔

For each user u and reserve id r:
I. isEmpty(u) ⇒

(¬isBorrowingAny(u) ∧ ¬isUsingAsCollateralOrBorrowing(u,r))

II. (isBorrowingAny(u) ∨ isUsingAsCollateral(u,r)) ⇒ ¬isEmpty(user)

III. isBorrowing(u,r) ⇒ isBorrowingAny(u)

IV. (isUsingAsCollateral(u,r) ∨ isBorrowing(u,r)) ⇔
isUsingAsCollateralOrBorrowing(u,r)

27. Integrity of setBorrowing ✔
When setting the flag of user u borrowing from reserve r, the value is updated as
expected.
{ r < 128 }

setBorrowing(u, r, b)
{ isBorrowing(u,r) = b }

28.No effect on other on setBorrowing ✔

When setting the flag of user u borrowing from reserve r, the flags concerning reserve r`
are not changed.
{ r` ≠ r ∧ r` < 128 ∧ r < 128 ∧ borrow = isBorrowing(u, r`) ∧
collateral = isUsingAsCollateral(u,r`) }

setBorrowing(u, r, b)
{ borrow = isBorrowing(u, r`) ∧
collateral = isUsingAsCollateral(u,r`) }

29. Integrity of setUsingAsCollateral ✔
When setting the flag of user u using as collateral reserve r, the value is updated as
expected.
{ r < 128 }

setUsingAsCollateral(u,r,b)
{ isBorrowing(u,r) = b }

30.No effect on other on setUsingAsCollateral ✔
When setting the flag of user u using as collateral reserve r, the flags concerning reserve
r ̀ are not changed.
{ r` ≠ r ∧ r` < 128 ∧ r < 128 ∧ borrow = isBorrowing(u, r`) ∧
collateral = isUsingAsCollateral(u,r`) }

setUsingAsCollateral(u, r, b)
{ borrow = isBorrowing(u, r`) ∧
collateral = isUsingAsCollateral(u,r`) }

Verification of LendingPool

Functions:
Properties of the system that have no side-effect (view functions)

getAToken(Token t) : AToken
Returns the AToken associated with a reserve of token t.
i.e., reserves[t].aTokenAddress

getStableDebtToken(Token t) : DebtToken
i.e., reserves[t].stableDebtTokenAddress

getVariableDebtToken(Token t) : DebtToken
i.e., reserves[t].variableDebtTokenAddress

healthFactor(address a) : uint
Returns the health factor of user a

totalDebt(address a) : uint
totalCollateralETH(address a) : uint

token.balanceOf(address a) : uint
Returns the balanceOf address a in token

token.totalSupply() : uint
Returns the total supply of token.

Operations:
All operations return true on successful execution of the operation (i.e., did not revert).
These operations have side effects on the state of the system.

deposit(Actor a, Token t, uint x, Actor b) : bool
Actor a deposits on behalf of actor b, in the reserve of x amount of token t.
Returns true on successful deposit (i.e., did not revert)

withdraw(Actor a, Token t, uint x) : bool
Actor a withdraws x amount of token t

borrow(Actor a, Token t, uint x, Actor b) : bool
Actor a borrows on behalf of actor b amount of x tokens t

repay(Actor a, Token t, uint x, Actor b) : bool
Actor a repays on behalf of actor b amount of x tokens t

swap(Actor a, Token t) : bool
Swap the rate of debt of Actor a for token t

rebalanceStableBorrowRate(Token t, Actor a) 🔁
FlashLoan 🔁
LiquidationCall 🔁

Properties:
 31. Integrity of a reserve ✔ *

The balance of a reserve for asset t is at least the sum of all deposits minus the
borrowed.

I. t.balanceOf(getAToken(t)) ≥ getAToken(t).totalSupply() -

(getStableDebtToken(t).totalSupply() +
 getVariableDebtToken(t).totalSupply())

II. reserve.liquidityIndex ≤ reserve.getNormalizedIncome() 🔁

 32.Total assets of user is preserved ✔ *
The total assets with regard to some (external) token t is preserved. Need to take into
account that operation can change the balance of two actors

We define total assets of user u with respect to token t
totalAssets(t, u) ≡ t.balanceOf(u) + getAToken(t).balanceOf(u) -
(getStableDebtToken(t).balanceOf(u) + getVariableDebtToken(t).balanceOf(u))

