
29.03.2021 Aave Balancer and Uniswap v2 Price Providers | ConsenSys Diligence

https://consensys.net/diligence/audits/2020/08/aave-balancer-and-uniswap-v2-price-providers/ 1/17

A CONSENSYS DILIGENCE AUDIT REPORT

Aave Balancer and
Uniswap v2 Price Providers

Date August 2020

1 Document Change Log
Version Date Description

1.0 2020-08-17 Initial report

1.1 2020-08-28 Updated with remediation

2 Executive Summary
This report presents the results of our assessment of Aave’s Balancer and
Uniswap v2 Price Providers, both of which are an extension to the existing
Aave protocol. Both price providers act as an oracle that returns the price in
ETH per liquidity token.

The assessment was conducted from Aug 10 to Aug 14, 2020 as part of an
ongoing engagement between Aave and ConsenSys Diligence. The objective

https://pages.consensys.net/diligence-1-day-spot-check

29.03.2021 Aave Balancer and Uniswap v2 Price Providers | ConsenSys Diligence

https://consensys.net/diligence/audits/2020/08/aave-balancer-and-uniswap-v2-price-providers/ 2/17

of this collaboration is a more agile and iterative approach to smart contract
security vs. the ‘security last’ approach currently dominating in the industry.

3 Scope
Our review focused on the Balancer Price Provider Adapter (
BalancerSharedPoolPriceProvider.sol) and the Uniswap v2 Price Provider Adapter (
UniswapV2PriceProvider.sol).

3.1 Objectives

We focused on the following objectives for our review:

�. Ensure the absence of known security vulnerabilities

�. Ensure the contract satis�ies the critical requirements of an oracle:

�. Availability: it returns a value when requested.

�. Integrity/Authenticity: it returns the correct value.

4 Discussion
In the recent audit of the Aave CPM Price Provider we outlined a price
manipulation vector which was mitigated by implementing means of
detecting price manipulation.

Both contracts under audit implement similar means to detect manipulation
by comparing the price derived from the state of the 3rd party exchange to
the price provided by the Chainlink oracle. If the prices differ signi�icantly,
the Chainlink price is taken as correct, and used to derive the proper asset
balance for that price.

The improved design may still have issues at times of high price volatility
and/or network congestion. If the Chainlink oracle becomes stale for some
reason (or an attacker intentionally causes the Chainlink update to be
delayed) the liquidity pool could actually re�lect the market price more
accurately. In that case, the stale or manipulated Chainlink price would take
precedence in determining the value of the 3rd party exchange tokens.
However, the Chainlink oracle price is likely harder to manipulate than the
liquidity pool reserve ratio, and under normal circumstances the error margin

https://consensys.net/diligence/audits/2020/05/aave-cpm-price-provider/#discussion

29.03.2021 Aave Balancer and Uniswap v2 Price Providers | ConsenSys Diligence

https://consensys.net/diligence/audits/2020/08/aave-balancer-and-uniswap-v2-price-providers/ 3/17

would be limited to the size of the price change in real world markets. A
su�iciently large over-collateralization requirement should be su�icient to
protect against opportunistic borrowers seeking to take under-collateralized
loans during times of high volatility and chain congestion.

4.1 Balancer Price Provider

The contract is parameterized on deployment. Neither the deployer nor any
other party remains in direct control of the contract. However, it is important
to verify the parameterization of the contract before interacting with it,
epecially as the version under audit does not validate constructor arguments
which might result in a deployed but incorrectly operating price provider.
The main consumer of this contract is the Aave platform.

The contract consumes ChainLink Price oracle feeds via the Aaave oracle
provider, interfaces with the con�igured balancer pool contract and only
operates on �inalized shared balancer pools. This means that the operator of
the balancer pool cannot add/remove or change weights for the pool tokens.
These values are therefore considered constant and it is safe to fetch them
when deploying the contract.

The contract exposes one external main method named latestAnswer() which
determines the referenced Balancer Pool Token (BPT) value based on the
asset distribution and their prices in ETH .

The BPT token value is determined in three steps:

�. For every token in the pool the corresponding balance in ETH (
TokenBalanceEth) is determined using a Chainlink oracle:
BalancerPoolBalance(token) * ChainLinkTokenPrice(token) .

�. For every token in the pool it is checked whether there is a deviation of
more than +/- MAX_DEVIATION percent from the Chainlink price:
Deviation = SpotPrice(TokenO, TokenI)/ChainlinkPrice(TokenO, TokenI) .

