
29.03.2021 Aave Protocol V2 | ConsenSys Diligence

https://consensys.net/diligence/audits/2020/09/aave-protocol-v2/ 1/30

Aave Protocol V2

Date September 2020

Lead Auditor Bernhard Mueller

Co-auditors Sergii Kravchenko

1 Executive Summary
This report presents the results of our engagement with Aave review version
2 of the Aave protocol. The review was conducted over 4 weeks, from
September 8th, 2020 to October 9th 2020 by Bernhard Mueller and Sergii
Kravchenko. A total of 35 person-days were spent.

2 Scope
Our review focused on the commit hash
f756f44a8d6a328cd545335e46e7128939db88c4. The list of �iles in scope
can be found in the Appendix. The auditor focused speci�ically on the
changes and new features introduced with version 2 of the protocol.

2.1 Mitigations. Phase 1.

https://pages.consensys.net/diligence-1-day-spot-check

29.03.2021 Aave Protocol V2 | ConsenSys Diligence

https://consensys.net/diligence/audits/2020/09/aave-protocol-v2/ 2/30

AAVE team provided a set of code changes resulting from multiple audits and
their internal review. The resulting commit hash is
60428846fead90d859bded4f1b8c7a4b95f15b4c. Major changes include
batching of �lash loans, removing repayWithCollateral and swapLiquidity

functionality, optimizing proxy behavior, minor �ixes, gas optimization
changes, refactoring. A total of 2 person-days were spent to review them.
Some minor issues were found, but they were �ixed in the next mitigations
phase.

2.2 Mitigations. Phase 2.

After the �irst stage of mitigations, AAVE team provided �inal code changes.
The �inal commit hash is
750920303e33b66bc29862ea3b85206dda9ce786. Most of the changes
are refactoring, minor �ixes, adding minor features, more gas optimization.
Also, issue 5.5 was addressed. A total of 2 person-days were spent to review
the �inal changes.

2.3 Objectives

Together with the Aave team, we identi�ied the following priorities for our
review:

�. Ensure that the system is implemented consistently with the intended
functionality, and without unintended edge cases.

�. Identify known vulnerabilities particular to smart contract systems, as
outlined in our Smart Contract Best Practices, and the Smart Contract
Weakness Classi�ication Registry.

�. Verify that the changes to smart contract architecture introduced in v2
did not introduce unexpected behavior or bugs.

�. Verify that the newly introduced features such as debt tokenization,
collateral swap and �lash loans v2 do not enable new attack vectors.

3 System Overview
Aave v2 retains most of the functionality of v1 while simplifying the protocol
architecture and adding several new features. Code complexity has been
reduced, reducing the gas footprint of all the actions by 15-20%.

https://github.com/aave/protocol-v2/tree/750920303e33b66bc29862ea3b85206dda9ce786
https://consensys.github.io/smart-contract-best-practices/
https://swcregistry.io/

29.03.2021 Aave Protocol V2 | ConsenSys Diligence

https://consensys.net/diligence/audits/2020/09/aave-protocol-v2/ 3/30

Other important changes and new features include:

LendingPool serves as the single point of entry for users while
LendingPoolCore and LendingPoolDataProvider have been replaced with

libraries.

Funds that were previously stored in the LendingPoolCore contract are
now stored in each speci�ic aToken.

Debt is now represented by tokens instead of internal accounting within
the contracts. This simpli�ies internal accounting and allows users to take
stable and variable rate lones of the same asset concurrently.

Users are now able to swap out their collateral natively within the
protocol, without the need to repay their loans.

Aave v2 removes the reentrancy guard on �lash loan which allows users
to use �lash loans with other features of Aave.

4 Security Specification
This section describes, from a security perspective, the expected behavior
of the system under audit. It is not a substitute for documentation. The
purpose of this section is to identify speci�ic security properties that were
validated by the audit team.

4.1 Actors

29.03.2021 Aave Protocol V2 | ConsenSys Diligence

https://consensys.net/diligence/audits/2020/09/aave-protocol-v2/ 4/30

The relevant actors are listed below with their respective abilities:

Everyone
Can deposit or withdraw the liquidity.

Can borrow or repay debt.

Can take a �lash loan.

Can liquidate an undercollateralized position.

Can swap liquidity or repay with collateral.

AAVEAdmin
Manages reserves: adding, removing, freezing, enabling/disabling
stable rate, allowing reserve to be used as collateral, allowing
borrowing.

Con�igurates reserves: sets ltv, reserve factor, liquidation threshold,
liquidation bonus, reserve decimals, interest rate strategy.

Updates A/debt token implementation.

Can pause/unpause pool.

4.2 Trust Model

In any system, it’s important to identify what trust is expected/required
between various actors. For this audit, we established the following trust
model:

The pool uses the oracle to determine the price of the assets. If the
oracle gets malicious, funds can be stolen.

Any user can use the system without any whitelisting.

The protocol is managed by AAVE Governance DAO.

5 Issues
Each issue has an assigned severity:

Minor issues are subjective in nature. They are typically suggestions
around best practices or readability. Code maintainers should use their
own judgment as to whether to address such issues.

Medium issues are objective in nature but are not security vulnerabilities.
These should be addressed unless there is a clear reason not to.

29.03.2021 Aave Protocol V2 | ConsenSys Diligence

https://consensys.net/diligence/audits/2020/09/aave-protocol-v2/ 5/30

Major issues are security vulnerabilities that may not be directly
exploitable or may require certain conditions in order to be exploited. All
major issues should be addressed.

Critical issues are directly exploitable security vulnerabilities that need to
be �ixed.

5.1 Attacker can abuse swapLiquidity function to drain
users’ funds Medium ✓ Fixed

Resolution

Solved by removing swapLiquidity functionality.

Description

The swapLiquidity function allows liquidity providers to atomically swap their
collateral. The function takes a receiverAddress argument that normally points
to an ISwapAdapter implementation trusted by the user.

code/contracts/lendingpool/LendingPoolCollateralManager.sol:L490-L517

29.03.2021 Aave Protocol V2 | ConsenSys Diligence

https://consensys.net/diligence/audits/2020/09/aave-protocol-v2/ 6/30

However, since an attacker can pass any address as the receiverAddress , they
can arbitrarily transfer funds from other contracts that have given allowances
to the LendingPool contract (for example, another ISwapAdapter).

The amountToSwap is de�ined by the caller and can be very small. The attacker
gets the difference between IERC20(toAsset).balanceOf(receiverAddress) value of
toAsset and the amountToSwap of fromToken .

Remediation

Ensure that no funds can be stolen from contracts that have granted
allowances to the LendingPool contract.