{ x = totalAssets(t, a) }

op;
{ totalAssets(t, a) = x}

Where op is an operation that affects the asset of at most one user

For case where op can change the balance of actor a performing on operation behalf of
actor b the property is:
{ x = totalAssets(t, a) + totalAssets(t, b) }

borrow(a, t, x, b) । deposit(a, t, x, b) ;
{ assets(t, a) + totalAssets(t, b) = x }

 33.One can always deposit 🔁
assuming the system is in active state, one can always deposit
{ isActive(t) ⋀ ¬isFreeze(t) ⋀ x ≠ 0} ret = deposit(u, t, x) { ret }

 34.Revert characteristic of deposit 🔁
Deposit fails if the reserve is in inactive or freeze state or the user attempts to deposits 0
tokens
{ ¬isActive(t) ∨ isFreeze(t) ∨ x = 0} ret = deposit(u, t, x) { ¬ret }

 35. Integrity of deposit ✔ *
When actor u deposits x tokens of asset t on behalf of actor b (can be a)
The asset balance of u is decreased and the aToken of b is increased.
{ t_ = t.balanceOf(u) ⋀ a_ = getAToken(t).balanceOf(b) }

deposit(u, t, x, b);
{ t.balanceOf(u) = t_ - x ⋀ getAToken(t).balanceOf(b) = a_ + x }

 36. Integrity of borrow ✍
When actor u deposits x tokens of asset t on behalf of actor b (can be a)
The asset balance of u is increased and the debt of b is increased.

{ t_ = t.balanceOf(u) ⋀ a_ = totalDebt(b) }

borrow(u, t, x, b);
{ t.balanceOf(u) = t_ + x ⋀ totalDebt(b) = a_ + x }

37.Revert characteristic of borrow 🔁

38.Total assets and debts of user is not influenced by others ✍

39.Operations at one interest rate does not change the other interest rate type

debt ✍

40.Variable debt token is not influenced by stable rate operations ✍

41.Each operation affects at most one reserve ✍

 42.Valid Operations with respect to health factor ✍
{ healthFactor(a) > 1 } Op_a { healthFactor(a) >= 1 }

{ h = healthFactor(a) < 1 } Op { healthFactor(a) < h }

43. Inverse operations ✍

Deposit; Op ; Redeem ~ skip
Borrow; Op ;Repay ~ skip
Where op is any operation by other users or specific operation by the user.
Here we mean that these operations return the same values that are important to us.

 44.Additivity properties at the same timestamp ✍
Deposit(x); Deposit(y) ~ Deposit(x+y) ✔ *
Redeem(x);Redeem(y) ~ Redeem(x+y)
Borrow(x);Borrow(y) ~ Borrow(x+y)
Repay(x);Repay(y) ~ Repay(x+y)

Properties regarding redirection of interest
Properties that have been excluded for the current release of the AToken contract.

Functions:
getInterestRedirectionAddress(address u) : address
Returns the address to which address u redirects the interest to.

getRedirectedBalance(address u) : uint
Returns the total amount of balance redirected to address u from all redirecting users.

Properties:
45. Safety of redirection 🔁

One can not redirect interest to himself.
getInterestRedirectionAddress(u) ≠ u

46. Integrity when no redirection 🔁

If account u does not redirect and has no redirection than the balance of equals the
principle balance.
(getInterestRedirectionAddress(u) = 0 ⋀ getRedirectedBalance(u) = 0) ⇒
balanceOf(u, t) = _calculateCumulatedBalance(u, principalBalanceOf(u), t)

47. Integrity of interest redirection 🔁
The balance of a user v that has redirection from user u but no principalBalance is the
interest of user u
(amount = principalBalanceOf(u) = getRedirectedBalance(v) ⋀
principalBalanceOf(v) = 0) ⇒
_calculateCumulatedBalance(u, amount , t) - amount = balanceOf(v, t)

48. Integrity of interest redirection on transactions 🔁
The balance of a user v that has redirection from user u but no principalBalance is the
interest of user u.
{ amount = principalBalanceOf(u) = getRedirectedBalance(v) ⋀
principalBalanceOf(v) = 0 ⋀ t’ ≥ t } Op_t {
_calculateCumulatedBalance(u, amount , t’) - principalBalanceOf(u) =
balanceOf(v, t’) }
Where Op_t is an operation performed at time t beside: redirectInterestStream,...