�. Calculate the price:
�. No deviation: In order to safe gas the pool token value is calculated

as Sum(TokenBalanceEth(token) for each token)/poolToken.totalSupply .

�. Deviation detected: The token value is calculated as the geometric
mean rebalanced to the ChainLink price as:

29.03.2021 Aave Balancer and Uniswap v2 Price Providers | ConsenSys Diligence

https://consensys.net/diligence/audits/2020/08/aave-balancer-and-uniswap-v2-price-providers/ 4/17

Product(TokenBalanceEth(token)^weight for each token) * k /
poolToken.totalSupply

. The result is approximated using various methods.

poolToken.totalSupply is the total supply of the BAL pool token.

The speci�ication document
code/aave-balancer-3e8367ab/Specification Balancer Shared Pool Price Provider.pdf (
git hash-object: b411637cc3ccf0fea7915657ce29422dec97d097) provides a discussion

about potential attacks and the proof for the alternate method of
determining the token price.

4.2 Uniswap v2 Price Provider

The contract is parameterized on deployment. Neither the deployer nor any
other party remains in direct control of the contract. However, it is important
to verify the parameterization of the contract before interacting with it,
especially as the version under audit does not validate constructor
arguments which might result in a deployed but incorrectly operating price
provider. The main consumer of this contract is the Aave platform.

The contract exposes one external main method named latestAnswer() which
determines the referenced Uniswap pool token in ETH. The value is
determined in three steps:

�. For each token the balance in ETH (TokenBalanceEth) is determined using a
Chainlink oracle: TokenReserve * ChainLinkTokenPrice .

�. For the token pair it is checked whether there is a deviation of more than
+/- MAX_DEVIATION percent from the Chainlink price:
Deviation = TokenBalanceEth(tokenA) / TokenBalanceEth(tokenB) or
Deviation = TokenBalanceEth(tokenB) / TokenBalanceEth(tokenA) .

�. Calculate the price:
�. No deviation: In order to safe gas the value is calculated as

Sum(TokenBalanceEth(token) for each token) / pair.totalSupply .

�. Deviation detected: The token value is calculated as the geometric
mean rebalanced to the ChainLink price as:
2 * sqrt(TokenBalanceEth(tokenA) * TokenBalanceEth(tokenB)) / pair.totalSupply

The pair.totalSupply is the Uniswap V2 pair total supply.

29.03.2021 Aave Balancer and Uniswap v2 Price Providers | ConsenSys Diligence

https://consensys.net/diligence/audits/2020/08/aave-balancer-and-uniswap-v2-price-providers/ 5/17

The speci�ication document
code/aave-uniswapv2-e81cf872/Final Specification Uniswap V2 Price Provider.pdf (
git hash-object: c98c8c325cfecf99a1abcfc291457ea8e2080686) discusses potential

attacks and provides a proof for the alternative method of calculating the
token price. We would like to note that the audit team suggested the
following minor changes to the document:

Page 6: Ratio R should be named Rio or Roi as usually Rio != Roi with
Rio = 1/Roi

Page 6: The formula for the �irst 1st and the 2nd ratio do not match. the
�irst ratio is Rio and the 2nd is Roi which might be confusing

Page 8: eq2 SPyx = y/x should be SPyx = x/y , hence eq4 should be
y/x = Py/Px , therefore, eq10 cannot be simpli�ied to eq11.

The issues were partially addressed with gitlab revision: b3c66a57, �ixing the
error on Page 8. However, eq2 should be SPyx = x / y and eq3 should be
CPyx = Px/Py according to the de�initions on page 6. This, however, does not

change the resulting simpli�ied formula for the geometric mean.

5 Recommendations
Each issue has an assigned severity:

Minor issues are subjective in nature. They are typically suggestions
around best practices or readability. Code maintainers should use their
own judgment as to whether to address such issues.

Medium issues are objective in nature but are not security vulnerabilities.
These should be addressed unless there is a clear reason not to.

Major issues are security vulnerabilities that may not be directly
exploitable or may require certain conditions in order to be exploited. All
major issues should be addressed.

Critical issues are directly exploitable security vulnerabilities that need to
be �ixed.

5.1 Code readability - Rename priceDeviation to
maxPriceDeviation ✓ Fixed

https://gitlab.com/aave-tech/aave-uniswapv2/-/blob/b3c66a57/Final%20Specification%20Uniswap%20V2%20Price%20Provider.pdf

29.03.2021 Aave Balancer and Uniswap v2 Price Providers | ConsenSys Diligence

https://consensys.net/diligence/audits/2020/08/aave-balancer-and-uniswap-v2-price-providers/ 6/17

Resolution

The variable was renamed.

