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1 Introduction

Given the opportunity to review the CreditDelegationVault smart contract source code, we in the
report outline our systematic approach to evaluate potential security issues in the smart contract
implementation, expose possible semantic inconsistencies between smart contract code and design
document, and provide additional suggestions or recommendations for improvement. Our results
show that the given version of smart contract can be further improved due to the presence of several

issues. This document outlines our audit results.

1.1 About CreditDelegationVault

Aave is a decentralized non-custodial money market protocol where users can participate as depositors
or borrowers. Depositors provide liquidity to the market to earn a passive income, while borrowers
are able to borrow in an overcollateralized (perpetually) or undercollateralized (one-block flashloan)
fashion. As the name indicates, the smart contract CreditDelegationVault can be used to create
so-called credit delegation vault. With the vault, an Aave depositor could delegate his credit line to
a third party to withdraw the credit. In the meantime, the Aave depositor can set different kind of
parameters on the vault, such as currency, which rate mode can draw (variable or stable), and what
currency can be drawn.

The basic information of CreditDelegationVault is as follows:

Table 1.1:  Basic Information of CreditDelegationVault

Item  Description

Issuer | Aave
Website | https://aave.com/
Type | Ethereum Smart Contract
Platform | Solidity
Audit Method | Whitebox
Latest Audit Report | August 5, 2020

5/31 PeckShield Audit Report #: 2020-22



Confidential

In the following, we show the repository of reviewed code (verified in etherscan.io) used in this
audit. We need to point out that CreditDelegationVault re-uses the same trusted oracles in Aave
with timely market price feeds and the oracles themselves are not part of this audit.

o https://etherscan.io/address/0x22fad18e5cla8c483aca2132f6725c7dabefb799# code

1.2 About PeckShield

PeckShield Inc. [17] is a leading blockchain security company with the goal of elevating the secu-
rity, privacy, and usability of current blockchain ecosystems by offering top-notch, industry-leading
services and products (including the service of smart contract auditing). We are reachable at Telegram
(https://t.me/peckshield), Twitter (http://twitter.com/peckshield), or Email (contact@peckshield.com).

Table 1.2: Vulnerability Severity Classification

High High
s
8 Medium
£
Low
High Medium Low
Likelihood

1.3 Methodology

To standardize the evaluation, we define the following terminology based on OWASP Risk Rating
Methodology [12]:

e Likelihood represents how likely a particular vulnerability is to be uncovered and exploited in
the wild;

e Impact measures the technical loss and business damage of a successful attack;

e Severity demonstrates the overall criticality of the risk.

Likelihood and impact are categorized into three ratings: H, M and L, i.e., high, medium and
low respectively. Severity is determined by likelihood and impact and can be classified into four
categories accordingly, i.e., Critical, High, Medium, Low shown in Table 1.2.
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Table 1.3: The Full List of Check Items

Category

Basic Coding Bugs

Check Item
Constructor Mismatch

Ownership Takeover

Redundant Fallback Function

Overflows & Underflows

Reentrancy

Money-Giving Bug

Blackhole

Unauthorized Self-Destruct

Revert DoS

Unchecked External Call

Gasless Send

Send Instead Of Transfer

Costly Loop

(Unsafe) Use Of Untrusted Libraries

(Unsafe) Use Of Predictable Variables

Transaction Ordering Dependence

Deprecated Uses

Semantic Consistency Checks

Semantic Consistency Checks

Advanced DeFi Scrutiny

Business Logics Review

Functionality Checks

Authentication Management

Access Control & Authorization

Oracle Security

Digital Asset Escrow

Kill-Switch Mechanism

Operation Trails & Event Generation

ERC20 Idiosyncrasies Handling

Frontend-Contract Integration

Deployment Consistency

Holistic Risk Management

Additional Recommendations

Avoiding Use of Variadic Byte Array

Using Fixed Compiler Version

Making Visibility Level Explicit

Making Type Inference Explicit

Adhering To Function Declaration Strictly

Following Other Best Practices
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To evaluate the risk, we go through a list of check items and each would be labeled with
a severity category. For one check item, if our tool or analysis does not identify any issue, the
contract is considered safe regarding the check item. For any discovered issue, we might further
deploy contracts on our private testnet and run tests to confirm the findings. If necessary, we would
additionally build a PoC to demonstrate the possibility of exploitation. The concrete list of check
items is shown in Table 1.3.