5.2 Griefing attack by taking flash loan on behalf of user
Medium

vars.fromReserveAToken.burn(
 msg.sender,
 receiverAddress,
 amountToSwap,
 fromReserve.liquidityIndex
);
// Notifies the receiver to proceed, sending as param the underlying already t
ISwapAdapter(receiverAddress).executeOperation(
 fromAsset,
 toAsset,
 amountToSwap,
 address(this),
 params
);

vars.amountToReceive = IERC20(toAsset).balanceOf(receiverAddress);
if (vars.amountToReceive != 0) {
 IERC20(toAsset).transferFrom(
 receiverAddress,
 address(vars.toReserveAToken),
 vars.amountToReceive
);

 if (vars.toReserveAToken.balanceOf(msg.sender) == 0) {
 _usersConfig[msg.sender].setUsingAsCollateral(toReserve.id, true);
 }

 vars.toReserveAToken.mint(msg.sender, vars.amountToReceive, toReserve.liqu

29.03.2021 Aave Protocol V2 | ConsenSys Diligence

https://consensys.net/diligence/audits/2020/09/aave-protocol-v2/ 7/30

Description

When taking a �lash loan from the protocol, the arbitrary receiverAddress

address can be passed as the argument:

code/contracts/lendingpool/LendingPool.sol:L547-L554

function flashLoan(
 address receiverAddress,
 address asset,
 uint256 amount,
 uint256 mode,
 bytes calldata params,
 uint16 referralCode
) external override {

That may allow anyone to execute a �lash loan on behalf of other users. In
order to make that attack, the receiverAddress should give the allowance to the
LendingPool contract to make a transfer for the amount of
currentAmountPlusPremium .

Example

If someone is giving the allowance to the LendingPool contract to make a
deposit, the attacker can execute a �lash loan on behalf of that user, forcing
the user to pay fees from the �lash loan. That will also prevent the victim from
making a successful deposit transaction.

Remediation

Make sure that only the user can take a �lash loan.

5.3 Interest rates are updated incorrectly Medium

Resolution

This issue was independently discovered by the Aave developers and
had already been �ixed by the end of the audit.

29.03.2021 Aave Protocol V2 | ConsenSys Diligence

https://consensys.net/diligence/audits/2020/09/aave-protocol-v2/ 8/30

The function updateInterestRates() updates the borrow rates of a reserve. Since
the rates depend on the available liquidity they must be recalculated each
time liquidity changes. The function takes the amount of liquidity added or
removed as the input and is called ahead of minting or burning ATokens.
However, in LendingPoolCollateralManager an interest rate update is performed
after aTokens have been burned, resulting in an incorrect interest rate.

code/contracts/lendingpool/LendingPoolCollateralManager.sol:L377-L382

vars.collateralAtoken.burn(
 user,
 receiver,
 vars.maxCollateralToLiquidate,
 collateralReserve.liquidityIndex
);

code/contracts/lendingpool/LendingPoolCollateralManager.sol:L427-L433

//updating collateral reserve
collateralReserve.updateInterestRates(
 collateral,
 address(vars.collateralAtoken),
 0,
 vars.maxCollateralToLiquidate
);

Recommendation

Update interest rates before calling collateralAtoken.burn() .

5.4 Unhandled return values of transfer and transferFrom
Medium

Resolution

safeTransferFrom is now used instead of transferFrom in all locations.

ERC20 implementations are not always consistent. Some implementations of
transfer and transferFrom could return ‘false’ on failure instead of reverting. It

29.03.2021 Aave Protocol V2 | ConsenSys Diligence

https://consensys.net/diligence/audits/2020/09/aave-protocol-v2/ 9/30

is safer to wrap such calls into require() statements to these failures. Unsafe
transferFrom calls were found in the following locations:

code/contracts/lendingpool/LendingPool.sol:L578

code/contracts/lendingpool/LendingPoolCollateralManager.sol:L407

code/contracts/lendingpool/LendingPoolCollateralManager.sol:L507-L511

IERC20(toAsset).transferFrom(
 receiverAddress,
 address(vars.toReserveAToken),
 vars.amountToReceive
);

Recommendation

Check the return value and revert on 0 / false or use OpenZeppelin’s
SafeERC20 wrapper functions.

5.5 Re-entrancy attacks with ERC-777 Minor

Resolution

The issue was partially mitigated in deposit function by minting AToken
before the transfer of the deposit token.

Description

Some tokens may allow users to perform re-entrancy while calling the
transferFrom function. For example, it would be possible for an attacker to

IERC20(asset).transferFrom(receiverAddress, vars.aTokenAddress, vars.amountP

IERC20(principal).transferFrom(receiver, vars.principalAToken, vars.actualAm

29.03.2021 Aave Protocol V2 | ConsenSys Diligence

https://consensys.net/diligence/audits/2020/09/aave-protocol-v2/ 10/30

“borrow” a large amount of ERC-777 tokens from the lending pool by re-
entering the deposit function from within transferFrom .

code/contracts/lendingpool/LendingPool.sol:L91-L118

function deposit(
 address asset,
 uint256 amount,
 address onBehalfOf,
 uint16 referralCode
) external override {
 _whenNotPaused();
 ReserveLogic.ReserveData storage reserve = _reserves[asset];

 ValidationLogic.validateDeposit(reserve, amount);

 address aToken = reserve.aTokenAddress;

 reserve.updateState();
 reserve.updateInterestRates(asset, aToken, amount, 0);

 bool isFirstDeposit = IAToken(aToken).balanceOf(onBehalfOf) == 0;
 if (isFirstDeposit) {
 _usersConfig[onBehalfOf].setUsingAsCollateral(reserve.id, true);
 }

 IAToken(aToken).mint(onBehalfOf, amount, reserve.liquidityIndex);

 //transfer to the aToken contract
 IERC20(asset).safeTransferFrom(msg.sender, aToken, amount);

 emit Deposit(asset, msg.sender, onBehalfOf, amount, referralCode);
}

Because the safeTransferFrom call is happening at the end of the deposit

function, the deposit will be fully processed before the tokens are actually
transferred.

So at the beginning of the transfer, the attacker can re-enter the call to
withdraw their deposit. The withdrawal will succeed even though the
attacker’s tokens have not yet been transferred to the lending pool.
Essentially, the attacker is granted a �lash-loan but without paying fees.

Additionally, after these calls, interest rates will be skewed because interest
rate update relies on the actual current balance.

29.03.2021 Aave Protocol V2 | ConsenSys Diligence

https://consensys.net/diligence/audits/2020/09/aave-protocol-v2/ 11/30

Remediation

Do not whitelist ERC-777 or other re-entrable tokens to prevent this kind of
attack.