Description

Improve code readability by renaming the state variable priceDeviation to
maxPriceDeviation , distinguishing it from the local variable price_deviation and

indicating that the variable is a limit as outlined in the speci�ication (
MAX_DEVIATION).

Balancer

code/aave-balancer-
3e8367ab/contracts/proxies/BalancerSharedPoolPriceProvider.sol:L124-
L129

if (
 price_deviation > (BONE + priceDeviation) ||
 price_deviation < (BONE - priceDeviation)
) {
 return true;
}

Uniswapv2

code/aave-uniswapv2-
e81cf872/contracts/proxies/UniswapV2PriceProvider.sol:L83-L95

if (
 price_deviation > (Math.BONE + priceDeviation) ||
 price_deviation < (Math.BONE - priceDeviation)
) {
 return true;
}
price_deviation = Math.bdiv(ethTotal_1, ethTotal_0);
if (
 price_deviation > (Math.BONE + priceDeviation) ||
 price_deviation < (Math.BONE - priceDeviation)
) {
 return true;
}

29.03.2021 Aave Balancer and Uniswap v2 Price Providers | ConsenSys Diligence

https://consensys.net/diligence/audits/2020/08/aave-balancer-and-uniswap-v2-price-providers/ 7/17

5.2 Improve Input Validation ✓ Fixed

Resolution

the recommended checks have been added to the constructor.

Description

The constructor does not validate whether the provided price provider
arguments actually make sense. In the worst-case someone might be able to
deploy the contract that cannot be used. It is recommended to fail the
contract creation early if invalid arguments are detected.

Consider implementing the following checks to detect whether a non-viable
price provider is being deployed:

tokens.length > 1 and less than the maximum supported tokens (note that
hasDeviation requires token.length**2 iterations if no deviation is detected)

_isPeggedToEth.length == tokens.length

_decimals.length == tokens.length

approximationMatrix.length && approximationMatrix[0][0].length == tokens.length +1

_priceDeviation is within bounds (less than 100%, i.e. less than 1 * BONE)
otherwise the calculation might under�low.

_powerPrecision is within bounds

address(_priceOracle) != address(0)

Balancer

code/aave-balancer-
3e8367ab/contracts/proxies/BalancerSharedPoolPriceProvider.sol:L38-
L63

29.03.2021 Aave Balancer and Uniswap v2 Price Providers | ConsenSys Diligence

https://consensys.net/diligence/audits/2020/08/aave-balancer-and-uniswap-v2-price-providers/ 8/17

Uniswapv2

code/aave-uniswapv2-
e81cf872/contracts/proxies/UniswapV2PriceProvider.sol:L35-L50

constructor(
 IUniswapV2Pair _pair,
 bool[] memory _isPeggedToEth,
 uint8[] memory _decimals,
 IPriceOracle _priceOracle,
 uint256 _priceDeviation
) public {
 pair = _pair;
 //Get tokens
 tokens.push(pair.token0());
 tokens.push(pair.token1());
 isPeggedToEth = _isPeggedToEth;
 decimals = _decimals;
 priceOracle = _priceOracle;
 priceDeviation = _priceDeviation;
}

constructor(
 BPool _pool,
 bool[] memory _isPeggedToEth,
 uint8[] memory _decimals,
 IPriceOracle _priceOracle,
 uint256 _priceDeviation,
 uint256 _K,
 uint256 _powerPrecision,
 uint256[][] memory _approximationMatrix
) public {
 pool = _pool;
 //Get token list
 tokens = pool.getFinalTokens(); //This already checks for pool finalized
 //Get token normalized weights
 uint256 length = tokens.length;
 for (uint8 i = 0; i < length; i++) {
 weights.push(pool.getNormalizedWeight(tokens[i]));
 }
 isPeggedToEth = _isPeggedToEth;
 decimals = _decimals;
 priceOracle = _priceOracle;
 priceDeviation = _priceDeviation;
 K = _K;
 powerPrecision = _powerPrecision;
 approximationMatrix = _approximationMatrix;
}

29.03.2021 Aave Balancer and Uniswap v2 Price Providers | ConsenSys Diligence

https://consensys.net/diligence/audits/2020/08/aave-balancer-and-uniswap-v2-price-providers/ 9/17

5.3 Use SafeMath consistently ✓ Fixed

Resolution

All arithmetic operations now use SafeMath.