In particular, we perform the audit according to the following procedure:

e Basic Coding Bugs: We first statically analyze given smart contracts with our proprietary static

code analyzer for known coding bugs, and then manually verify (reject or confirm) all the issues

found by our tool.

e Semantic Consistency Checks: We then manually check the logic of implemented smart con-

tracts and compare with the description in the white paper.

e Advanced DeFi Scrutiny: We further review business logics, examine system operations, and

place DeFi-related aspects under scrutiny to uncover possible pitfalls and/or bugs.

e Additional Recommendations: We also provide additional suggestions regarding the coding and

development of smart contracts from the perspective of proven programming practices.

To better describe each issue we identified, we categorize the findings with Common Weakness
Enumeration (CWE-699) [11], which is a community-developed list of software weakness types to
better delineate and organize weaknesses around concepts frequently encountered in software devel-
opment. Though some categories used in CWE-699 may not be relevant in smart contracts, we use

the CWE categories in Table 1.4 to classify our findings.

1.4 Disclaimer

Note that this audit does not give any warranties on finding all possible security issues of the given
smart contract(s), i.e., the evaluation result does not guarantee the nonexistence of any further
findings of security issues. As one audit-based assessment cannot be considered comprehensive, we
always recommend proceeding with several independent audits and a public bug bounty program to
ensure the security of smart contract(s). Last but not least, this security audit should not be used

as an investment advice.
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Table 1.4:  Common Weakness Enumeration (CWE) Classifications Used in This Audit

Category
Configuration

Summary
Weaknesses in this category are typically introduced during
the configuration of the software.

Data Processing Issues

Weaknesses in this category are typically found in functional-
ity that processes data.

Numeric Errors

Weaknesses in this category are related to improper calcula-
tion or conversion of numbers.

Security Features

Weaknesses in this category are concerned with topics like
authentication, access control, confidentiality, cryptography,
and privilege management. (Software security is not security
software.)

Time and State

Weaknesses in this category are related to the improper man-
agement of time and state in an environment that supports
simultaneous or near-simultaneous computation by multiple
systems, processes, or threads.

Error Conditions,
Return Values,
Status Codes

Weaknesses in this category include weaknesses that occur if
a function does not generate the correct return/status code,
or if the application does not handle all possible return/status
codes that could be generated by a function.

Resource Management

Weaknesses in this category are related to improper manage-
ment of system resources.

Behavioral Issues

Weaknesses in this category are related to unexpected behav-
iors from code that an application uses.

Business Logics

Weaknesses in this category identify some of the underlying
problems that commonly allow attackers to manipulate the
business logic of an application. Errors in business logic can
be devastating to an entire application.

Initialization and Cleanup

Weaknesses in this category occur in behaviors that are used
for initialization and breakdown.

Arguments and Parameters

Weaknesses in this category are related to improper use of
arguments or parameters within function calls.

Expression Issues

Weaknesses in this category are related to incorrectly written
expressions within code.

Coding Practices

Weaknesses in this category are related to coding practices
that are deemed unsafe and increase the chances that an ex-
ploitable vulnerability will be present in the application. They
may not directly introduce a vulnerability, but indicate the
product has not been carefully developed or maintained.
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2 Findings

2.1 Summary

Here is a summary of our findings after analyzing the CreditDelegationVault implementation. During
the first phase of our audit, we studied the smart contract source code and ran our in-house static
code analyzer through the codebase. The purpose here is to statically identify known coding bugs,
and then manually verify (reject or confirm) issues reported by our tool. We further manually review
business logics, examine system operations, and place DeFi-related aspects under scrutiny to uncover

possible pitfalls and/or bugs.

Severity ‘ # of Findings
Critical 0

High 1N

Medium 3/ HAEN

Low 3/ AEN

Informational 2| ANl

Total 9

We have so far identified a list of potential issues: some of them involve subtle corner cases that might
not be previously thought of, while others refer to unusual interactions among multiple contracts.
For each uncovered issue, we have therefore developed test cases for reasoning, reproduction, and/or
verification. After further analysis and internal discussion, we determined a few issues of varying
severities need to be brought up and paid more attention to, which are categorized in the above
table. More information can be found in the next subsection, and the detailed discussions of each of

them are in Section 3.
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2.2 Key Findings

Overall, these smart contracts are well-designed and engineered, though the implementation can be
improved by resolving the identified issues (shown in Table 2.1), including 1 high-severity vulnerabil-

ities, 3 medium-severity vulnerabilities, 3 low-severity vulnerabilities, and 2 informational recommen-

dations.
Table 2.1: Key Audit Findings

ID Severity Title | Category =R

PVE-001 Info. External Declaration of Only-Externally-Invoked | Coding Practices Fixed
Functions

