
29.03.2021 Aave Governance Dao | ConsenSys Diligence

https://consensys.net/diligence/audits/2020/08/aave-governance-dao/ 1/30

A CONSENSYS DILIGENCE AUDIT REPORT

Aave Governance Dao

Date August 2020

Lead Auditor John Mardlin

Co-auditors Daniel Luca

1 Executive Summary
This report presents the results of our engagement with Aave to review their
implementation of a Governance DAO which will enable token holders to vote
on changes and upgrades to the Aave Protocol.

The review was conducted over the course of two weeks, from January 27th
to February 7th by Daniel Luca and John Mardlin. A total of 15 person-days
were spent.

During the �irst week, we focused our efforts on understanding the intention
of the design (which is primarily documented by thorough natspec
comments within the code), and de�ining the key risk factors and potential
vulnerabilities requiring further investigation.

During the second week we focused more on detailed review of the code,
and investigated potential vulnerabilities in edge cases of the voting

https://pages.consensys.net/diligence-1-day-spot-check

29.03.2021 Aave Governance Dao | ConsenSys Diligence

https://consensys.net/diligence/audits/2020/08/aave-governance-dao/ 2/30

mechanism. All our key �indings have been addressed, and are reported
below.

1.1 Scope and Objectives

Our review initially focused on the commit hash
c0f5ec54bf4d263f3421adbdec484bbc9f78b304 . During the course of our review, small

changes were made to address our �indings and comments, resulting in the
most recent hash of d6170403ed61f2f8cc4702604fd8aac1c773b6c0 . At a later date
another small change was added in how the IPFS hash is stored which is
identi�ied by the commit hash 1ccda649ad2908223e0d962f609e462c725602ad . The list of
�iles in scope can be found in the Appendix.

Our primary objectives were to: 1. Ensure that the system is implemented
consistently with the intended functionality, and without unintended edge
cases. 2. Identify known vulnerabilities particular to smart contract systems,
as outlined in our Smart Contract Best Practices, and the Smart Contract
Weakness Classi�ication Registry.

We also sought opportunities to improve the quality of the code either by
reducing the complexity, or improving clarity and readability.

2 Recommendations and Advice
During the course of our review we identi�ied a few possible improvements
that are not security issues, but can bring value to the developers and the
people who want to interact with the system.

2.1 Increase the number of tests

A good rule of thumb is to have 100% test coverage. This does not guarantee
that security problems don’t exist, but it means that the desired functionality
behaves as intended. Also the negative tests bring a lot of value because not
allowing some actions to happen is also part of the desired behavior.

For example a speci�ic functionality that was not previously tested was to
move a proposal from the voting stage to the validating stage while having
multiple voting options passing the minimum threshold.

Fixed

https://consensys.github.io/smart-contract-best-practices/
https://swcregistry.io/

29.03.2021 Aave Governance Dao | ConsenSys Diligence

https://consensys.net/diligence/audits/2020/08/aave-governance-dao/ 3/30

After the report was delivered the code coverage was increased to 100%.

2.2 Do not change asset weights while a proposal is
running

The asset weight feature is added to accommodate users voting with
different assets on the same proposal. The asset weight normalizes the asset
availability making different assets compatible with each other. Even though
this functionality will be used in its minimal form in the beginning (for only
one asset) it is important to state that changing the asset weight during a
vote has some impact on the system.

The current way of implementing asset weight in voting allows for correct
vote cancelling or replacing without creating any over�lows or under�lows.
The only problem that can arise if the asset weight was changed, is to force
the users that already voted to recast their vote to re�lect the new weight.
The users will want to do this if the newly set asset weight is higher than the
previous one.

Because of the low number of projected proposals, this issue can be easily
avoided.

$ npm run dev:coverage
[...]

------------------------------------|----------|----------|----------|------
File	% Stmts	% Branch	% Funcs	% Li
 governance/ | 100 | 100 | 100 |
 AavePropositionPower.sol | 100 | 100 | 100 |
 AaveProtoGovernance.sol | 100 | 100 | 100 |
 AssetVotingWeightProvider.sol | 100 | 100 | 100 |
 GovernanceParamsProvider.sol | 100 | 100 | 100 |
 interfaces/ | 100 | 100 | 100 |
 IAaveProtoGovernance.sol | 100 | 100 | 100 |
 IAssetVotingWeightProvider.sol | 100 | 100 | 100 |
 IGovernanceParamsProvider.sol | 100 | 100 | 100 |
 ILendingPoolAddressesProvider.sol | 100 | 100 | 100 |
 IProposalExecutor.sol | 100 | 100 | 100 |
------------------------------------|----------|----------|----------|------
All files | 100 | 100 | 100 |
------------------------------------|----------|----------|----------|------

29.03.2021 Aave Governance Dao | ConsenSys Diligence

https://consensys.net/diligence/audits/2020/08/aave-governance-dao/ 4/30

2.3 Only whitelist validated assets

Because some of the functionality relies on correct token behavior, any
whitelisted token should be audited in the context of this system. Problems
can arise if a malicious token is whitelisted because it can block people from
voting with that speci�ic token or gain unfair advantage if the balance can be
manipulated.

Make sure to audit any new whitelisted asset.

2.4 Review all comments

Review all comments and make sure they re�lect what the code currently
does.

As developers we often forget to update the comments when updating the
code. Because the inaccurate comments do not affect us immediately
sometimes we forget to update the comments. Make sure to review all of the
comments after the code was frozen.

2.5 New proposals should be tested before deployed on
the mainnet

Make sure you understand the risks of using delegatecall as well as contract
storage layout when creating the execute() method on new proposals. Also
the contract that has the execute() method should have the source code
available and should be easy to read; all of the variables should be clearly
available in the method itself not in the contract storage.