Description

Even though the Uniswap price provider imports the SafeMath library, the
SafeMath library functions aren’t always used for integer arithmetic
operations. Note that plain Solidity arithmetic operators do not check for
integer under�lows and over�lows.

Examples

Example 1:

code/aave-uniswapv2-
e81cf872/contracts/proxies/UniswapV2PriceProvider.sol:L66

uint256 missingDecimals = 18 - decimals[index];

Example 2 (same in line 91-92):

code/aave-uniswapv2-
e81cf872/contracts/proxies/UniswapV2PriceProvider.sol:L84-L85

price_deviation > (Math.BONE + priceDeviation) ||
price_deviation < (Math.BONE - priceDeviation)

Example 3:

code/aave-uniswapv2-
e81cf872/contracts/proxies/UniswapV2PriceProvider.sol:L164-L165

uint256 liquidity = numerator / denominator;
totalSupply += liquidity;

29.03.2021 Aave Balancer and Uniswap v2 Price Providers | ConsenSys Diligence

https://consensys.net/diligence/audits/2020/08/aave-balancer-and-uniswap-v2-price-providers/ 10/17

Recommendation

In some cases, this issue is cosmetic because the values are assumed to be
within certain ranges. Nevertheless, we recommend accepting the slightly
higher gas cost for SafeMath functions for consistency and to prevent
potential issues.

6 Issues
The issues are presented in approximate order of priority from highest to
lowest.

6.1 Unchecked Specification requirement - token limit
Closed

Description

According to the Balancer Shared Pool Price Provider that was provided with the
audit code-base the price provide must ful�ill the following requirements:

Pool token price cannot be manipulated

Chainlink will be used as the main oracle

It should use as less gas as possible

Limited to Balancer’s shared pools where the weights cannot
be changed

Limited to a pool containing 2 to 3 tokens

However, the constructor of the price provider does not enforce the limit of 2
to 3 tokens.

Examples

code/aave-balancer-
3e8367ab/contracts/proxies/BalancerSharedPoolPriceProvider.sol:L38-
L63

29.03.2021 Aave Balancer and Uniswap v2 Price Providers | ConsenSys Diligence

https://consensys.net/diligence/audits/2020/08/aave-balancer-and-uniswap-v2-price-providers/ 11/17

Recommendation

Require that the number of tokens returned by pool.getFinalTokens() is
2<= len <=3 .

6.2 Integer underflow if a token specifies more than 18
decimals Closed

Description

Decimals are provided by the account deploying the price provider contract.
In getEthBalanceByToken the assumption is made that decimals[index] is less or
equal to 18 decimals, however, the deployer may provide decimals that are
not within normal operating bounds. Contract creation succeeds, while the
contract is not viable.

Examples

constructor(
 BPool _pool,
 bool[] memory _isPeggedToEth,
 uint8[] memory _decimals,
 IPriceOracle _priceOracle,
 uint256 _priceDeviation,
 uint256 _K,
 uint256 _powerPrecision,
 uint256[][] memory _approximationMatrix
) public {
 pool = _pool;
 //Get token list
 tokens = pool.getFinalTokens(); //This already checks for pool finalized
 //Get token normalized weights
 uint256 length = tokens.length;
 for (uint8 i = 0; i < length; i++) {
 weights.push(pool.getNormalizedWeight(tokens[i]));
 }
 isPeggedToEth = _isPeggedToEth;
 decimals = _decimals;
 priceOracle = _priceOracle;
 priceDeviation = _priceDeviation;
 K = _K;
 powerPrecision = _powerPrecision;
 approximationMatrix = _approximationMatrix;
}

29.03.2021 Aave Balancer and Uniswap v2 Price Providers | ConsenSys Diligence

https://consensys.net/diligence/audits/2020/08/aave-balancer-and-uniswap-v2-price-providers/ 12/17

The value under�lows if the contract is used with a token decimals > 18.

Balancer

code/aave-balancer-
3e8367ab/contracts/proxies/BalancerSharedPoolPriceProvider.sol:L69-
L78

function getEthBalanceByToken(uint256 index)
 internal
 view
 returns (uint256)
{
 uint256 pi = isPeggedToEth[index]
 ? BONE
 : uint256(priceOracle.getAssetPrice(tokens[index]));
 require(pi > 0, "ERR_NO_ORACLE_PRICE");
 uint256 missingDecimals = 18 - decimals[index];

Uniswapv2

code/aave-uniswapv2-
e81cf872/contracts/proxies/UniswapV2PriceProvider.sol:L57-L66

function getEthBalanceByToken(uint256 index, uint112 reserve)
 internal
 view
 returns (uint256)
{
 uint256 pi = isPeggedToEth[index]
 ? Math.BONE
 : uint256(priceOracle.getAssetPrice(tokens[index]));
 require(pi > 0, "ERR_NO_ORACLE_PRICE");
 uint256 missingDecimals = 18 - decimals[index];

Recommendation

Add a check to the constructor to ensure that none of the provided decimals
is greater than 18.