5.6 Potential manipulation of stable interest rates using
flash loans Minor

Resolution

This type of manipulation is di�icult to prevent completely especially
when �lash loans are available. In practice however, attacks are mitigated
by the following factors:

�. Liquidity providers attempting to increase users’ stable rates would
have to pay a high �lash loan premium. Users could also immediately
swap to variable interest meaning that the attack could result in a
net loss for the LP. In practice, it is likely that this makes the attack
economically unfeasible.

�. Under normal conditions, users would only gain a relatively small
advantage by lowering their stable rate due to the design of the
stable rate curve. If a user attempted to manipulate their stable rate
during a liquidity crisis, Aave could immediately rebalance them and
bring the rate back to normal.

Flash loans allow users to borrow large amounts of liquidity from the
protocol. It is possible to adjust the stable rate up or down by momentarily
removing or adding large amounts of liquidity to reserves.

LPs increasing the interest rate of borrowers

The function rebalanceStableBorrowRate() increases the stable interest rate of a
user if the current liquidity rate is higher than the user’s stable rate. A liquidity
provider could trigger an arti�icial “liquidity crisis” in a reserve and increase
the stable interest rates of borrowers by atomically performing the following
steps:

29.03.2021 Aave Protocol V2 | ConsenSys Diligence

https://consensys.net/diligence/audits/2020/09/aave-protocol-v2/ 12/30

�. Take a �lash loan to take a large number of tokens from a reserve

�. Re-balance the stable rate of the emptied reserves’ borrowers

�. Repay the �lash loan (plus premium)

�. Withdraw the collateral and repay the �lash loan

Individual borrowers would then have to switch to the variable rate to return
to a lower interest rate.

User borrowing at an arti�icially lowered interest rate

Users wanting to borrow funds could attempt to get a lower interest rate by
temporarily adding liquidity to a reserve (which could e.g. be �lash borrowed
from a different protocol). While there’s a check that prevents users from
borrowing an asset while also adding a higher amount of the same asset as
collateral, this can be bypassed rather easily by depositing the collateral from
a different address (via smart contracts). Aave would then have to rebalance
the user to restore an appropriate interest rate.

In practice, users would gain only a relatively small advantage here due to
the design of the stable rate curve.

Recommendation

This type of manipulation is di�icult to prevent especially when �lash loans
are available. The safest option to prevent the �irst variant would be to restrict
access to rebalanceStableBorrowRate() to admins. In any case, Aave should
monitor the protocol at all times to make sure that interest rates are being
rebalanced to sane values.

5.7 Code quality could be improved Minor

Some minor code quality improvements are recommended to improve
readability.

Explicitly set the visibility for of variables:

code/contracts/tokenization/StableDebtToken.sol:L23-L24

mapping(address => uint40) _timestamps;
uint40 _totalSupplyTimestamp;

29.03.2021 Aave Protocol V2 | ConsenSys Diligence

https://consensys.net/diligence/audits/2020/09/aave-protocol-v2/ 13/30

code/contracts/con�iguration/LendingPoolAddressesProviderRegistry.sol:
L17-L18

mapping(address => uint256) addressesProviders;
address[] addressesProvidersList;

5.8 Attacker can front-run delegator when changing
allowance Minor

Users can grant allowances to borrow debt assets to other users using the
delegateAllowance function. Similar to the classical ERC20 approve attack, it is

possible for a malicious user to front-run the delegator when they attempt to
change the allowance and borrow the sum of the old and new values.

Example scenario:

�. Bob creates an allowance of 100 DAI for Malice:
delegateBorrowAllowance(DAI, Malice, 100)

�. Later, Bob attempts to lower the allowance to 90:
delegateBorrowAllowance(DAI, Malice, 90)

�. Malice borrows a total of 190 DAI by �irst frontrunning Bob’s second
transaction borrowing 100 DAI and then borrowing another 90 DAI after
Bob’s transaction was mined.

Recommentation

A commonly used way of preventing this attack is using increaseAllowance()

and decreaseAllowance() functions speci�ically for increasing and decreasing
allowances.

5.9 Description of flash loan function is inconsistent with
code Minor

The function flashLoan in LendingPool.sol takes an argument mode that
speci�ies the interest rate mode. If the mode is ReserveLogic.InterestRateMode.NONE

the function call is treated as a �lash loan, if not a normal borrow is executed.

However, inline comments in the function describe the behaviour as “If the
transfer didn’t succeed, the receiver either didn’t return the funds, or didn’t

29.03.2021 Aave Protocol V2 | ConsenSys Diligence

https://consensys.net/diligence/audits/2020/09/aave-protocol-v2/ 14/30

approve the transfer”. It is unclear how this relates to the actual code or why
it is possible to specify a mode in the �irst place.

Appendix 1 - MythX Scan
MythX is a security analysis API for Ethereum smart contracts. It performs
multiple types of analysis, including fuzzing and symbolic execution, to
detect many common vulnerability types. The tool was used for automated
vulnerability discovery for all audited contracts and libraries. More details on
MythX can be found at mythx.io.

A.1.1 Auditor Comments

The MythX analysis did not return any critical or high risk �indings. Some
notes on the results:

�. A single integer over�low was reported. However, this turned out to be an
intentional over�low produced by solc: With optimitisation enabled,
variable - 1 compiles to ADD var, MAX_INT .

�. All assertion violations were caused by accessing non-existant elements
in arrays or structs. This is expected behaviour.

�. MythX reports some issues where state is accessed following external
calls or multiple calls are executed within the same transaction. The
reported issues were double-checked by the auditors and found not to
cause any exploitable conditions.

�. Some minor best practice violations such as lack of explicit visibility
speci�iciers on state variables were reported. We included them in code
quality recommendations in the previous section of this report.

A.1.2 MythX Output

Below is the result of the MythX scan. The raw MythX results were reviewed
by an auditor to eliminate false positives. Download the full PDF report here.

Title Method SWC Passed

https://mythx.io/
https://consensys.net/diligence/audits/2020/09/aave-protocol-v2/static/mythx-aave-v2.pdf

29.03.2021 Aave Protocol V2 | ConsenSys Diligence

https://consensys.net/diligence/audits/2020/09/aave-protocol-v2/ 15/30

Title Method SWC Passed

Solidity assert
violation

Symbolic
analysis,
fuzzing
(bytecode)

Symbolic
analysis,
fuzzing
(bytecode)

X

MythX assertion
violation
(AssertionFailed
event)

Symbolic
analysis,
fuzzing
(bytecode)

Symbolic
analysis,
fuzzing
(bytecode)

✓

Integer over�low in
arithmetic operation

Symbolic
analysis,
fuzzing
(bytecode)

Symbolic
analysis,
fuzzing
(bytecode)

✓

Integer under�low in
arithmetic operation

Symbolic
analysis,
fuzzing
(bytecode)

Symbolic
analysis,
fuzzing
(bytecode)