2.6 Execute proposals in the correct order

Because the proposal has a lot of power over the contracts it is very
important to execute the proposals in the desired order. This can be avoided
if there is only one proposal running at a time.

2.7 Enforce the cap to match the council member length

Add a require statement along the lines require(cap == council.length) in the
AavePropositionPower token constructor. This will prevent unexpected

consequences when creating a new proposal because not all of the tokens
were minted.

29.03.2021 Aave Governance Dao | ConsenSys Diligence

https://consensys.net/diligence/audits/2020/08/aave-governance-dao/ 5/30

2.8 Review the Code Quality recommendations in
Appendix 1

Other comments related to readibility and best practices are listed in
Appendix 1

3 System Overview
3.1 AaveProtoGovernance

AaveProtoGovernance is the core contract in the system. It implements a state
machine for voting logic, which includes the following noteworthy
functionality:

Proposal execution via DELEGATECALL: Voting is used to decide Yes or No
on whether or not the AaveProtoGovernance contract should be allowed to
DELEGATECALL the execute function on a particular contract address. This
would typically result in a call to contract method in the AAVE protocol which
is only accessible to the AaveProtoGovernance contract. Risks and trust
implications of this design are discussed in the Security Speci�ications
section.

Support for vote relaying: This enables token holders to sign their vote off-
line, and submit it to the contract from another EOA acting as a relayer.

Token voting without lockups: Typical token voting schemes require
depositing tokens to a contract during the voting period to prevent sybil
voter fraud. To improve the UX AaveProtoGovernance uses an “optimistic” model:
any votes submitted during the Voting period are counted proportional to the
voters token balance. This is followed by a Validation period during which
anyone may challenge a list of voters. If any voter’s balance is less than it was
at the time of voting, all of their votes will be invalidated.

Minimum voting threshold: Each proposal de�ines a threshold of votes which
must be met in order to pass. The voting period does not end until this
threshold has been met, and the de�ined duration of the voting period has
passed.

Multiple voting periods: If enough votes are challenged and invalidated
during the Validation period to go below the threshold. The voting period

29.03.2021 Aave Governance Dao | ConsenSys Diligence

https://consensys.net/diligence/audits/2020/08/aave-governance-dao/ 6/30

begins again. This process can continue up to a maximum number of voting
periods. Following the �inal voting and validation periods, whether or not the
threshold is met, the result of the voting will be respected.

3.2 AavePropositionPower

In order to submit a proposal to the proposer must hold a su�icent quantity
of the AavePropositionPower token. Upon creation, a list of addresses is provided
which will each receive one token. If an address is listed multiple times, it can
receive multiple tokens.

3.3 AssetVotingWeightProvider

The AssetVotingWeightProvider which holds a list of other ERC20 compliant
tokens that may also be used to vote, and their relative voting weights.
Tokens may only be added at the time of initialization, but the contract has an
owner which may update the weight of each token at anytime.

3.4 GovernanceParamsProvider

The GovernanceParamsProvider holds three important parameters:

�. The address of the AssetVotingWeightProvider

�. The address of the ExecutiveGovernanceAsset

�. The govAssetThreshold which de�ines the amount of the
ExecutiveGovernanceAsset required to submit a new proposal.

This contract has an owner who may update these properties at any time.

4 Security Specification
This section describes, from a security perspective, the expected behavior
of the system under audit. It is not a substitute for documentation. The
purpose of this section is to identify speci�ic security properties that were
validated by the audit team.

4.1 Actors

The relevant actors are listed below with their respective power.

29.03.2021 Aave Governance Dao | ConsenSys Diligence

https://consensys.net/diligence/audits/2020/08/aave-governance-dao/ 7/30

Proposers can
Create new proposals at any time

Voters can
Vote on active proposals

Cancel their vote

Replace their vote

Send their vote to a relayer plus the associated signature

Voters as a result of passed proposals can
Set or change the token asset that is needed to have proposition
power

Set the minimum power a proposer needs to have in order to create
a new proposal

Set the voting weight for the tokens that are used to vote with

Relayers can
Submit votes for the voters as long as they have the correct
signature and vote data

Cancel votes for the voters as long as they have the correct
signature and vote data

Replace votes for the voters as long as they have the correct
signature and vote data

Any other user can
Read any contract parameters, including

voting weights for any whitelisted asset

proposal data

proposal votes for each option

proposal vote of a lend owner

proposal leading vote option

Verify
The nonce of a voter for any proposal

A relayer’s action based on the signature receiver from the voter

Challenge any votes trying to reveal double voting behavior

Try to move a proposal from the voting state to the validating state

Resolve a proposal, effectively executing the code attached to the
proposal, if the “yes” option wins.

29.03.2021 Aave Governance Dao | ConsenSys Diligence

https://consensys.net/diligence/audits/2020/08/aave-governance-dao/ 8/30

4.2 Trust Model

In any smart contract system, it’s important to identify what trust is
expected/required between various actors. This system is fairly decentralized
with the token owners having a lot of decision power, as well as being able to
stop malicious proposals.

Considering all this, we identi�ied the following trusted points for users to be
aware of before they interact with the system:

�. *Initial* Ownership of AssetVotingWeightProvider and GovernanceParamsProvider :
The variables de�ined in the AssetVotingWeightProvider and
GovernanceParamsProvider contracts are critical to the outcome of voting.

These variables can be set by the owner address, which is initialized to
the deployer’s address. The Aave team clari�ied to us that their plan is to
transfer ownership of these contracts to the AaveProtoGovernance , meaning
that any important change to the system must �irst pass a full voting
cycle. Once completed, users can easily verify that this point of
centralization has been removed.