PVE-002 | Medium | Mixed Spending Limit Denominations Business Logics Fixed
PVE-003 Low Lack of Access Control in activate() Security Features Fixed
PVE-004 Info. Code Simplification in deployVault() Coding Practices Fixed
PVE-005 Low Improved Sanity Checks in borrow() Security Features Fixed
PVE-006 Low Avoidance of Duplicate Reserves in activate() Business Logics Fixed
PVE-007 | Medium | Incompatibility With Deflationary Tokens Time and State | Confirmed
PVE-008 | Medium | No Return of Possible User Overpayment Business Logics | Confirmed
PVE-009 High Unsupported ETH Borrow And Repay in Vaults Business Logics | Confirmed

Please refer to Section 3 for details.

11/31 PeckShield Audit Report #: 2020-22



© 00 ~NO O~ WN

N

Confidential

3

Detailed Results

3.1 External Declaration of Only-Externally-Invoked Functions

e |ID: PVE-001 e Target: iCollateralVaultProxy
e Severity: Informational e Category: Coding Practices [9]
e Likelihood: N/A e CWE subcategory: CWE-287 [3]
e Impact: N/A

Description

The CreditDelegationVault contracts provide a number of interface functions that are designed to

be called only for external users. Many of these functions are defined as public. In public functions,

Solidity immediately copies array arguments to memory, while external functions can read directly

from calldata. Note that memory allocation can be expensive, whereas reading from calldata is not.

So when these functions are not used within the contract, it's always suggested to define them as

external instead of public. After analyzing the code, we recommend changing the following functions

from public to external:

function
function
function
function
function
function
function
function
function

function
function
function

limit (address vault, address spender) public view returns (uint)

borrowers (address vault) public view returns (address|[] memory)
borrowerVaults(address spender) public view returns (address[] memory)
increaseLimit (address vault, address spender, uint addedValue) public
decreaseLimit(address vault, address spender, uint subtractedValue) public
setModel(iCollateralVault vault, uwint model) public

setBorrow (iCollateralVault vault, address borrow) public
repay(iCollateralVault vault, address reserve, uint amount) public

deployVault() public returns (address)

Listing 3.1:  iCollateralVaultProxy

setModel (uint _model) public onlyOwner
setBorrow (address _asset) public onlyOwner
getReserves () public view returns (address[] memory)

Listing 3.2:  iCollateralVault
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Recommendation Revise the affected functions from being public to external.

3.2 Mixed Spending Limit Denominations

e |ID: PVE-002 e Target: iCollateralVaultProxy
e Severity: Medium e Category: Business Logics [10]
e Likelihood: Medium e CWE subcategory: CWE-841 [6]

Impact: Medium

Description

In the iCollateralVaultProxy contract, the setborrow() function is used to set the token intended for
borrowing. For the specified borrow token, the associated vault owner can specify who are those
legitimate borrowers and what amounts are permitted to borrow. However, when the borrow token
has been changed, the related spending limits are not accordingly updated. Notice that the market
price of one borrow token is likely not the same as another borrow token. Therefore, the spending
limit for one borrow token should not be the same for another borrow token. Otherwise, the difference
may be leveraged by a borrower to draw a larger credit line than permitted.

Specifically, the spending limits are defined in the following private member _1imits. The com-
ment above the member definition shows the spending limits per user are measured in dollars (scaled
by 1e8).

// Spending limits per user measured in dollars 1e8

mapping (address => mapping (address => uint)) private _limits;

Listing 3.3:  iCollateralVaultProxy . sol

The enforcement of spending limits is performed in borrow() (line 398) by calculating the _borrow
amount and ensuring the amount is within the current limit of the spender. We notice that if the
vault's borrow token has not been set, the _borrow amount is denominated indeed in dollars. But
once the borrow token has been set up, the amount becomes denominated in the borrow token. If
the borrow token has been changed to another token, the amount is denominated in the new borrow
token. Despite these changes, the spending limits however remain the same, leading to possible
exploitation by a borrower to draw a larger credit line than permitted.

// amount needs to be normalized

function borrow(iCollateralVault vault, address reserve, uint amount) external {

uint _borrow = amount;
if (vault.asset() = address(0)) {

__borrow = getReservePriceUSD (reserve).mul(amount);
}

13/31 PeckShield Audit Report #: 2020-22



Confidential

398 __approve(address(vault), msg.sender, limits[address(vault)][msg.sender].sub(
__borrow, "borrow amount exceeds allowance"));

399 vault.borrow(reserve , amount, msg.sender);

400 emit Borrow(address(vault), msg.sender, reserve, amount);

401 }

Listing 3.4:  iCollateralVaultProxy . sol

Recommendation Revise the setborrow() logic to ensure the spending limits are reset when

the borrow token is being changed. An example revision is shown below.