Appendix 1 - Files in Scope
This audit covered the following �iles:

29.03.2021 Aave Balancer and Uniswap v2 Price Providers | ConsenSys Diligence

https://consensys.net/diligence/audits/2020/08/aave-balancer-and-uniswap-v2-price-providers/ 13/17

4.1 Balancer Price Provider

Revision of the repository under audit: 3e8367ab211a137afff87dd8dadc0efe235257d4

File Name SHA-1 Hash git hash-object

aave-balancer-
3e8367ab/contracts/proxies/Ba
lancerSharedPoolPriceProvider.
sol

d13214588b26fd8
56f06b51873113a
cbc59b7950

f4cfa7bcfaf856a1
2b293d5e13bcb5
8911c0a4f6

Out of Scope

Files Excluded for being an Interface or a copy of an audited 3rd party
component.

File Name SHA-1 Hash git hash-object

aave-balancer-
3e8367ab/contracts/inter
faces/IPriceOracle.sol

35cf8e4c5cd0035e
44484a3b8202f65d
06f990b8

ac83f98fed040b3fc
f555f858327fef9bd0
45fd4

aave-balancer-
3e8367ab/contracts/inter
faces/BPool.sol

6f49423eb769a025
081b448ea96acac3
0958ba5f

005437d8c9cfc428
bbac032f93c86e28
5924f54b

aave-balancer-
3e8367ab/contracts/misc
/BConst.sol

beeccc9a3f683651c
146507f1c1aeba4b4
db12f2

48bc5cd9493d44d
8151c8dcc13029cf9
76377000

aave-balancer-
3e8367ab/contracts/misc
/BNum.sol

4ae208b6caa2e454
91e86063349c5e9c
f8c47b9d

58c3824c8913aeae7
3da5b898e10c7bf4
3db925b

BConst.sol was veri�ied to be an unmodi�ied copy of balancer-
labs/Bconst.sol

BNum.sol was veri�ied to be an unmodi�ied copy of balancer-
labs/BNum.sol

4.2 Uniswap v2 Price Provider

Revision of the repository under audit: e81cf872e3c08d7c43c1e1d2e90dffa01844230e

https://github.com/balancer-labs/balancer-core/blob/e232d03eea1c66529f22d3157c7f560bf0782370/contracts/BConst.sol
https://github.com/balancer-labs/balancer-core/blob/e232d03eea1c66529f22d3157c7f560bf0782370/contracts/BNum.sol

29.03.2021 Aave Balancer and Uniswap v2 Price Providers | ConsenSys Diligence

https://consensys.net/diligence/audits/2020/08/aave-balancer-and-uniswap-v2-price-providers/ 14/17

File Name SHA-1 Hash git hash-object

aave-uniswapv2-
e81cf872/contracts/proxies/
UniswapV2PriceProvider.sol

aa267c067d7be83
642a9555cd190a0
cf136d9bea

e2702ae70d7804d
882b8996a13bb2b
7ab6af9693

Out of Scope

Files Excluded for being an Interface or a copy of an audited 3rd party
component.

File Name SHA-1 Hash git hash-object

aave-uniswapv2-
e81cf872/contracts/misc/Sa
feMath.sol

f9900f7586bbc0c1
362e1b1c93d5054c
8a0ae277

38921c90eb539aa
ea011cf1b75a54f69
d2466982

aave-uniswapv2-
e81cf872/contracts/misc/M
ath.sol

1dfd0f12e6967a547
d3161d2�bf7510514
7d920b

9bc3570b330a72c
e1973ec94b329d4a
1ce22e555

aave-uniswapv2-
e81cf872/contracts/interfac
es/IPriceOracle.sol

35cf8e4c5cd0035
e44484a3b8202f6
5d06f990b8

ac83f98fed040b3f
cf555f858327fef9b
d045fd4

aave-uniswapv2-
e81cf872/contracts/interfac
es/IUniswapV2Factory.sol

8fe4e07b64e4820
bbda4386c9c903c
868de4d23f

0a9cb0b57533c3b
026d982ab830c63
f786ba7c27

aave-uniswapv2-
e81cf872/contracts/interfac
es/IUniswapV2Pair.sol

bef5664cddbb670
e01ad20ea59e66e
66c2b1e02d

3b40ec05a7a18ba2
4b62a81908311e10f
cf85e3a

SafeMath.sol was veri�ied to be an unmodi�ied copy of dsmath/math.sol

Math.sol includes methods where all but bsqrt are identical to balancer-
labs/BNum.sol