✓

Caller can redirect
execution to arbitrary
locations

Symbolic
analysis,
fuzzing
(bytecode)

Symbolic
analysis,
fuzzing
(bytecode)

✓

Caller can write to
arbitrary storage
locations

Symbolic
analysis,
fuzzing
(bytecode)

Symbolic
analysis,
fuzzing
(bytecode)

✓

Dangerous use of
uninitialized storage
variables

Solidity code
analysis

Solidity code
analysis

✓

Use of “tx.origin” as a
part of authorization
control

Solidity code
analysis

Solidity code
analysis

✓

29.03.2021 Aave Protocol V2 | ConsenSys Diligence

https://consensys.net/diligence/audits/2020/09/aave-protocol-v2/ 16/30

Title Method SWC Passed

Any sender can
trigger
SELFDESTRUCT

Symbolic
analysis
(bytecode)

Symbolic
analysis
(bytecode)

✓

Any sender can
withdraw ETH from
the contract account

Symbolic
analysis
(bytecode)

Symbolic
analysis
(bytecode)

✓

Delegatecall to a user-
supplied address

Symbolic
analysis
(bytecode)

Symbolic
analysis
(bytecode)

✓

Call to a user-supplied
address

Symbolic
analysis
(bytecode)

Symbolic
analysis
(bytecode)

✓

Unchecked return
value from external
call

Solidity code
analysis

Solidity code
analysis

✓

Block timestamp
in�luences a control
�low decision

Taint analysis
(bytecode)

Taint analysis
(bytecode)

✓

Environment variables
in�luence a control
�low decisions

Taint analysis
(bytecode)

Taint analysis
(bytecode)

✓

Loop over unbounded
data structure

Solidity code
analysis

Solidity code
analysis

X

Implicit loop over
unbounded data
structure

Solidity code
analysis

Solidity code
analysis

✓

Usage of “continue” in
“do-while”

Solidity code
analysis

Solidity code
analysis

✓

Multiple calls are
executed in the same
transaction

Static analysis
(bytecode)

Static analysis
(bytecode)

X

29.03.2021 Aave Protocol V2 | ConsenSys Diligence

https://consensys.net/diligence/audits/2020/09/aave-protocol-v2/ 17/30

Title Method SWC Passed

Persistent state read
following external call

Static analysis,
fuzzing
(bytecode)

Static analysis,
fuzzing
(bytecode)

X

Persistent state write
following external call

Static analysis,
fuzzing
(bytecode)

Static analysis,
fuzzing
(bytecode)

X

Account state
accessed after call to
user-de�ined address

Symbolic
analysis
(bytecode)

Symbolic
analysis
(bytecode)

✓

Return value of an
external call is not
checked

Static analysis
(bytecode)

Static analysis
(bytecode)

✓

Potential weak source
of randonmness

Solidity code
analysis

Solidity code
analysis

✓

Requirement violation
Fuzzing
(bytecode)

Fuzzing
(bytecode)

✓

Call with hardcoded
gas amount

Solidity code
analysis

Solidity code
analysis

✓

Incorrect ERC20
implementation

Solidity code
analysis

Solidity code
analysis

✓

Outdated compiler
version

Solidity code
analysis

Solidity code
analysis

✓

No or �loating
compiler version set

Solidity code
analysis

Solidity code
analysis

X

Use of right-to-left-
override control
character

Solidity code
analysis

Solidity code
analysis

✓

Shadowing of built-in
symbol

Solidity code
analysis

Solidity code
analysis

✓

Incorrect constructor
name

Solidity code
analysis

Solidity code
analysis

✓

29.03.2021 Aave Protocol V2 | ConsenSys Diligence

https://consensys.net/diligence/audits/2020/09/aave-protocol-v2/ 18/30

Title Method SWC Passed

State variable
shadows another
state variable

Solidity code
analysis

Solidity code
analysis

X

Local variable
shadows a state
variable

Solidity code
analysis

Solidity code
analysis

✓

Function parameter
shadows a state
variable

Solidity code
analysis

Solidity code
analysis

✓

Named return value
shadows a state
variable

Solidity code
analysis

Solidity code
analysis

✓

Unary operation
without effect

Solidity code
analysis

Solidity code
analysis

✓

Unary operation
directly after
assignment

Solidity code
analysis

Solidity code
analysis

✓

Unused state variable
Solidity code
analysis

Solidity code
analysis

✓

Unused local variable
Solidity code
analysis

Solidity code
analysis

✓

Function visibility is
not set

Solidity code
analysis

Solidity code
analysis

✓

State variable visibility
is not set

Solidity code
analysis

Solidity code
analysis

✓

Use of deprecated
functions: callcode(),
sha3(), …

Solidity code
analysis

Solidity code
analysis

✓

Use of deprecated
global variables
(msg.gas, …)

Solidity code
analysis

Solidity code
analysis

✓

29.03.2021 Aave Protocol V2 | ConsenSys Diligence

https://consensys.net/diligence/audits/2020/09/aave-protocol-v2/ 19/30

Title Method SWC Passed

Use of deprecated
keywords (throw, var)

Solidity code
analysis

Solidity code
analysis

✓

Incorrect function
state mutability

Solidity code
analysis

Solidity code
analysis

✓

Appendix 2 - Files in Scope
This audit covered the following �iles:

File SHA-1 hash

File Name SHA-1 Hash

————- ————–

contracts/con�iguration/LendingPoolAddress
esProvider.sol

fc43ca392cefc78458133
6ccd50e6ab396d2e7b0

contracts/con�iguration/LendingPoolAddress
esProviderRegistry.sol

5c762c93ad1601cf65b1b
649e7e3dcaff67398b9

contracts/�lashloan/base/FlashLoanReceiverB
ase.sol

b0c1d88eb7c62f1365ce
8fc0d6570dcc12f1704a

contracts/lendingpool/DefaultReserveInterest
RateStrategy.sol

5ea00bbb8cc5a2e23c9f
bc8909fea7f72c359c27

contracts/lendingpool/LendingPool.sol
0e244177e35588087ec6
8aab10e3d6dc�ba8fd3f

contracts/lendingpool/LendingPoolCollateral
Manager.sol

1bb03f18ec8695d9d576
b6565e1806e2d9dfef45

contracts/lendingpool/LendingPoolCon�igura
tor.sol

ee5a7e8e5a0c9979b6a8
0e6af4c773fe2932801c

contracts/lendingpool/LendingPoolStorage.s
ol

45273cf021f4ca492ee31
e4c3cb4fc505bb59113

contracts/libraries/con�iguration/ReserveCon
�iguration.sol

742681d53ec89c5f2bdb
9c0f212817b7c00fe70b

29.03.2021 Aave Protocol V2 | ConsenSys Diligence

https://consensys.net/diligence/audits/2020/09/aave-protocol-v2/ 20/30

File SHA-1 hash

contracts/libraries/con�iguration/UserCon�igu
ration.sol

d83b66f4a86d6fd9d34e
263d6239644aab2571fc

contracts/libraries/helpers/Errors.sol
2e3ef63a81e628ed80c9
8d7e8b444c013bd0445
c