359 function setBorrow(iCollateralVault vault, address borrow) public {
360 require (isVaultOwner(address(vault), msg.sender), "!owner");
361 vault.setBorrow (borrow);

362 resetLimit(vault);

363 emit SetBorrow(address(vault), msg.sender, borrow);

364 }

366 function resetLimit(address vault) internal {

367 for (uint i = 0; i< _borrowers[vault].length-1; i++){

368 if (_borrowers[vault][i] !'= 0){

369 _limits[vault][ borrowers[vault][i]] = 0;

370 }

371 }

372 }

Listing 3.5: iCollateralVaultProxy . sol ( revised )

In the new resetLimit () routine, we essentially reset the spending limits back to 0 for all possible

vault spenders.

3.3 Lack of Access Control in activate()

e |ID: PVE-003 e Target: iCollateralVault

e Severity: Low e Category: Security Features [7]
e Likelihood: Medium e CWE subcategory: CWE-287 [3]
e Impact: Low

Description

In the iCollateralvault contract, the activate() function allows for any deposit from LPs to be used
as collateral. We notice that there is no access control restriction imposed on this particular function
and anyone is allowed to invoke it.

255 // LP deposit, anyone can deposit/topup
256 function activate(address reserve) external {
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257 __activeReserves .push(reserve);
258 Aave (getAave()).setUserUseReserveAsCollateral(reserve, true);
259 }

Listing 3.6: iCollateralVaultProxy . sol

Our assessment shows that the lack of access control may not cause any damage on the vault as-
set. However, it does unnecessarily expose the call to Aave (gethave()) .setUserUseReserveAsCollateral
(reserve, true). The call may be abused to enable any reserve in Aave as collateral (even with tiny
dust balance). While it remains to assess the scope of possible impact or further explore any mean-
ingful abuse, it is suggested to add necessary access control for better assurance, just like other

routines such as withdraw().

Recommendation Add the necessary access control restriction to the exposed activate().

255 // LP deposit, anyone can deposit/topup

256 function activate(address reserve) external onlyOwner{

257 __activeReserves.push(reserve);

258 Aave (getAave()).setUserUseReserveAsCollateral(reserve, true);
259 }

Listing 3.7:  iCollateralVaultProxy .sol ( revised )

3.4 Code Simplification in deployVault()

e |ID: PVE-004 e Target: iCollateralVaultProxy
e Severity: Informational e Category: Coding Practices [9]
e Likelihood: N/A e CWE subcategory: CWE-1041 [2]
e Impact: N/A
Description

In the iCollateralVaultProxy contract, the deployvault() function allows liquidity providers to de-
ploy the so-called credit delegation vault. The two related bookkeeping arrays, i.e. _vaults and
_ownedVaults, are accordingly updated with the new vault deployment to properly mark the vault

address and set up the owner.

413 function deployVault() public returns (address) {

414 address vault = address(new iCollateralVault());
416 // Mark address as vault

417 _vaults[vault] = msg.sender;

419 // Set vault owner

420 address [] storage owned = ownedVaults[msg.sender];
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owned . push(vault);

_ownedVaults [msg.sender] = owned;

emit DeployVault(vault, msg.sender);

return vault;

Listing 3.8:  iCollateralVaultProxy . sol

The code snippet can be simplified a bit to remove the use of an internal variable and improve
the readability.

Recommendation Simplify the deployVault() routine as follows.

function deployVault() public returns (address) {

address vault = address(new iCollateralVault());

// Mark address as vault

_vaults[vault] = msg.sender;

// Set vault owner

_ownedVaults [msg.sender]. push(vault);

emit DeployVault(vault, msg.sender);

return vault;

}
Listing 3.9:  iCollateralVaultProxy . sol
3.5 Improved Sanity Checks in borrow()
e |D: PVE-005 e Target: iCollateralVaultProxy
e Severity: Low e Category: Security Features [7]
o Likelihood: Low e CWE subcategory: CWE-287 [3]
e Impact: Low

Description

In the iCollateralVaultProxy contract, the borrow() function allows users to borrow a specific amount

of the reserve currency. The argument vault is an vault instance of iCollateralVault. However, the

sanity checks of the vault are not thorough and an invalid vault may be given. The execution may

still lead to the generation of a misleading or even erroneous event entry Borrow, which otherwise can

be avoided in the first place.