�. Proposal creation: Proposals may only be submitted by holder of the
AavePropositionPower . This is kept in balance by the token holders ability to

vote to reject proposals.

�. Voting: Users of the Aave protocol place some trust in votes to reject
malicous proposals. However, if the majority of the token owners want to
attack the system, the other legitimate actors have time to exit the
system based on the minimum time set in the contract. This minimum
time is determined based on the voting blocks duration and the
validating blocks duration. Both of the time periods need to be at least
the minimum set in the contract MIN_STATUS_DURATION . We believe this gives
su�icient time for the users to exit the system in any way they �ind
necessary.

Our general perspective is that the system is very decentralized while
remaining powerfully �lexible.

5 Issues
Each issue has an assigned severity:

29.03.2021 Aave Governance Dao | ConsenSys Diligence

https://consensys.net/diligence/audits/2020/08/aave-governance-dao/ 9/30

Minor issues are subjective in nature. They are typically suggestions
around best practices or readability. Code maintainers should use their
own judgment as to whether to address such issues.

Medium issues are objective in nature but are not security vulnerabilities.
These should be addressed unless there is a clear reason not to.

Major issues are security vulnerabilities that may not be directly
exploitable or may require certain conditions in order to be exploited. All
major issues should be addressed.

Critical issues are directly exploitable security vulnerabilities that need to
be �ixed.

5.1 VotingMachine - tryToMoveToValidating can lock up
proposals Major ✓ Fixed

Resolution

Fixed per our recommendation.

Description

After a vote was received, the proposal can move to a validating state if any
of the votes pass the proposal’s precReq value, referred to as the minimum
threshold.

code/contracts/governance/VotingMachine.sol:L391

tryToMoveToValidating(_proposalId);

Inside the method tryToMoveToValidating each of the vote options are checked
to see if they pass precReq . In case that happens, the proposal goes into the
next stage, speci�ically Validating .

code/contracts/governance/VotingMachine.sol:L394-L407

29.03.2021 Aave Governance Dao | ConsenSys Diligence

https://consensys.net/diligence/audits/2020/08/aave-governance-dao/ 10/30

The method internalMoveToValidating checks the proposal’s status to be Voting

and proceeds to moving the proposal into Validating state.

code/contracts/governance/VotingMachine.sol:L270-L278

The problem appears if multiple vote options go past the minimum threshold.
This is because the loop does not stop after the �irst found option and the
loop will fail when the method internalMoveToValidating is called a second time.

code/contracts/governance/VotingMachine.sol:L401-L405

for (uint256 i = 0; i <= COUNT_CHOICES; i++) {
 if (_proposal.votes[i] > _proposal.precReq) {
 internalMoveToValidating(_proposalId);
 }
}

/// @notice Function to move to Validating the proposal in the case the last v
/// was done before the required votingBlocksDuration passed
/// @param _proposalId The id of the proposal
function tryToMoveToValidating(uint256 _proposalId) public {
 Proposal storage _proposal = proposals[_proposalId];
 require(_proposal.proposalStatus == ProposalStatus.Voting, "VOTING_STATU
 if (_proposal.currentStatusInitBlock.add(_proposal.votingBlocksDuration)
 for (uint256 i = 0; i <= COUNT_CHOICES; i++) {
 if (_proposal.votes[i] > _proposal.precReq) {
 internalMoveToValidating(_proposalId);
 }
 }
 }
}

/// @notice Internal function to change proposalStatus from Voting to Validati
/// @param _proposalId The id of the proposal
function internalMoveToValidating(uint256 _proposalId) internal {
 Proposal storage _proposal = proposals[_proposalId];
 require(_proposal.proposalStatus == ProposalStatus.Voting, "ONLY_ON_VOTI
 _proposal.proposalStatus = ProposalStatus.Validating;
 _proposal.currentStatusInitBlock = block.number;
 emit StatusChangeToValidating(_proposalId);
}

29.03.2021 Aave Governance Dao | ConsenSys Diligence

https://consensys.net/diligence/audits/2020/08/aave-governance-dao/ 11/30

The method internalMoveToValidating fails the second time because the �irst
time it is called, the proposal goes into the Validating state and the second
time it is called, the require check fails.

code/contracts/governance/VotingMachine.sol:L274-L275

This can lead to proposal lock-ups if there are enough votes to at least one
option that pass the minimum threshold.

Recommendation

After moving to the Validating state return successfully.

An additional change can be done to internalMoveToValidating because it is
called only in tryToMoveToValidating and the parent method already does the
check.

require(_proposal.proposalStatus == ProposalStatus.Voting, "ONLY_ON_VOTING_S
_proposal.proposalStatus = ProposalStatus.Validating;

function tryToMoveToValidating(uint256 _proposalId) public {
 Proposal storage _proposal = proposals[_proposalId];
 require(_proposal.proposalStatus == ProposalStatus.Voting, "VOTING_STATU
 if (_proposal.currentStatusInitBlock.add(_proposal.votingBlocksDuration)
 for (uint256 i = 0; i <= COUNT_CHOICES; i++) {
 if (_proposal.votes[i] > _proposal.precReq) {
 internalMoveToValidating(_proposalId);
 return; // <- this was added
 }
 }
 }
}

/// @notice Internal function to change proposalStatus from Voting to Validati
/// @param _proposalId The id of the proposal
function internalMoveToValidating(uint256 _proposalId) internal {
 Proposal storage _proposal = proposals[_proposalId];
 // The line below can be removed
 // require(_proposal.proposalStatus == ProposalStatus.Voting, "ONLY_ON_VOT
 _proposal.proposalStatus = ProposalStatus.Validating;
 _proposal.currentStatusInitBlock = block.number;
 emit StatusChangeToValidating(_proposalId);
}

29.03.2021 Aave Governance Dao | ConsenSys Diligence

https://consensys.net/diligence/audits/2020/08/aave-governance-dao/ 12/30

5.2 VotingMachine - verifyNonce should only allow the
next nonce Major ✓ Fixed

Resolution

Fixed per our recommendation.