contracts/libraries/helpers/Helpers.sol
8e75d�b98a8f09a93f08
c9c713ce64baa656cd77

contracts/libraries/logic/GenericLogic.sol
24bcec756ac5c7eee8ef
e9e15ac9c559fe9b09f3

contracts/libraries/logic/ReserveLogic.sol
c5378e263428b7517ed3
160314753f4f894ee667

contracts/libraries/logic/ValidationLogic.sol
d1a8d5c6bcdfe18c4a5a2
1f20c5727661a16cf3d

contracts/libraries/math/MathUtils.sol
87d586353c9f343d2a4f
b05f27ed82d9887331a5

contracts/libraries/math/PercentageMath.sol
362a7a01af3802c33c58
d9450e33737592d14b38

contracts/libraries/math/SafeMath.sol
b6e2b436c949022d872
611b1536e7ef66c4b157a

contracts/libraries/math/WadRayMath.sol
7bd3c5d5e1fa8decce70
a8f7eb93ccff71270a82

contracts/libraries/openzeppelin-
upgradeability/AdminUpgradeabilityProxy.sol

7d94d6437dd2ca13d1e1
22f15e10445ef0efc08a

contracts/libraries/openzeppelin-
upgradeability/BaseAdminUpgradeabilityProx
y.sol

56b10eef0d671c88b950
8beca598f4a82a65d90f

contracts/libraries/openzeppelin-
upgradeability/BaseUpgradeabilityProxy.sol

9a4359f80fab985949ef
6709e95ca73101cdfdda

contracts/libraries/openzeppelin-
upgradeability/Initializable.sol

d222af72b8e085d77a713
824e9dd4224731b0d55

29.03.2021 Aave Protocol V2 | ConsenSys Diligence

https://consensys.net/diligence/audits/2020/09/aave-protocol-v2/ 21/30

File SHA-1 hash

contracts/libraries/openzeppelin-
upgradeability/InitializableAdminUpgradeabili
tyProxy.sol

7a48b74de6eede6503c7
2ce131b1571e2cbd1beb

contracts/libraries/openzeppelin-
upgradeability/InitializableUpgradeabilityProx
y.sol

b50e5dde172728c8c44a
f9688a968cd79b0fd4c8

contracts/libraries/openzeppelin-
upgradeability/Proxy.sol

d39b7a982109�b4d2ee2
16b0b1d8aeb0434b05c
5

contracts/libraries/openzeppelin-
upgradeability/UpgradeabilityProxy.sol

916c5c35658470a55a01
0eaa75326040dd574c1f

contracts/libraries/openzeppelin-
upgradeability/VersionedInitializable.sol

5edbf435533e89b992d
d7bfd7ce073953809cf0
8

contracts/misc/AaveProtocolTestHelpers.sol
8451fd59bc38e6c4dc39
66bb2f3d872d20391f5f

contracts/misc/Address.sol
1de70a4c842e728cb55f
72d267f2266248daba12

contracts/misc/ChainlinkProxyPriceProvider.s
ol

9e8107c03ed4a55e3528
1140b0c0241c0e9730d4

contracts/misc/Context.sol
4018ef02a339207d889b
b298585c40b9e1a07cd1

contracts/misc/IERC20DetailedBytes.sol
5fc3557ea0f186849d0e7
a5fdfd150bd9e0f8984

contracts/misc/SafeERC20.sol
126a50b6d07d10cca9b9
713247d1e9f333dfae55

contracts/misc/WalletBalanceProvider.sol
a11be6828e99c92be99b
74859856ef4ffc8b1cb6

contracts/tokenization/AToken.sol
9def2fc2d5870f48530ef
ae0f0a4cd007997eb1f

29.03.2021 Aave Protocol V2 | ConsenSys Diligence

https://consensys.net/diligence/audits/2020/09/aave-protocol-v2/ 22/30

File SHA-1 hash

contracts/tokenization/IncentivizedERC20.sol
36048d0331176035e88
9e8e2616e48cc1acb6c0
f

contracts/tokenization/StableDebtToken.sol
ff4b9475461bf03b10804
6d165c8e9e776ebe92c

contracts/tokenization/VariableDebtToken.sol
e5cc9d75a01081942810
697bdcb6cff46f19a87f

contracts/tokenization/base/DebtTokenBase.
sol

6c1310875�bfae2�bc92a2
f5f10fee29c6436e03

Appendix 3 - Artifacts
This section contains some of the artifacts generated during our review by
automated tools, the test suite, etc. If any issues or recommendations were
identi�ied by the output presented here, they have been addressed in the
appropriate section above.

A.3.1 Tests Suite

Below is the output generated by running the test suite:

 AToken: Modifiers
 ✓ Tries to invoke mint not being the LendingPool
 ✓ Tries to invoke burn not being the LendingPool
 ✓ Tries to invoke transferOnLiquidation not being the LendingPool
 ✓ Tries to invoke transferUnderlyingTo not being the LendingPool

 AToken: Permit
 ✓ Checks the domain separator
 ✓ Get aDAI for tests (87ms)
 ✓ Reverts submitting a permit with 0 expiration (48ms)
 ✓ Submits a permit with maximum expiration length (56ms)
 ✓ Cancels the previous permit (67ms)
 ✓ Tries to submit a permit with invalid nonce
 ✓ Tries to submit a permit with invalid expiration (previous to the curr
 ✓ Tries to submit a permit with invalid signature
 ✓ Tries to submit a permit with invalid owner

 AToken: Transfer
 ✓ User 0 deposits 1000 DAI, transfers to user 1 (166ms)

29.03.2021 Aave Protocol V2 | ConsenSys Diligence

https://consensys.net/diligence/audits/2020/09/aave-protocol-v2/ 23/30

 ✓ User 0 deposits 1 WETH and user 1 tries to borrow, but the aTokens rec
 ✓ User 1 sets the DAI as collateral and borrows, tries to transfer every

 LendingPool SwapDeposit function
 ✓ Should not allow to swap if from equal to
 ✓ Should not allow to swap if from or to reserves are not active (212ms)
 ✓ Deposits WETH into the reserve (189ms)
 ✓ User tries to swap more then he can, revert expected (66ms)
 ✓ User tries to swap more then available on the reserve (305ms)
 ✓ User tries to swap correct amount (753ms)
 ✓ User tries to drop HF below one (396ms)
 ✓ Should set usage as collateral to false if no leftovers after swap (75
 ✓ Should not allow to swap if to reserve are freezed (76ms)