// amount needs to be normalized

function borrow(iCollateralVault vault,

uint borrow = amount;

if (vault.asset()

address (0)) {

address

reserve , uint amount) external {

16/31
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__borrow = getReservePriceUSD (reserve).mul(amount);

¥

__approve(address(vault), msg.sender, limits[address(vault)][msg.sender].sub(
__borrow, "borrow amount exceeds allowance"));

vault.borrow(reserve , amount, msg.sender);
emit Borrow(address(vault), msg.sender, reserve, amount);

Listing 3.10:  iCollateralVaultProxy . sol

Recommendation Revise the above sanity checks by ensuring the given vault is legitimate.

// amount needs to be normalized
function borrow(iCollateralVault vault, address reserve, uint amount) external {
require(isVault(address(vault)), "not a vault");
uint _ borrow = amount;
if (vault.asset() = address(0)) {
__borrow = getReservePriceUSD (reserve).mul(amount);
}
_approve(address(vault), msg.sender, limits[address(vault)][msg.sender].sub(
__borrow, "borrow amount exceeds allowance"));
vault.borrow(reserve , amount, msg.sender);

emit Borrow(address(vault), msg.sender, reserve, amount);

LiSting 3.11: iCollateralVaultProxy . sol

3.6 Avoidance of Duplicate Reserves in activate()

e |ID: PVE-006 e Target: iCollateralVaultProxy
e Severity: Low e Category: Business Logics [10]
o Likelihood: Low e CWE subcategory: CWE-841 [6]
e Impact: Low

Description

In the iCollateralVault contract, the deposit () is used to top up the vault's reserve as collateral. Each
invocation of deposit() will call the vault's activate() function, which pushes the reserve one more
time to the vault storage _activeReserves. In other words, when deposit () are called multiple times,
the activate () function would be called multiple times, resulting in multiple _activeReserves.push().
The additional pushes on the same reserve are a waste of storage use.

// LP deposit, anyone can deposit/topup

function deposit(iCollateralVault vault, address aToken, uint amount) external {
require(isVault(address(vault)), "!vault");
IERC20(aToken).safeTransferFrom (msg.sender, address(vault), amount);
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381 vault.activate (AaveToken(aToken).underlyingAssetAddress());
382 emit Deposit(address(vault), msg.sender, aToken, amount);
383 }

LiSting 3.12: iCollateralVaultProxy . sol

255 // LP deposit, anyone can deposit/topup

256 function activate(address reserve) external {

257 __activeReserves.push(reserve);

258 Aave (getAave()).setUserUseReserveAsCollateral(reserve, true);
259 }

Listing 3.13: iCollateralVaultProxy . sol

An alternative approach will be to recognize existing reserves already pushed into the _activeReserves
storage. For next deposit() on an existing reserve, simply skip the push operation. Note that the
subsequent call of Aave(getAave()).setUserUseReserveAsCollateral (reserve, true) still needs to be
performed as a later repay() may clear the collateral flag (maintained in the Aave protocol) associ-

ated with the user's reserve.

Recommendation Avoid duplicate reserves in activate().

255 // LP deposit, anyone can deposit/topup

256 function activate(address reserve) external onlyOwner {

257 if(_activeReserves[reserve] = address(0)){

258 __activeReserves.push(reserve);

259 }

260 Aave (getAave()).setUserUseReserveAsCollateral(reserve, true);
261 }

Listing 3.14: iCollateralVaultProxy . sol

3.7 Incompatibility With Deflationary Tokens

e |D: PVE-007 e Target: iCollateralVaultProxy,
iCollateralVault

e Category: Time and State [8]

o CWE subcategory: CWE-362 [4]

e Severity: Medium
e Likelihood: Low

e Impact: High

Description

CreditDelegationVault acts as a trustless intermediary between credit providers and borrowing users.

The credit providers deposit certain amount of aToken assets into the CreditDelegationVault as
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collateral and allow for spenders to borrow (per the credit delegation). The spender can later repay
the borrowed amount (plus necessary interest).

For the above two borrower's operations, i.e., borrow and repay, CreditDelegationVault provides
low-level routines to transfer assets into or out of the vault (see the code snippet below). These
asset-transferring routines work as expected with standard ERC20 tokens: namely the vault’s internal
asset balances are always consistent with actual token balances maintained in individual ERC20 token
contract.