Description

When a relayer calls submitVoteByRelayer they also need to provide a nonce.
This nonce is cryptographicly checked against the provided signature. It is
also checked again to be higher than the previous nonce saved for that voter.

code/contracts/governance/VotingMachine.sol:L232-L239

When the vote is saved, the previous nonce is incremented.

code/contracts/governance/VotingMachine.sol:L387

voter.nonce = voter.nonce.add(1);

This leaves the opportunity to use the same signature to vote multiple times,
as long as the provided nonce is higher than the incremented nonce.

Recommendation

/// @notice Verifies the nonce of a voter on a proposal
/// @param _proposalId The id of the proposal
/// @param _voter The address of the voter
/// @param _relayerNonce The nonce submitted by the relayer
function verifyNonce(uint256 _proposalId, address _voter, uint256 _relayerNo
 Proposal storage _proposal = proposals[_proposalId];
 require(_proposal.voters[_voter].nonce < _relayerNonce, "INVALID_NONCE")
}

29.03.2021 Aave Governance Dao | ConsenSys Diligence

https://consensys.net/diligence/audits/2020/08/aave-governance-dao/ 13/30

The check should be more restrictive and make sure the consecutive nonce
was provided.

5.3 VoteMachine - Cancelling vote does not increase the
nonce Minor ✓ Fixed

Resolution

Fixed per our recommendation.

Description

A vote can be cancelled by calling cancelVoteByRelayer with the proposal ID,
nonce, voter’s address, signature and a hash of the sent params.

The parameters are hashed and checked against the signature correctly.

The nonce is part of these parameters and it is checked to be valid.

code/contracts/governance/VotingMachine.sol:L238

require(_proposal.voters[_voter].nonce < _relayerNonce, "INVALID_NONCE");

Once the vote is cancelled, the data is cleared but the nonce is not
increased.

code/contracts/governance/VotingMachine.sol:L418-L434

require(_proposal.voters[_voter].nonce + 1 == _relayerNonce, "INVALID_NONCE"

29.03.2021 Aave Governance Dao | ConsenSys Diligence

https://consensys.net/diligence/audits/2020/08/aave-governance-dao/ 14/30

This means that in the future, the same signature can be used as long as the
nonce is still higher than the current one.

Recommendation

Considering the recommendation from issue
https://github.com/ConsenSys/aave-governance-dao-audit-2020-01/issues/4
is implemented, the nonce should also increase when the vote is cancelled.
Otherwise the same signature can be replayed again.

5.4 Possible lock ups with SafeMath multiplication Minor
 Acknowledged

Resolution

The situation described is unlikely to occur, and does not justify
mitigations which might introduce other risks.

Description

In some cases using SafeMath can lead to a situation where a contract is
locked up due to an unavoidable over�low.

if (_cachedVoter.balance > 0) {
 _proposal.votes[_cachedVoter.vote] = _proposal.votes[_cachedVoter.vote].
 _proposal.totalVotes = _proposal.totalVotes.sub(1);
 voter.weight = 0;
 voter.balance = 0;
 voter.vote = 0;
 voter.asset = address(0);
 emit VoteCancelled(
 _proposalId,
 _voter,
 _cachedVoter.vote,
 _cachedVoter.asset,
 _cachedVoter.weight,
 _cachedVoter.balance,
 uint256(_proposal.proposalStatus)
);
}

https://github.com/ConsenSys/aave-governance-dao-audit-2020-01/issues/4

29.03.2021 Aave Governance Dao | ConsenSys Diligence

https://consensys.net/diligence/audits/2020/08/aave-governance-dao/ 15/30

It is theoretically possible that both the internalSubmitVote() and
internalCancelVote() functions could become unusable by voters with a high

enough balance, if the asset weighting is set extremely high.

Examples

This line in internalSubmitVote() could over�low if the voter’s balance and the
asset weight were su�iciently high:

code/contracts/governance/VotingMachine.sol:L379

uint256 _votingPower = _voterAssetBalance.mul(_assetWeight);

A similar situation occurs in internalCancelVote() :

code/contracts/governance/VotingMachine.sol:L419-L420

Recommendation

This could be protected against by setting a maximum value for asset
weights. In practice it is very unlikely to occur in this situation, but it could be
introduced at some point in the future.

Appendix 1 - Code Quality
Recommendations
A.1.1 Naming of proposalId variable [Done]

The name of the proposalID variable de�ined in newProposal() is slightly
misleading. It actually represents the length of the proposals array, and is one
greater than the true proposal ID.

A.1.2 Incomplete comment [Done]

_proposal.votes[_cachedVoter.vote] = _proposal.votes[_cachedVoter.vote].sub(
_proposal.totalVotes = _proposal.totalVotes.sub(1);

29.03.2021 Aave Governance Dao | ConsenSys Diligence

https://consensys.net/diligence/audits/2020/08/aave-governance-dao/ 16/30

The natspec @notice comment on internalCancelVote() says:
Internal function to cancel a vote. This function is called from the external cancel vote
functions, by relayers and directly by voters

.

For completeness, this comment should also mention challengeVoters() and
internalSubmitVote() as calling functions.

A.1.3 Pin Solidity Version [Done]

Most of the �iles use a �loating pragma statement pragma solidity ^0.5.0; . We
recommend settling on the most recent version of Solidity 0.5.x or at least
the latest version ^0.5.x .