 LendingPoolConfigurator
 ✓ Deactivates the ETH reserve (69ms)
 ✓ Rectivates the ETH reserve (39ms)
 ✓ Check the onlyAaveAdmin on deactivateReserve
 ✓ Check the onlyAaveAdmin on activateReserve
 ✓ Freezes the ETH reserve (40ms)
 ✓ Unfreezes the ETH reserve (44ms)
 ✓ Check the onlyAaveAdmin on freezeReserve
 ✓ Check the onlyAaveAdmin on unfreezeReserve
 ✓ Deactivates the ETH reserve for borrowing (39ms)
 ✓ Activates the ETH reserve for borrowing (272ms)
 ✓ Check the onlyAaveAdmin on disableBorrowingOnReserve
 ✓ Check the onlyAaveAdmin on enableBorrowingOnReserve
 ✓ Deactivates the ETH reserve as collateral (45ms)
 ✓ Activates the ETH reserve as collateral (43ms)
 ✓ Check the onlyAaveAdmin on disableReserveAsCollateral
 ✓ Check the onlyAaveAdmin on enableReserveAsCollateral
 ✓ Disable stable borrow rate on the ETH reserve (41ms)
 ✓ Enables stable borrow rate on the ETH reserve (41ms)
 ✓ Check the onlyAaveAdmin on disableReserveStableRate
 ✓ Check the onlyAaveAdmin on enableReserveStableRate
 ✓ Changes LTV of the reserve (46ms)
 ✓ Check the onlyAaveAdmin on setLtv
 ✓ Changes the reserve factor of the reserve (42ms)
 ✓ Check the onlyLendingPoolManager on setReserveFactor
 ✓ Changes liquidation threshold of the reserve (48ms)
 ✓ Check the onlyAaveAdmin on setLiquidationThreshold
 ✓ Changes liquidation bonus of the reserve (42ms)
 ✓ Check the onlyAaveAdmin on setLiquidationBonus
 ✓ Check the onlyAaveAdmin on setReserveDecimals
 ✓ Check the onlyAaveAdmin on setLiquidationBonus
 ✓ Reverts when trying to disable the DAI reserve with liquidity on it (1

 LendingPool. repayWithCollateral()
 ✓ It's not possible to repayWithCollateral() on a non-active collateral
 ✓ User 1 provides some liquidity for others to borrow (315ms)
 ✓ User 2 deposit WETH and borrows DAI at Variable (217ms)
 ✓ It is not possible to do reentrancy on repayWithCollateral() (170ms)

✓ User 2 tries to repay his DAI Variable loan using his WETH collateral

29.03.2021 Aave Protocol V2 | ConsenSys Diligence

https://consensys.net/diligence/audits/2020/09/aave-protocol-v2/ 24/30

 ✓ User 2 tries to repay his DAI Variable loan using his WETH collateral
 ✓ User 3 deposits WETH and borrows USDC at Variable (228ms)
 ✓ User 3 repays completely his USDC loan by swapping his WETH collateral
 ✓ Revert expected. User 3 tries to repay with his collateral a currency
 ✓ User 3 tries to repay with his collateral all his variable debt and pa
 ✓ User 4 tries to repay a bigger amount that what can be swapped of a pa
 ✓ User 5 deposits WETH and DAI, then borrows USDC at Variable, then disa
 ✓ User 5 tries to repay his USDC loan by swapping his WETH collateral, s

 LendingPool. repayWithCollateral() with liquidator
 ✓ User 1 provides some liquidity for others to borrow (354ms)
 ✓ User 5 liquidate User 3 collateral, all his variable debt and part of
 ✓ User 3 deposits WETH and borrows USDC at Variable (377ms)
 ✓ User 5 liquidates half the USDC loan of User 3 by swapping his WETH co
 ✓ Revert expected. User 5 tries to liquidate an User 3 collateral a curr
 ✓ User 5 liquidates all the USDC loan of User 3 by swapping his WETH col
 ✓ User 2 deposit WETH and borrows DAI at Variable (349ms)
 ✓ It is not possible to do reentrancy on repayWithCollateral() (509ms)
 ✓ User 5 tries to liquidate User 2 DAI Variable loan using his WETH col
 ✓ User 5 liquidates User 2 DAI Variable loan using his WETH collateral,
 ✓ User 2 tries to repay remaining DAI Variable loan using his WETH colla
 ✓ Liquidator tries to repay 4 user a bigger amount that what can be swap
 ✓ User 5 deposits WETH and DAI, then borrows USDC at Variable, then disa
 ✓ Liquidator tries to liquidates User 5 USDC loan by swapping his WETH c

 LendingPool FlashLoan function
 ✓ Deposits WETH into the reserve (116ms)
 ✓ Takes WETH flashloan with mode = 0, returns the funds correctly (135ms
 ✓ Takes an ETH flashloan with mode = 0 as big as the available liquidity
 ✓ Takes WETH flashloan, does not return the funds with mode = 0. (revert
 ✓ Takes a WETH flashloan with an invalid mode. (revert expected)
 ✓ Caller deposits 1000 DAI as collateral, Takes WETH flashloan with mode
 ✓ tries to take a very small flashloan, which would result in 0 fees (re
 ✓ tries to take a flashloan that is bigger than the available liquidity
 ✓ tries to take a flashloan using a non contract address as receiver (re
 ✓ Deposits USDC into the reserve (136ms)
 ✓ Takes out a 500 USDC flashloan, returns the funds correctly (224ms)
 ✓ Takes out a 500 USDC flashloan with mode = 0, does not return the fund
 ✓ Caller deposits 5 WETH as collateral, Takes a USDC flashloan with mode
 ✓ Caller deposits 1000 DAI as collateral, Takes a WETH flashloan with mo
 ✓ Caller takes a WETH flashloan with mode = 1 (200ms)

 LendingPoolAddressesProvider
 ✓ Test the accessibility of the LendingPoolAddressesProvider (258ms)

 LendingPool liquidation - liquidator receiving aToken
 ✓ LIQUIDATION - Deposits WETH, borrows DAI/Check liquidation fails becau
 ✓ LIQUIDATION - Drop the health factor below 1 (89ms)
 ✓ LIQUIDATION - Tries to liquidate a different currency than the loan pr
 ✓ LIQUIDATION - Tries to liquidate a different collateral than the borro
 ✓ LIQUIDATION - Liquidates the borrow (761ms)
 ✓ User 3 deposits 1000 USDC, user 4 1 WETH, user 4 borrows - drops HF, l