// amount needs to be normalized

function borrow(address reserve , uint amount, address to) external nonReentrant
onlyOwner {
require (asset = reserve asset — address(0), "reserve not available");
// LTV logic handled by underlying
Aave (getAave()).borrow(reserve , amount, model, 7);
IERC20(reserve).safeTransfer(to, amount);

¥

function repay(address reserve, uint amount) external nonReentrant onlyOwner {
// Required for certain stable coins (USDT for example)
IERC20(reserve).approve(address(getAaveCore()), 0);
IERC20(reserve).approve(address(getAaveCore()), amount);
Aave (getAave()).repay(reserve, amount, address(uintl60(address(this))));

Listing 3.15: iCollateralVaultProxy . sol

However, there exist other ERC20 tokens that may make certain customization to their ERC20
contracts. One type of these tokens is deflationary tokens that charge certain fee for every transfer or
transferFrom. As a result, this may not meet the assumption behind these low-level asset-transferring
routines. In other words, the above operations, such as deposit and repay, may introduce unexpected
balance inconsistencies when comparing internal asset records with external ERC20 token contracts.
Apparently, these balance inconsistencies are damaging to accurate and precise portfolio management
of CreditDelegationVault and affects protocol-wide operation and maintenance.

One mitigation is to measure the asset change right before and after the asset-transferring rou-
tines. In other words, instead of bluntly assuming the amount parameter in transfer or transferFrom
will always result in full transfer, we need to ensure the increased or decreased amount in the pool
before and after the transfer/transferFrom is expected and aligned well with our operation. Though
these additional checks cost additional gas usage, we consider they are necessary to deal with defla-
tionary tokens or other customized ones if their support is deemed necessary.

Another mitigation is to regulate the set of ERC20 tokens that are permitted into Aave for
borrowing. However, as a plug-in component, CreditDelegationVault may not have the control of
the process. Instead, it can monitor the introduction of such tokens and prevent vaults from using

such tokens.
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Recommendation Apply necessary mitigation mechanisms to regulate non-compliant or unnecessarily-
extended ERC20 tokens.

3.8 No Return of Possible User Overpayment

e |D: PVE-008 e Target: iCollateralVaultProxy,
o Severity: Medium iCollateralVault

e Category: Business Logics [10]
o Likelihood: Medium e CWE subcategory: CWE-841 [6]

e Impact: Medium

Description

In the iCollateralVault contract, the repay() function allows the borrower to repay previous borrows
(internally billed in the name of the vault). However, in the likely case that the borrower may overpay
the borrow amount, the entire amount is transferred to the vault and the overpaid portion does not
automatically refunded back to the borrower.

In the following, we show below related code snippet in repay (). Notice that vault.repay(reserve
, amount) (line 406) is invoked after the transferring of repayment from the borrower to the vault.
Inside the vault.repay(), it directly calls into the Aave protocol, i.e., Aave(gethave()) .repay(reserve
, amount, address(uint160(address(this)))) (line 286).

403 function repay(iCollateralVault vault, address reserve, uint amount) public {
404 require(isVault(address(vault)), "not a vault");

405 IERC20(reserve).safeTransferFrom (msg.sender, address(vault), amount);

406 vault.repay(reserve , amount);

407 emit Repay(address(vault), msg.sender, reserve, amount);

408 }

Listing 3.16: iCollateralVaultProxy . sol

282 function repay(address reserve, uint amount) external nonReentrant onlyOwner {
283 // Required for certain stable coins (USDT for example)

284 IERC20(reserve).approve(address(getAaveCore()), 0);

285 IERC20(reserve).approve(address(getAaveCore()), amount);

286 Aave(getAave()).repay(reserve, amount, address(uintl60(address(this))));
287 }

Listing 3.17: iCollateralVault . sol

The internal logic of Aave.repay() shows that it first determines the actual paybackAmount and
then transfers that amount to the Aave core. In other words, the Aave protocol will not transfer the

payment more than necessary from the "borrower” (the vault in our case). With the introduction
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of CreditDelegationVault, the overpaid amount simply stays in the vault, not back to the actual
borrower. We point out that ERc20-compliant tokens staying in the vault can be retrieved by the

vault owner only (via the withdraw() routine).

5333 function repay(address _reserve, uint256 _amount, address payable onBehalfOf)
5334 external

5335 payable

5336 nonReentrant

5337 onlyActiveReserve( reserve)

5338 onlyAmountGreaterThanZero (_amount)

5339 {

5340 // Usage of a memory struct of vars to avoid "Stack too deep" errors due to

local variables

5341 RepaylLocalVars memory vars;

5343 (

5344 vars.principalBorrowBalance ,

5345 vars .compoundedBorrowBalance ,

5346 vars.borrowBalancelncrease

5347 ) = core.getUserBorrowBalances( reserve, onBehalfOf);

5349 vars.originationFee = core.getUserOriginationFee( reserve, onBehalfOf);

5350 vars .isETH = EthAddressLib.ethAddress() = _reserve;

5352 require (vars.compoundedBorrowBalance > 0, "The user does not have any borrow
pending");

5354 require (

5355 _amount != UINT_MAX VALUE msg.sender == _onBehalfOf,

5356 "To repay on behalf of an user an explicit amount to repay is needed."