A.1.4 Use consistent ordering when passing variables
[Done]

The submitVoteByRelayer and cancelVoteByRelayer receive their arguments in one
order, but pass them to abi.encodePacked in a different order. Maintaining their
order would improve readability.

function submitVoteByRelayer(
 uint256 _proposalId,
 uint256 _nonce,
 uint256 _vote,
 address _voter,
 IERC20 _asset,
 bytes calldata _signature,
 bytes32 _paramsHashByVoter)
 external {
 validateRelayAction(
 keccak256(abi.encodePacked(_proposalId, _vote, _voter, _asset, _

function cancelVoteByRelayer(
 uint256 _proposalId,
 uint256 _nonce,
 address _voter,
 bytes calldata _signature,
 bytes32 _paramsHashByVoter)
 external {
 Proposal storage _proposal = proposals[_proposalId];
 require(_proposal.proposalStatus == ProposalStatus.Voting, "VOTING_S
 validateRelayAction(
 keccak256(abi.encodePacked(_proposalId, _voter, _nonce)),

29.03.2021 Aave Governance Dao | ConsenSys Diligence

https://consensys.net/diligence/audits/2020/08/aave-governance-dao/ 17/30

A.1.5 Be consistent about skipping SafeMath where
possible. [Acknowledged]

The OpenZeppelin SafeMath library is used in most, but not all arithmetic
operations, in particular for reducing the length of the proposals array by 1 to
get _proposalId . This is safe, but there are other cases where .add(1) or
.mul(2) are used unnecessarily.

We suggest either always using SafeMath, or always not using when it is
obviously unnecessary.

A.1.6 Consider breaking up long SafeMath chains [Done]

Several statements combine the use of SafeMath and nested struct member
accesses. Breaking these expressions up over several lines would improve
their readability.

For example, before:

and after:

A.1.7 Consider emitting the newly created proposal ID
[Done]

When a new proposal is created an event is emitted with the details of the
newly created proposal.

 _proposal.votes[_cachedVoter.vote] = _proposal.votes[_cachedVoter.vote].

 _proposal.votes[_cachedVoter.vote] = _proposal.votes[_cachedVoter.vote].sub
 _cachedVoter.balance.mul(
 _cachedVoter.weight
)
);

29.03.2021 Aave Governance Dao | ConsenSys Diligence

https://consensys.net/diligence/audits/2020/08/aave-governance-dao/ 18/30

event ProposalCreated(
 address indexed creator,
 bytes32 indexed proposalType,
 uint256 executiveReputationOfCreator,
 uint256 precReq,
 uint256 maxMovesToVotingAllowed,
 uint256 votingBlocksDuration,
 uint256 validatingBlocksDuration,
 address proposalExecutor
);

The event does not contain the proposal ID.

It will help the web UI and other developers monitoring the contract if the
proposal ID is included in the event emitted.

event ProposalCreated(
 uint256 proposalId, // <- add something like this
 address indexed creator,
 bytes32 indexed proposalType,
 uint256 executiveReputationOfCreator,
 uint256 precReq,
 uint256 maxMovesToVotingAllowed,
 uint256 votingBlocksDuration,
 uint256 validatingBlocksDuration,
 address proposalExecutor
);

Appendix 2 - Files in Scope
Our review covered the following �iles at the outset:

File git hash-object

contracts/governance/AssetVotingW
eightProvider.sol

2f7f62047d04db1fe7e10edb0f54
3d000b090c87

contracts/governance/ExecutiveRep
utation.sol

N/A

contracts/governance/GovernanceP
aramsProvider.sol

dab9996e4b55f8b440bab1226c
dddb3c263c25d4

29.03.2021 Aave Governance Dao | ConsenSys Diligence

https://consensys.net/diligence/audits/2020/08/aave-governance-dao/ 19/30

File git hash-object

contracts/governance/VotingMachin
e.sol

N/A

contracts/interfaces/IAssetVotingWei
ghtProvider.sol

5c70d5e2fc68756f2c09666e894
35b9e354ec3d6

contracts/interfaces/IFeeProvider.sol N/A

contracts/interfaces/IGovernancePar
amsProvider.sol

acc9dabd181ba6f521a1051c342c
918add576490

contracts/interfaces/ILendingPoolAd
dressesProvider.sol

d6a84a6410577e2d1c717d3ebad
25bd370cc06d5

contracts/interfaces/IProposalExecut
or.sol

30fe300977f1b2eaa5378f4b47c3
ea1162c2c4af

During the course of our review, the �iles and contracts were renamed and
updated to the following:

File git hash-object

contracts/interfaces/IAaveProtoGove
rnance.sol

886ac68d5ab1e239037368a6e3
8fdab252c23dd1

contracts/interfaces/IAssetVotingWei
ghtProvider.sol

5c70d5e2fc68756f2c09666e894
35b9e354ec3d6

contracts/interfaces/IGovernancePar
amsProvider.sol

acc9dabd181ba6f521a1051c342c
918add576490

contracts/interfaces/ILendingPoolAd
dressesProvider.sol

d6a84a6410577e2d1c717d3ebad
25bd370cc06d5

contracts/interfaces/IProposalExecut
or.sol

30fe300977f1b2eaa5378f4b47c3
ea1162c2c4af

contracts/governance/AavePropositi
onPower.sol

5�b7632adbff0585687554ba7b1b
8c23b3de7170

contracts/governance/AaveProtoGov
ernance.sol

9def8e674b4435fc8b2101403f95
8c8a2c�b72ac

29.03.2021 Aave Governance Dao | ConsenSys Diligence

https://consensys.net/diligence/audits/2020/08/aave-governance-dao/ 20/30

File git hash-object

contracts/governance/AssetVotingW
eightProvider.sol

2f7f62047d04db1fe7e10edb0f54
3d000b090c87

contracts/governance/GovernanceP
aramsProvider.sol

dab9996e4b55f8b440bab1226c
dddb3c263c25d4

Appendix 3 - Artifacts
This section contains some of the artifacts generated during our review by
automated tools, the test suite, etc. If any issues or recommendations were
identi�ied by the output presented here, they have been addressed in the
appropriate section above.