29.03.2021 Aave Protocol V2 | ConsenSys Diligence

https://consensys.net/diligence/audits/2020/09/aave-protocol-v2/ 25/30

 LendingPool liquidation - liquidator receiving the underlying asset
 ✓ It's not possible to liquidate on a non-active collateral or a non act
 ✓ LIQUIDATION - Deposits WETH, borrows DAI (469ms)
 ✓ LIQUIDATION - Drop the health factor below 1 (77ms)
 ✓ LIQUIDATION - Liquidates the borrow (602ms)
 ✓ User 3 deposits 1000 USDC, user 4 1 WETH, user 4 borrows - drops HF, l
 ✓ User 4 deposits 1000 LEND - drops HF, liquidates the LEND, which resul

 Pausable Pool
 ✓ User 0 deposits 1000 DAI. Configurator pauses pool. Transfers to user
 ✓ Deposit (82ms)
 ✓ Withdraw (149ms)
 ✓ DelegateBorrowAllowance (51ms)
 ✓ Borrow (47ms)
 ✓ Swap liquidity (51ms)
 ✓ Repay (47ms)
 ✓ Repay with collateral (48ms)
 ✓ Flash loan (56ms)
 ✓ Liquidation call (501ms)
 ✓ SwapBorrowRateMode (335ms)
 ✓ RebalanceStableBorrowRate (45ms)
 ✓ setUserUseReserveAsCollateral (131ms)

 LendingPool: Borrow negatives (reverts)
 ✓ User 0 deposits 1000 DAI, user 1 deposits 1 WETH as collateral and tri
 ✓ User 0 deposits 1000 DAI, user 1 deposits 1 WETH as collateral and tri

 LendingPool: Borrow/repay (stable rate)
 ✓ User 0 deposits 1000 DAI, user 1 deposits 1 WETH as collateral and bor
 ✓ User 1 tries to borrow the rest of the DAI liquidity (revert expected)
 ✓ User 1 repays the half of the DAI borrow after one year (490ms)
 ✓ User 1 repays the rest of the DAI borrow after one year (474ms)
 ✓ User 0 withdraws the deposited DAI plus interest (376ms)
 ✓ User 1 deposits 1000 DAI, user 2 tries to borrow 1000 DAI at a stable
 ✓ User 0 deposits 1000 DAI, user 1,2,3,4 deposit 1 WETH each and borrow
 ✓ User 0 deposits 1000 DAI, user 1 deposits 2 WETH and borrow 100 DAI at

 LendingPool: Borrow/repay (variable rate)
 ✓ User 2 deposits 1 DAI to account for rounding errors (335ms)
 ✓ User 0 deposits 1000 DAI, user 1 deposits 1 WETH as collateral and bor
 ✓ User 1 tries to borrow the rest of the DAI liquidity (revert expected)
 ✓ User 1 tries to repay 0 DAI (revert expected) (156ms)
 ✓ User 1 repays a small amount of DAI, enough to cover a small part of t
 ✓ User 1 repays the DAI borrow after one year (470ms)
 ✓ User 0 withdraws the deposited DAI plus interest (308ms)
 ✓ User 1 withdraws the collateral (298ms)
 ✓ User 2 deposits a small amount of WETH to account for rounding errors
 ✓ User 0 deposits 1 WETH, user 1 deposits 100 LINK as collateral and bor
 ✓ User 1 tries to repay 0 ETH (150ms)
 ✓ User 2 tries to repay everything on behalf of user 1 using uint(-1) (r
 ✓ User 3 repays a small amount of WETH on behalf of user 1 (355ms)
 ✓ User 1 repays the WETH borrow after one year (332ms)

29.03.2021 Aave Protocol V2 | ConsenSys Diligence

https://consensys.net/diligence/audits/2020/09/aave-protocol-v2/ 26/30

 ✓ User 0 withdraws the deposited WETH plus interest (286ms)
 ✓ User 1 withdraws the collateral (289ms)
 ✓ User 2 deposits 1 USDC to account for rounding errors (318ms)
 ✓ User 0 deposits 1000 USDC, user 1 deposits 1 WETH as collateral and bo
 ✓ User 1 tries to borrow the rest of the USDC liquidity (revert expected
 ✓ User 1 repays the USDC borrow after one year (337ms)
 ✓ User 0 withdraws the deposited USDC plus interest (272ms)
 ✓ User 1 withdraws the collateral (275ms)
 ✓ User 1 deposits 1000 DAI, user 3 tries to borrow 1000 DAI without any
 ✓ user 3 deposits 0.1 ETH collateral to borrow 100 DAI; 0.1 ETH is not e
 ✓ user 3 withdraws the 0.1 ETH (284ms)
 ✓ User 1 deposits 1000 USDC, user 3 tries to borrow 1000 USDC without an
 ✓ user 3 deposits 0.1 ETH collateral to borrow 100 USDC; 0.1 ETH is not
 ✓ user 3 withdraws the 0.1 ETH (279ms)
 ✓ User 0 deposits 1000 DAI, user 6 deposits 2 WETH and borrow 100 DAI at

 LendingPool: credit delegation
 ✓ User 0 deposits 1000 DAI, user 0 delegates borrowing of 1 WETH on vari
 ✓ User 4 trying to borrow 1 WETH stable on behalf of user 0, revert expe
 ✓ User 0 delegates borrowing of 1 WETH to user 4, user 4 borrows 3 WETH
 ✓ User 0 delegates borrowing of 1 WETH on stable to user 2, user 2 borro
 ✓ User 0 delegates borrowing of 1 WETH to user 2 with wrong borrowRateMo

 LendingPool: Deposit
 ✓ User 0 Deposits 1000 DAI in an empty reserve (299ms)
 ✓ User 1 deposits 1000 DAI after user 1 (299ms)
 ✓ User 0 deposits 1000 USDC in an empty reserve (296ms)
 ✓ User 1 deposits 1000 USDC after user 0 (439ms)
 ✓ User 0 deposits 1 WETH in an empty reserve (300ms)
 ✓ User 1 deposits 1 WETH after user 0 (298ms)
 ✓ User 1 deposits 0 ETH (revert expected) (148ms)
 ✓ User 1 deposits 0 DAI (121ms)
 ✓ User 1 deposits 100 DAI on behalf of user 2, user 2 tries to borrow 0

 LendingPool: Rebalance stable rate
 ✓ User 0 tries to rebalance user 1 who has no borrows in progress (rever
 ✓ User 0 deposits 1000 DAI, user 1 deposits 5 ETH, borrows 600 DAI at a
 ✓ User 1 borrows another 200 at stable, user 0 tries to rebalance but th
 ✓ User 1 borrows another 200 at stable, user 0 tries to rebalance but th
 ✓ User 1 borrows another 100 at stable, user 0 tries to rebalance but th
 ✓ User 2 deposits ETH and borrows the remaining DAI, causing the stable
 ✓ User 2 borrows the remaining DAI (usage ratio = 100%). User 0 rebalanc