Appendix 2 - Disclosure
ConsenSys Diligence (“CD”) typically receives compensation from one or
more clients (the “Clients”) for performing the analysis contained in these

https://github.com/dapphub/ds-math/blob/ce67c0fa9f8262ecd3d76b9e4c026cda6045e96c/src/math.sol
https://github.com/balancer-labs/balancer-core/blob/e232d03eea1c66529f22d3157c7f560bf0782370/contracts/BNum.sol

29.03.2021 Aave Balancer and Uniswap v2 Price Providers | ConsenSys Diligence

https://consensys.net/diligence/audits/2020/08/aave-balancer-and-uniswap-v2-price-providers/ 15/17

reports (the “Reports”). The Reports may be distributed through other means,
including via ConsenSys publications and other distributions.

The Reports are not an endorsement or indictment of any particular project
or team, and the Reports do not guarantee the security of any particular
project. This Report does not consider, and should not be interpreted as
considering or having any bearing on, the potential economics of a token,
token sale or any other product, service or other asset. Cryptographic tokens
are emergent technologies and carry with them high levels of technical risk
and uncertainty. No Report provides any warranty or representation to any
Third-Party in any respect, including regarding the bugfree nature of code,
the business model or proprietors of any such business model, and the legal
compliance of any such business. No third party should rely on the Reports in
any way, including for the purpose of making any decisions to buy or sell any
token, product, service or other asset. Speci�ically, for the avoidance of
doubt, this Report does not constitute investment advice, is not intended to
be relied upon as investment advice, is not an endorsement of this project or
team, and it is not a guarantee as to the absolute security of the project. CD
owes no duty to any Third-Party by virtue of publishing these Reports.

PURPOSE OF REPORTS The Reports and the analysis described therein are
created solely for Clients and published with their consent. The scope of our
review is limited to a review of Solidity code and only the Solidity code we
note as being within the scope of our review within this report. The Solidity
language itself remains under development and is subject to unknown risks
and �laws. The review does not extend to the compiler layer, or any other
areas beyond Solidity that could present security risks. Cryptographic tokens
are emergent technologies and carry with them high levels of technical risk
and uncertainty.

CD makes the Reports available to parties other than the Clients (i.e., “third
parties”) – on its website. CD hopes that by making these analyses publicly
available, it can help the blockchain ecosystem develop technical best
practices in this rapidly evolving area of innovation.

LINKS TO OTHER WEB SITES FROM THIS WEB SITE You may, through
hypertext or other computer links, gain access to web sites operated by
persons other than ConsenSys and CD. Such hyperlinks are provided for your
reference and convenience only, and are the exclusive responsibility of such
web sites’ owners. You agree that ConsenSys and CD are not responsible for

29.03.2021 Aave Balancer and Uniswap v2 Price Providers | ConsenSys Diligence

https://consensys.net/diligence/audits/2020/08/aave-balancer-and-uniswap-v2-price-providers/ 16/17

the content or operation of such Web sites, and that ConsenSys and CD shall
have no liability to you or any other person or entity for the use of third party
Web sites. Except as described below, a hyperlink from this web Site to
another web site does not imply or mean that ConsenSys and CD endorses
the content on that Web site or the operator or operations of that site. You
are solely responsible for determining the extent to which you may use any
content at any other web sites to which you link from the Reports. ConsenSys
and CD assumes no responsibility for the use of third party software on the
Web Site and shall have no liability whatsoever to any person or entity for the
accuracy or completeness of any outcome generated by such software.

TIMELINESS OF CONTENT The content contained in the Reports is current as
of the date appearing on the Report and is subject to change without notice.
Unless indicated otherwise, by ConsenSys and CD.

https://consensys.net/diligence/audits/
https://consensys.net/diligence/blog/
https://consensys.net/diligence/tools/
https://consensys.net/diligence/research/
https://consensys.net/diligence/about/
https://consensys.net/diligence/contact/
https://consensys.net/open-roles/?discipline=32525
https://consensys.net/diligence/contact/