5357 )

5359 //default to max amount

5360 vars .paybackAmount = vars.compoundedBorrowBalance.add(vars.originationFee);

5362 if (_amount != UINT_MAX VALUE && amount < vars.paybackAmount) {

5363 vars . paybackAmount = _amount;

5364 }

5366

5367 3

Listing 3.18: LendingPool.sol (Aave)

Recommendation Calculate the required payment amount and return any overpaid amount,

if any, back to the borrower.
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3.9 Unsupported ETH Borrow And Repay in Vaults

e |D: PVE-008 e Target: iCollateralVault

e Severity: High e Category: Business Logics [10]
o Likelihood: Medium e CWE subcategory: CWE-754 [5]
e Impact: High

Description

The Aave protocol supports a number of token assets, including ETH. Internally, the ETH asset is
represented with a mock reserve address, i.e., OxEeceeeEceeEeEeeEeEeEeeEEEceceEeeeeeeeEEeE. With
the introduction of CreditDelegationVault, the borrower may naturally borrow or repay the ETH asset
by following the same fashion as the Aave protocol, including directly transferring ETH to the vault
or using the same mock reserve address. Unfortunately, the CreditDelegationVault contract in the

current prototype does not work the same way regarding the borrow or repay of ETH.

// amount needs to be normalized
function borrow(iCollateralVault vault, address reserve, uint amount) external {
uint _ borrow = amount;
if (vault.asset() = address(0)) {
__borrow = getReservePriceUSD (reserve).mul(amount);
ks
__approve(address(vault), msg.sender, limits[address(vault)][msg.sender].sub(
__borrow, "borrow amount exceeds allowance"));
vault.borrow(reserve , amount, msg.sender);
emit Borrow(address(vault), msg.sender, reserve, amount);

}

function repay(iCollateralVault vault, address reserve, uint amount) public {
require(isVault(address(vault)), "not a vault");
IERC20(reserve).safeTransferFrom (msg.sender, address(vault), amount);
vault.repay(reserve , amount);
emit Repay(address(vault), msg.sender, reserve, amount);

Listing 3.19: iCollateralVaultProxy . sol

In particular, with the so-called credit delegation, if a borrower intends to borrow ETH by using
the above mock reserve address, the operation, i.e., vault.borrow(reserve, amount, msg.sender) (Iine
399), relays to the Aave protocol with the same set of arguments.

// amount needs to be normalized

function borrow(address reserve, uint amount, address to) external nonReentrant
onlyOwner {
require (asset == reserve asset = address(0), "reserve not available");
// LTV logic handled by underlying
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Aave(getAave()).borrow(reserve , amount, model, 7);
IERC20(reserve).safeTransfer(to, amount);

}

function repay(address reserve, uint amount) external nonReentrant onlyOwner {
// Required for certain stable coins (USDT for example)
IERC20(reserve).approve(address(getAaveCore()), 0);
IERC20(reserve).approve(address(getAaveCore()), amount);
Aave (getAave()).repay(reserve, amount, address(uintl60(address(this))));

Listing 3.20: iCollateralVaultProxy . sol

If successful, the vorrow() call to the Aave protocol (line 278) will result in transferring the bor-
rowed ETHs from the Aave core to the vault. However, the following call to transfer the borrowed ETHs
from the vault to the borrower, i.e., IERC20(reserve) .safeTransfer(to, amount) (line 279), becomes
a nop because of the use of the above mock reserve address in IERC20(reserve). In other words, the
borrowed ETHs are stuck in the vault. It turns out even the vault owner is not able to retrieve them
out, leading to borrowed ETH assets being locked forever. The repay() execution path shares the very

same issue, resulting in repaid ETH assets being locked in the vault as well.

Recommendation Add the ETH support in the vault by extending the logic of both borrow()
and repay().