A.3.1 MythX

MythX is a security analysis API for Ethereum smart contracts. It performs
multiple types of analysis, including fuzzing and symbolic execution, to
detect many common vulnerability types. The tool was used for automated
vulnerability discovery for all audited contracts and libraries. More details on
MythX can be found at mythx.io.

Below is the raw output of the MythX vulnerability scan.

Report for /Users/primary/Projects/Audits/aave/aave-governance-dao-audit-
2020-01/code-�inal/contracts/governance/AaveProtoGovernance.sol
https://dashboard.mythx.io/#/console/analyses/41988310-fcf8-474c-9932-
930479138753

╒════════╤══╤═════
│ Line │ SWC Title │ Seve
╞════════╪══╪═════
│ 203 │ Weak Sources of Randomness from Chain Attributes │ Medi
├────────┼──┼─────
│ 270 │ Weak Sources of Randomness from Chain Attributes │ Medi
├────────┼──┼─────
│ 280 │ Weak Sources of Randomness from Chain Attributes │ Medi
├────────┼──┼─────
│ 404 │ Weak Sources of Randomness from Chain Attributes │ Medi

https://mythx.io/
https://dashboard.mythx.io/#/console/analyses/41988310-fcf8-474c-9932-930479138753

29.03.2021 Aave Governance Dao | ConsenSys Diligence

https://consensys.net/diligence/audits/2020/08/aave-governance-dao/ 21/30

├────────┼──┼─────
│ 477 │ Weak Sources of Randomness from Chain Attributes │ Medi
├────────┼──┼─────
│ 478 │ Weak Sources of Randomness from Chain Attributes │ Medi
├────────┼──┼─────
│ 278 │ Presence of unused variables │ Medi
├────────┼──┼─────
│ 279 │ Presence of unused variables │ Medi
├────────┼──┼─────
│ 280 │ Presence of unused variables │ Medi
├────────┼──┼─────
│ 1 │ Floating Pragma │ Low
├────────┼──┼─────
│ 96 │ Assert Violation │ Low
├────────┼──┼─────
│ 345 │ Assert Violation │ Low
├────────┼──┼─────
│ 66 │ Assert Violation │ Low
├────────┼──┼─────
│ 242 │ Assert Violation │ Low
├────────┼──┼─────
│ 48 │ Assert Violation │ Low
├────────┼──┼─────
│ 474 │ Assert Violation │ Low
├────────┼──┼─────
│ 62 │ Assert Violation │ Low
├────────┼──┼─────
│ 402 │ Assert Violation │ Low
├────────┼──┼─────
│ 88 │ Assert Violation │ Low
├────────┼──┼─────
│ 500 │ Assert Violation │ Low
├────────┼──┼─────
│ 79 │ Assert Violation │ Low
├────────┼──┼─────
│ 514 │ Assert Violation │ Low
├────────┼──┼─────
│ 159 │ Assert Violation │ Low

29.03.2021 Aave Governance Dao | ConsenSys Diligence

https://consensys.net/diligence/audits/2020/08/aave-governance-dao/ 22/30

A.3.2 Surya

Surya is a utility tool for smart contract systems. It provides a number of
visual outputs and information about the structure of smart contracts. It also
supports querying the function call graph in multiple ways to aid in the
manual inspection and control �low analysis of contracts.

Below is a complete list of functions with their visibility and modi�iers:

A.3.3 Contracts Description Table

Contract Type Bases

└
Function

Name
Visibility Mutability Modi�iers

AavePropo
sitionPowe

r

Implementati
on

ERC20Cappe
d,

ERC20Detaile
d

└ Public ❗ 🛑

ERC20Cap
ped

ERC20Det
ailed

├────────┼──┼─────
│ 368 │ Assert Violation │ Low
├────────┼──┼─────
│ 109 │ Assert Violation │ Low
├────────┼──┼─────
│ 327 │ Assert Violation │ Low
├────────┼──┼─────
│ 82 │ Assert Violation │ Low
├────────┼──┼─────
│ 449 │ Assert Violation │ Low
╘════════╧══╧═════