 49.No gain due to redirection of interest 🔁
The total balance of two users, say u1 and u2, is not affected if one redirects the interest
to the other.
Op ; x = balanceOf(u1, s) + balanceOf(u2, s) /*scenario 1*/
 ~
redirectInterestStream(u1,u2); Op ;
y = balanceOf(u1, s) + balanceOf(u2, s) /*scenario 2*/
{ x == y }

Properties suggested by Aave

Global invariants

● P1: Whenever a user transfers aTokens from A -> B, the balanceOf(aToken) of
the underlying asset transferred does not change (Integrity of the system)

● P2: Given an asset A with Bsa = total borrowed at stable of A, any action of
borrowing/repaying/liquidating at variable rate does not change Bsa

● P3: Given an asset A with Bva = total borrowed at variable of A, any action of
borrowing/repaying/liquidating at stable rate does not change Bva.

● P4: Given an user U and a set of borrowed assets A, with Bn = {Ba1, Ba2... Ban}
the set of borrow balances for each asset a ∊ A, if U borrows another asset an+1,
Ban+1 is equal to the amount of the asset an+1 being borrowed and all the
balances B1...Bn are unchanged (explanation: borrowing a new assets doesn’t
affect other users positions)

● P5: Given an user U and a set of borrowed assets A, with Bn = {Ba1, Ba2... Ban}
the set of borrow balances for each asset a ∊ A, if U repays an asset repays an
amount M for any asset ax ∊ A, then Bax = Bax - M and all the other balances
are unaffected (explanation: repaying a loan does not affect other loans)

● P6: On any action on a specific asset:
○ If the asset is not being borrowed at a variable rate, the variable borrow

index doesn’t change
○ If the asset is being borrowed at a variable rate, the variable borrow index

increases, unless the following happens:
■ The index has been updated by another action in the same block
■ The interest accrued is so small that is below 10^-27

In these conditions, the variable borrow index remains the same

● P7: On any action on a specific asset:
○ If the asset is not being borrowed, the liquidity index doesn’t change
○ If the asset is being borrowed, the liquidity index increases, unless the

following happens:
■ The index has been updated by another action in the same block
■ The interest accrued is so small that is below 10^-27

In these conditions, the variable borrow index remains the same

State transitions

Deposit()

● P6: It's not possible to deposit in an inactive reserve.
● P7: It's not possible to deposit in a frozen reserve.
● P8: It's not possible to deposit 0 amount.
● P9: When a user deposits X amount of an asset, his collateral in the system

is increased by X. Integrity of deposit
● P10: When a user deposits X amount of an asset, he receives exactly X

amount of the corresponding aToken.Integrity of deposit
● P11: When a user deposits X amount of an asset, the protocol balance on

that asset is increased by X. Integrity of the system + Integrity of deposit
● P12: On any deposit, if the asset is being borrowed at

variable(totalSupply(variableDebtToken) > 0 for the particular asset), the variable
borrow rate goes down as long as the deposited amount isn’t so small that the
impact on the variable borrow rate is below the margin of error (10^-27)

● P13: On any deposit, if the asset is being borrowed at stable
(totalSupply(stableDebtToken) > 0 for the particular asset), the stable borrow rate
goes down as long as the deposited amount isn’t so small that the impact on the
variable borrow rate is below the margin of error (10^-27)

● P14: On any deposit, if the asset is being borrowed
(totalSupply(stableDebtToken) + totalSupply(variableDebtToken) > 0 for the
particular asset), the liquidity rate goes down as long as the deposited amount
isn’t so small that the impact on the liquidity rate is below the margin of error
10^-27.

Borrow()

● P15: It's not possible to borrow in an inactive reserve.
● P16: It's not possible to borrow in a frozen reserve.
● P17: It's not possible to borrow on a reserve disabled for borrowing.
● P18: It's not possible to borrow 0 amount.
● P19: It's not possible to borrow with an interest rate mode that is different than 1

(stable) or 2 (variable)
● P20: It's not possible to borrow more than the available liquidity in the reserve.

● P21: It's not possible to borrow at a stable rate in a reserve where the stable rate
is not enabled.