3.10 Other Suggestions

Due to the fact that compiler upgrades might bring unexpected compatibility or inter-version consis-
tencies, we always suggest using fixed compiler version whenever possible. As an example, we highly
encourage to explicitly indicate the Solidity compiler version, e.g., pragma solidity 0.6.10; instead
of pragma solidity ~0.6.10;.
Moreover, we strongly suggest not to use experimental Solidity features (e.g., pragma experimental
ABIEncoderV2) or third-party unaudited libraries. If necessary, refactor current code base to only use
stable features or trusted libraries.
Last but not least, it is always important to develop necessary risk control mechanisms and make
contingency plans, which may need to be exercised before the mainnet deployment. The risk-control

mechanisms need to kick in at the very moment when the contracts are being deployed in the mainnet.
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4 Conclusion

In this audit, we thoroughly analyzed the CreditDelegationVault implementation. The proposed
system for credit delegation presents a unique innovation and we are really impressed by the design
and implementation. The current code base is well organized and those identified issues are promptly
confirmed and fixed.

Meanwhile, we need to emphasize that smart contracts as a whole are still in an early, but exciting
stage of development. To improve this report, we greatly appreciate any constructive feedbacks or

suggestions, on our methodology, audit findings, or potential gaps in scope/coverage.
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5 Appendix

5.1 Basic Coding Bugs

5.1.1 Constructor Mismatch

e Description: Whether the contract name and its constructor are not identical to each other.

e Result: Not found

e Severity: Critical

5.1.2 Ownership Takeover

e Description: Whether the set owner function is not protected.

e Result: Not found

e Severity: Critical

5.1.3 Redundant Fallback Function

e Description: Whether the contract has a redundant fallback function.

e Result: Not found

e Severity: Critical

5.1.4 Overflows & Underflows
e Description: Whether the contract has general overflow or underflow vulnerabilities [13, 14,

15, 16, 18].
e Result: Not found

e Severity: Critical
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5.1.5 Reentrancy

e Description: Reentrancy [19] is an issue when code can call back into your contract and change

state, such as withdrawing ETHs.

e Result: Not found

e Severity: Critical

5.1.6 Money-Giving Bug

e Description: Whether the contract returns funds to an arbitrary address.

e Result: Not found

e Severity: High
5.1.7 Blackhole
e Description: Whether the contract locks ETH indefinitely: merely in without out.
e Result: Not found
e Severity: High
5.1.8 Unauthorized Self-Destruct
e Description: Whether the contract can be killed by any arbitrary address.
e Result: Not found

e Severity: Medium

5.1.9 Revert DoS

e Description: Whether the contract is vulnerable to DoS attack because of unexpected revert.

e Result: Not found

e Severity: Medium
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5.1.10 Unchecked External Call

e Description: Whether the contract has any external call without checking the return value.

e Result: Not found

e Severity: Medium

5.1.11 Gasless Send

e Description: Whether the contract is vulnerable to gasless send.

e Result: Not found

e Severity: Medium

5.1.12 Send Instead Of Transfer

e Description: Whether the contract uses send instead of transfer.

e Result: Not found

e Severity: Medium

5.1.13 Costly Loop

e Description: Whether the contract has any costly loop which may lead to Out-0f-Gas excep-

tion.
e Result: Not found

e Severity: Medium

5.1.14 (Unsafe) Use Of Untrusted Libraries

e Description: Whether the contract use any suspicious libraries.

e Result: Not found

e Severity: Medium
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5.1.15 (Unsafe) Use Of Predictable Variables

e Description: Whether the contract contains any randomness variable, but its value can be

predicated.

e Result: Not found

e Severity: Medium

5.1.16 Transaction Ordering Dependence

e Description: Whether the final state of the contract depends on the order of the transactions.
e Result: Not found

e Severity: Medium

5.1.17 Deprecated Uses

e Description: Whether the contract use the deprecated tx.origin to perform the authorization.

e Result: Not found

e Severity: Medium

5.2 Semantic Consistency Checks

e Description: Whether the semantic of the white paper is different from the implementation of

the contract.

e Result: Not found

e Severity: Critical

5.3 Additional Recommendations

5.3.1 Avoid Use of Variadic Byte Array

e Description: Use fixed-size byte array is better than that of byte[], as the latter is a waste of

space.

e Result: Not found

e Severity: Low
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5.3.2 Make Visibility Level Explicit

e Description: Assign explicit visibility specifiers for functions and state variables.

e Result: Not found

e Severity: Low

5.3.3 Make Type Inference Explicit

e Description: Do not use keyword var to specify the type, i.e., it asks the compiler to deduce

the type, which is not safe especially in a loop.

e Result: Not found

e Severity: Low

5.3.4 Adhere To Function Declaration Strictly

e Description: Solidity compiler (version 0.4.23) enforces strict ABI length checks for return data
from calls () [1], which may break the the execution if the function implementation does NOT

follow its declaration (e.g., no return in implementing transfer () of ERC20 tokens).

e Result: Not found

e Severity: Low
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