29.03.2021 Aave Governance Dao | ConsenSys Diligence

https://consensys.net/diligence/audits/2020/08/aave-governance-dao/ 23/30

Contract Type Bases

AaveProto
Governanc

e

Implementati
on

IAaveProtoGo
vernance

└ Public ❗ 🛑 NO❗

└ External ❗ 💵 NO❗

└ newProposal External ❗ 🛑 NO❗

└
verifyParams
ConsistencyA
ndSignature

Public ❗ NO❗

└ verifyNonce Public ❗ NO❗

└
validateRelay

Action
Public ❗ NO❗

└
internalMove

ToVoting
Internal 🔒 🛑

└
internalMove
ToValidating

Internal 🔒 🛑

└
internalMove
ToExecuted

Internal 🔒 🛑

└
submitVoteBy

Voter
External ❗ 🛑 NO❗

└
submitVoteBy

Relayer
External ❗ 🛑 NO❗

└
cancelVoteBy

Voter
External ❗ 🛑 NO❗

└
cancelVoteBy

Relayer
External ❗ 🛑 NO❗

└
internalSubm

itVote
Internal 🔒 🛑

29.03.2021 Aave Governance Dao | ConsenSys Diligence

https://consensys.net/diligence/audits/2020/08/aave-governance-dao/ 24/30

Contract Type Bases

└
tryToMoveTo

Validating
Public ❗ 🛑 NO❗

└
internalCanc

elVote
Internal 🔒 🛑

└
challengeVot

ers
External ❗ 🛑 NO❗

└
resolvePropo

sal
External ❗ 🛑 NO❗

└
getLimitBlock

OfProposal
Public ❗ NO❗

└
getLeadingC

hoice
Public ❗ NO❗

└
getProposalB

asicData
External ❗ NO❗

└ getVoterData External ❗ NO❗

└ getVotesData External ❗ NO❗

└
getGovParam

sProvider
External ❗ NO❗

AssetVotin
gWeightPr

ovider

Implementati
on

Ownable,
IAssetVoting
WeightProvid

er

└ Public ❗ 🛑 NO❗

└
getVotingWei

ght
Public ❗ NO❗

└
setVotingWei

ght
External ❗ 🛑 onlyOwner

└
internalSetVo

tingWeight
Internal 🔒 🛑

29.03.2021 Aave Governance Dao | ConsenSys Diligence

https://consensys.net/diligence/audits/2020/08/aave-governance-dao/ 25/30

Contract Type Bases

Governanc
eParamsPr

ovider

Implementati
on

Ownable,
IGovernance
ParamsProvid

er

└ Public ❗ 🛑 NO❗

└
setPropositio
nPowerThres

hold
External ❗ 🛑 onlyOwner

└
setPropositio

nPower
External ❗ 🛑 onlyOwner

└
setAssetVotin
gWeightProvi

der
External ❗ 🛑 onlyOwner

└
internalSetPr
opositionPow
erThreshold

Internal 🔒 🛑

└
internalSetPr
opositionPow

er
Internal 🔒 🛑

└
internalSetAs
setVotingWei
ghtProvider

Internal 🔒 🛑

└
getPropositio

nPower
External ❗ NO❗

└
getPropositio
nPowerThres

hold
External ❗ NO❗

└
getAssetVoti
ngWeightPro

vider
External ❗ NO❗

A.3.4 Legend

29.03.2021 Aave Governance Dao | ConsenSys Diligence

https://consensys.net/diligence/audits/2020/08/aave-governance-dao/ 26/30

Symbol Meaning

🛑 Function can modify state

💵 Function is payable

A.3.5 Tests Suite

Below is the output generated by running the test suite:

$ npm run dev:test

> aave-protocol-dao@1.0.0 dev:test /Users/primary/Projects/Audits/aave/aave-
> buidler test

Compiling...
Downloading compiler version 0.5.13
Compiled 37 contracts successfully

 AavePropositionPower
 ✓ Has a non-null address after deployment
 ✓ Has correct metadata
 ✓ It's not possible to mint more tokens because of the cap
 ✓ The cap of the AavePropositionPower is correct
 ✓ The Council members have 1000000000000000000 AavePropositionPower each

 AaveProtoGovernance basic tests
 ✓ Has a non-null address after deployment
 ✓ Creation of a new proposal fails when trying with an address with no A
 ✓ govParamsProvider is registered properly
 ✓ Checks the data of a newly created proposal in the AaveProtoGovernance
 ✓ Checks the data of a secondly created proposal in the AaveProtoGoverna

 AssetVotingWeightProvider
 ✓ Has a non-null address after deployment
 ✓ Has correct voting weights for the test voting assets

 GovernanceParamsProvider
 ✓ Has a non-null address after deployment
 ✓ Has the correct aavePropositionPower registered
 ✓ Has the correct propositionPowerThreshold registered
 ✓ Has the correct assetVotingWeightProvider registered

 LendingPoolAddressesProvider
 ✓ Has a non-null address after deployment
 ✓ The owner is signers[0]

 TestVotingAssetA
✓ Has a non-null address after deployment

29.03.2021 Aave Governance Dao | ConsenSys Diligence

https://consensys.net/diligence/audits/2020/08/aave-governance-dao/ 27/30

 ✓ Has a non null address after deployment
 ✓ Has correct metadata
 ✓ Mints tokens to 2 voters (91ms)
 ✓ Transfer tokens from voter 1 to voter 3 (88ms)