 LendingPool: Usage as collateral
 ✓ User 0 Deposits 1000 DAI, disables DAI as collateral (526ms)
 ✓ User 1 Deposits 2 ETH, disables ETH as collateral, borrows 400 DAI (re
 ✓ User 1 enables ETH as collateral, borrows 400 DAI (517ms)
 ✓ User 1 disables ETH as collateral (revert expected) (154ms)

 LendingPool: Swap rate mode
 ✓ User 0 tries to swap rate mode without any variable rate loan in progr
 ✓ User 0 tries to swap rate mode without any stable rate loan in progres

✓ U 0 d it 1000 DAI 1 d it 2 ETH ll t l b

29.03.2021 Aave Protocol V2 | ConsenSys Diligence

https://consensys.net/diligence/audits/2020/09/aave-protocol-v2/ 27/30

Appendix 4 - Disclosure
ConsenSys Diligence (“CD”) typically receives compensation from one or
more clients (the “Clients”) for performing the analysis contained in these
reports (the “Reports”). The Reports may be distributed through other means,
including via ConsenSys publications and other distributions.

 ✓ User 0 deposits 1000 DAI, user 1 deposits 2 ETH as collateral, borrows
 ✓ User 1 borrows another 100 DAI, and swaps back to variable after one y

 LendingPool: Redeem negative test cases
 ✓ Users 0 Deposits 1000 DAI and tries to redeem 0 DAI (revert expected)
 ✓ Users 0 tries to redeem 1100 DAI from the 1000 DAI deposited (revert e
 ✓ Users 1 deposits 1 WETH, borrows 100 DAI, tries to redeem the 1 WETH d

 LendingPool: withdraw
 ✓ User 0 Deposits 1000 DAI in an empty reserve (301ms)
 ✓ User 0 withdraws half of the deposited DAI (267ms)
 ✓ User 0 withdraws remaining half of the deposited DAI (262ms)
 ✓ User 0 Deposits 1000 USDC in an empty reserve (293ms)
 ✓ User 0 withdraws half of the deposited USDC (400ms)
 ✓ User 0 withdraws remaining half of the deposited USDC (264ms)
 ✓ User 0 Deposits 1 WETH in an empty reserve (295ms)
 ✓ User 0 withdraws half of the deposited ETH (268ms)
 ✓ User 0 withdraws remaining half of the deposited ETH (260ms)
 ✓ Users 0 and 1 Deposit 1000 DAI, both withdraw (1063ms)
 ✓ Users 0 deposits 1000 DAI, user 1 Deposit 1000 USDC and 1 WETH, borrow

 Stable debt token tests
 ✓ Tries to invoke mint not being the LendingPool
 ✓ Tries to invoke burn not being the LendingPool

 Upgradeability
 ✓ Tries to update the DAI Atoken implementation with a different address
 ✓ Upgrades the DAI Atoken implementation (44ms)
 ✓ Tries to update the DAI Stable debt token implementation with a differ
 ✓ Upgrades the DAI stable debt token implementation (52ms)
 ✓ Tries to update the DAI variable debt token implementation with a diff
 ✓ Upgrades the DAI variable debt token implementation (51ms)

 Variable debt token tests
 ✓ Tries to invoke mint not being the LendingPool
 ✓ Tries to invoke burn not being the LendingPool

 215 passing (2m)

29.03.2021 Aave Protocol V2 | ConsenSys Diligence

https://consensys.net/diligence/audits/2020/09/aave-protocol-v2/ 28/30

The Reports are not an endorsement or indictment of any particular project
or team, and the Reports do not guarantee the security of any particular
project. This Report does not consider, and should not be interpreted as
considering or having any bearing on, the potential economics of a token,
token sale or any other product, service or other asset. Cryptographic tokens
are emergent technologies and carry with them high levels of technical risk
and uncertainty. No Report provides any warranty or representation to any
Third-Party in any respect, including regarding the bugfree nature of code,
the business model or proprietors of any such business model, and the legal
compliance of any such business. No third party should rely on the Reports in
any way, including for the purpose of making any decisions to buy or sell any
token, product, service or other asset. Speci�ically, for the avoidance of
doubt, this Report does not constitute investment advice, is not intended to
be relied upon as investment advice, is not an endorsement of this project or
team, and it is not a guarantee as to the absolute security of the project. CD
owes no duty to any Third-Party by virtue of publishing these Reports.

PURPOSE OF REPORTS The Reports and the analysis described therein are
created solely for Clients and published with their consent. The scope of our
review is limited to a review of Solidity code and only the Solidity code we
note as being within the scope of our review within this report. The Solidity
language itself remains under development and is subject to unknown risks
and �laws. The review does not extend to the compiler layer, or any other
areas beyond Solidity that could present security risks. Cryptographic tokens
are emergent technologies and carry with them high levels of technical risk
and uncertainty.

CD makes the Reports available to parties other than the Clients (i.e., “third
parties”) – on its website. CD hopes that by making these analyses publicly
available, it can help the blockchain ecosystem develop technical best
practices in this rapidly evolving area of innovation.

LINKS TO OTHER WEB SITES FROM THIS WEB SITE You may, through
hypertext or other computer links, gain access to web sites operated by
persons other than ConsenSys and CD. Such hyperlinks are provided for your
reference and convenience only, and are the exclusive responsibility of such
web sites’ owners. You agree that ConsenSys and CD are not responsible for
the content or operation of such Web sites, and that ConsenSys and CD shall
have no liability to you or any other person or entity for the use of third party

29.03.2021 Aave Protocol V2 | ConsenSys Diligence

https://consensys.net/diligence/audits/2020/09/aave-protocol-v2/ 29/30

Web sites. Except as described below, a hyperlink from this web Site to
another web site does not imply or mean that ConsenSys and CD endorses
the content on that Web site or the operator or operations of that site. You
are solely responsible for determining the extent to which you may use any
content at any other web sites to which you link from the Reports. ConsenSys
and CD assumes no responsibility for the use of third party software on the
Web Site and shall have no liability whatsoever to any person or entity for the
accuracy or completeness of any outcome generated by such software.

TIMELINESS OF CONTENT The content contained in the Reports is current as
of the date appearing on the Report and is subject to change without notice.
Unless indicated otherwise, by ConsenSys and CD.

https://consensys.net/diligence/audits/
https://consensys.net/diligence/blog/
https://consensys.net/diligence/tools/
https://consensys.net/diligence/research/
https://consensys.net/diligence/about/
https://consensys.net/diligence/contact/
https://consensys.net/open-roles/?discipline=32525
https://consensys.net/diligence/privacy-policy/
https://consensys.net/diligence/contact/