● P22: It's not possible to borrow at a stable rate more than the percentage over
the available liquidity defined by the parameters returned by
getMaxStableRateBorrowSizePercent()

● P23: A borrower whose health factor (HF) is below 1 can't borrow. Valid
Operation with respect to health factor

● P24: A borrower can only borrow up to the amount which would set the HF
to 1 (alternatively written, after a borrow action the HF of the borrower is
always > 1) Valid Operation with respect to health factor

● P25: Whenever a user borrows an asset at a variable rate, the balanceOf(user)
on the VariableDebtToken increases by the amount borrowed

● P26: Whenever a user borrows an asset at a stable rate, the balanceOf(user) on
the StableDebtToken increases by the amount borrowed

● P27: When a user borrows X amount of an asset they will receive exactly X
amount of that asset.Integrity of borrow

● P28: When a user borrows X amount of an asset, the protocol balance of
that asset is decreased by X.Integrity of borrow

● P29: On any borrow, the variable rate goes up as long as the borrowed amount
isn’t so small that the impact on the variable borrow rate is below the margin of
error (10^-27)

● P30: On any borrow, the stable rate goes up as long as the borrowed amount
isn’t so small that the impact on the variable borrow rate is below the margin of
error (10^-27)

withdraw()

● P31: It's not possible to withdraw from an inactive reserve.
● P32: It's not possible to withdraw a 0 amount.
● P33: A user can't withdraw more than his current aToken balance.Total

assets of user is preserved
● P34: A user can't withdraw more than the liquidity available in the reserve

(the total deposited - the borrowed)
● P35: A user can't withdraw an amount that would set his Health Factor

below 1e18 (alternatively written, after a redeem() the HF of the user can't
be < 1e18)

● P36: After withdraw, the withdrawn amount is subtracted from the user aToken
balance

● P37: After withdraw, the user receives the exact withdrawn amount in the
underlying token.

● P38: Whenever a user withdraws, the balanceOf(aToken) for the underlying
asset decreases of the amount withdrawn

● P39: On any withdraw, if the asset is being borrowed at
variable(totalSupply(variableDebtToken) > 0 for the particular asset), the variable
borrow rate goes up as long as the withdrawn amount isn’t so small that the
impact on the variable borrow rate is below the margin of error (10^-27)

● P40: On any withdraw, if the asset is being borrowed at stable
(totalSupply(stableDebtToken) > 0 for the particular asset), the stable borrow rate
goes up as long as the withdrawn amount isn’t so small that the impact on the
variable borrow rate is below the margin of error (10^-27)

● P41: On any deposit, if the asset is being borrowed
(totalSupply(stableDebtToken) + totalSupply(variableDebtToken) > 0 for the
particular asset), the liquidity rate goes up as long as the withdrawn amount isn’t
so small that the impact on the liquidity rate is below the margin of error 10^-27.

Critical properties to ensure no funds can be trivially stolen

- P9: When a user deposits X amount of an asset, his collateral in the system
is increased by X. Integrity of deposit

- P10: When a user deposits X amount of an asset, he receives exactly X
amount of the corresponding aToken.Integrity of deposit

- P11: When a user deposits X amount of an asset, the protocol balance on
that asset is increased by X. Integrity of the system + Integrity of deposit

- P23: A borrower whose health factor is below 1 can't borrow. Valid
Operation with respect to health factor

- P24: A borrower can only borrow up to the amount which would set the HF
to 1 (alternatively written, after a borrow action the HF of the borrower is
always > 1) Valid Operation with respect to health factor ?

- P25: Whenever a user borrows an asset at a variable rate, the balanceOf(user)
on the VariableDebtToken increases by the amount borrowed

- P26: Whenever a user borrows an asset at a stable rate, the balanceOf(user) on
the StableDebtToken increases by the amount borrowed

- P27: When a user borrows X amount of an asset they will receive exactly X
amount of that asset.Integrity of borrow

- P28: When a user borrows X amount of an asset, the protocol balance of
that asset is decreased by X.Integrity of borrow

Disclaimer
The Certora Prover takes as input a contract and a specification and formally proves that the
contract satisfies the specification in all scenarios. Importantly, the guarantees of the Certora
Prover are scoped to the provided specification, and any cases not covered by the specification
are not checked by the Certora Prover.

We hope that this information is useful, but provide no warranty of any kind, express or implied.
The contents of this report should not be construed as a complete guarantee that the Aave
protocol is secure in all dimensions. In no event shall Certora or any of its employees be liable
for any claim, damages or other liability, whether in an action of contract, tort or otherwise,
arising from, out of or in connection with the results reported here.