 AaveProtoGovernance - Scenarios
 Voting and Cancel directly
 ✓ Voter 1 receives 5M tokens from minting (93ms)
 ✓ Voter 2 receives 600K tokens from minting (83ms)
 ✓ Voter 1 votes (193ms)
 ✓ Voter 1 votes (380ms)
 ✓ Voter 1 cancels vote (211ms)
 ✓ (REVERT EXPECTED) Trigger resolveProposal() (89ms)
 ✓ Voter 1 votes (179ms)
 ✓ Fast forward blocks (6288ms)
 ✓ Voter 2 votes (193ms)
 ✓ (REVERT EXPECTED) Voter 2 votes (66ms)
 ✓ (REVERT EXPECTED) Trigger resolveProposal() (89ms)
 ✓ Fast forward blocks (6033ms)
 ✓ Trigger resolveProposal() (155ms)
 ✓ (REVERT EXPECTED) Trigger resolveProposal() (78ms)
 Voting and Cancel through relayers
 ✓ Voter 1 receives 5M tokens from minting (80ms)
 ✓ Voter 2 receives 600K tokens from minting (79ms)
 ✓ Voter 1 votes through relayer (224ms)
 ✓ Voter 1 votes through relayer (450ms)
 ✓ Voter 1 cancels vote through relayer (271ms)
 ✓ Voter 1 votes through relayer (215ms)
 ✓ Fast forward blocks (6093ms)
 ✓ Voter 2 votes through relayer (226ms)
 ✓ Voter 2 votes (reverting) through relayer (97ms)
 ✓ (REVERT EXPECTED) Trigger resolveProposal() (87ms)
 ✓ Fast forward blocks (6067ms)
 ✓ Trigger resolveProposal() (161ms)
 Voting directly and through relayers
 ✓ Voter 1 receives 5M tokens from minting (87ms)
 ✓ Voter 2 receives 600K tokens from minting (84ms)
 ✓ Voter 1 votes through relayer (212ms)
 ✓ Fast forward blocks (6218ms)
 ✓ Voter 2 votes directly (190ms)
 ✓ (REVERT EXPECTED) Challenge voter 1 (65ms)
 ✓ Fast forward blocks (6175ms)
 ✓ Trigger resolveProposal() (81ms)
 Voting with double-voting attempt through relayers
 ✓ Voter 1 receives 10 tokens from minting (86ms)
 ✓ Voter 2 receives 6 tokens from minting (83ms)
 ✓ Voter 1 votes through relayer (218ms)
 ✓ Voter 1 transfer tokens to Voter 3 (103ms)
 ✓ Fast forward blocks (6341ms)
 ✓ Voter 3 votes through relayer (232ms)
 ✓ Challenge voter 1 double voting (59ms)
 ✓ (REVERT EXPECTED) Challenge voter 1 double voting (69ms)
 ✓ (REVERT EXPECTED) Challenge voter 1 double voting (70ms)

29.03.2021 Aave Governance Dao | ConsenSys Diligence

https://consensys.net/diligence/audits/2020/08/aave-governance-dao/ 28/30

Appendix 4 - Disclosure
ConsenSys Diligence (“CD”) typically receives compensation from one or
more clients (the “Clients”) for performing the analysis contained in these
reports (the “Reports”). The Reports may be distributed through other means,
including via ConsenSys publications and other distributions.

The Reports are not an endorsement or indictment of any particular project
or team, and the Reports do not guarantee the security of any particular
project. This Report does not consider, and should not be interpreted as
considering or having any bearing on, the potential economics of a token,
token sale or any other product, service or other asset. Cryptographic tokens
are emergent technologies and carry with them high levels of technical risk
and uncertainty. No Report provides any warranty or representation to any
Third-Party in any respect, including regarding the bugfree nature of code,
the business model or proprietors of any such business model, and the legal
compliance of any such business. No third party should rely on the Reports in
any way, including for the purpose of making any decisions to buy or sell any
token, product, service or other asset. Speci�ically, for the avoidance of
doubt, this Report does not constitute investment advice, is not intended to
be relied upon as investment advice, is not an endorsement of this project or
team, and it is not a guarantee as to the absolute security of the project. CD
owes no duty to any Third-Party by virtue of publishing these Reports.

 4 small voters voting No and a whale Yes
 ✓ Voter 1 receives 300K tokens from minting (88ms)
 ✓ Voter 2 receives 100K tokens from minting (92ms)
 ✓ Voter 3 receives 500K tokens from minting (86ms)
 ✓ Voter 4 receives 200K tokens from minting (88ms)
 ✓ Voter 5 receives 6M tokens from minting (87ms)
 ✓ Voter 1 votes through relayer (225ms)
 ✓ Voter 2 votes directly (185ms)
 ✓ Voter 3 votes directly (174ms)
 ✓ Voter 4 votes directly (191ms)
 ✓ (REVERT EXPECTED) Trigger resolveProposal() (81ms)
 ✓ Fast forward blocks (6311ms)
 ✓ Voter 5 votes directly (224ms)
 ✓ Fast forward blocks (6922ms)
 ✓ Trigger resolveProposal() (175ms)

 79 passing (1m)

29.03.2021 Aave Governance Dao | ConsenSys Diligence

https://consensys.net/diligence/audits/2020/08/aave-governance-dao/ 29/30

PURPOSE OF REPORTS The Reports and the analysis described therein are
created solely for Clients and published with their consent. The scope of our
review is limited to a review of Solidity code and only the Solidity code we
note as being within the scope of our review within this report. The Solidity
language itself remains under development and is subject to unknown risks
and �laws. The review does not extend to the compiler layer, or any other
areas beyond Solidity that could present security risks. Cryptographic tokens
are emergent technologies and carry with them high levels of technical risk
and uncertainty.

CD makes the Reports available to parties other than the Clients (i.e., “third
parties”) – on its website. CD hopes that by making these analyses publicly
available, it can help the blockchain ecosystem develop technical best
practices in this rapidly evolving area of innovation.

LINKS TO OTHER WEB SITES FROM THIS WEB SITE You may, through
hypertext or other computer links, gain access to web sites operated by
persons other than ConsenSys and CD. Such hyperlinks are provided for your
reference and convenience only, and are the exclusive responsibility of such
web sites’ owners. You agree that ConsenSys and CD are not responsible for
the content or operation of such Web sites, and that ConsenSys and CD shall
have no liability to you or any other person or entity for the use of third party
Web sites. Except as described below, a hyperlink from this web Site to
another web site does not imply or mean that ConsenSys and CD endorses
the content on that Web site or the operator or operations of that site. You
are solely responsible for determining the extent to which you may use any
content at any other web sites to which you link from the Reports. ConsenSys
and CD assumes no responsibility for the use of third party software on the
Web Site and shall have no liability whatsoever to any person or entity for the
accuracy or completeness of any outcome generated by such software.

TIMELINESS OF CONTENT The content contained in the Reports is current as
of the date appearing on the Report and is subject to change without notice.
Unless indicated otherwise, by ConsenSys and CD.

