
Alchemix contest
Findings & Analysis Report

2022-07-18

Table of contents
Overview

About C4

Wardens

Summary

Scope

Severity Criteria

Medium Risk Findings (17)

[M-01] Alchemist can mint AlTokens above their assigned ceiling by

calling lowerHasMinted()

[M-02] TransmuterBuffer.sol calls depositUnderlying with no slippage

bounds

[M-03] DoS in wrap and unwrap

[M-04] YearnTokenAdapter allows a maximum loss of 100% when

withdrawing

[M-05] No Storage Gap for Upgradeable Contract Might Lead to Storage

Slot Collision

[M-06] EthAssetManager and ThreePoolAssetManager don’t control

Meta tokens decimals

[M-07] AutoleverageBase: Must approve 0 first

https://code4rena.com/

[M-08] YearnTokenAdapter’s wrap can become stuck as it uses one step

approval for an arbitrary underlying

[M-09] TransmuterBuffer’s setAlchemist will freeze deposited funds

[M-10] New gALCX token denomination can be depressed by the first

depositor

[M-11] [gALCX.sol] Attacker can make the contract unusable when

totalSupply is 0

[M-12] registerAsset misuse can permanently disable TransmuterBuffer

and break the system

[M-13] TransmuterBuffer’s _alchemistWithdraw use hard coded slippage

that can lead to user losses

[M-14] A well financed attacker could prevent any other users from

minting synthetic tokens

[M-15] Lido adapter incorrectly calculates the price of the underlying

token

[M-16] If totalShares for a token falls to zero while there is

pendingCredit the contract will become stuck

[M-17] Debt can be repaid with a depegged underlyingToken, which can

be exploited by arbitrageurs and drives the market price of alToken to

match the worst depegged underlyingToken

Low Risk and Non-Critical Issues

Summary

L-01 Latent funds can be stolen

L-02 Low level calls don’t check for contract existence

L-03 Set sane maximums for input parameters

L-04 Behavior described by comment is incomplete

L-05 Unsafe use of transfer() / transferFrom() with IERC20

L-06 Return values of transfer() / transferFrom() not checked

L-07 Unused/empty receive() function

L-08 safeApprove() is deprecated

L-09 Missing checks for address(0x0) when assigning values to address

state variables

L-10 abi.encodePacked() should not be used with dynamic types when

passing the result to a hash function such as keccak256()

L-11 Upgradeable contract is missing a __gap[50] storage variable to

allow for new storage variables in later versions

N-01 Adding a return statement when the function defines a named

return variable, is redundant

N-02 override function arguments that are unused should have the

variable name removed or commented out to avoid compiler warnings

N-03 public functions not called by the contract should be declared

external instead

N-04 2**<n> - 1 should be re-written as type(uint<n>).max

N-05 constant s should be defined rather than using magic numbers

N-06 Redundant cast

N-07 Numeric values having to do with time should use time units for

readability

N-08 Missing event for critical parameter change

N-09 Use a more recent version of solidity

N-10 Use a more recent version of solidity

N-11 Use scientific notation (e.g. 1e18) rather than exponentiation (e.g.

10**18)

N-12 Inconsistent spacing in comments

N-13 Non-library/interface files should use fixed compiler versions, not

floating ones

N-14 Typos

N-15 File does not contain an SPDX Identifier

N-16 File is missing NatSpec

N-17 NatSpec is incomplete

N-18 Event is missing indexed fields

N-19 Use allowlist/denylist rather than blacklist/whitelist

Gas Optimizations

G-01 Remove or replace unused state variables

G-02 Multiple address mappings can be combined into a single

mapping of an address to a struct , where appropriate

G-03 State variables only set in the constructor should be declared

immutable

G-04 Structs can be packed into fewer storage slots

G-05 Using calldata instead of memory for read-only arguments in

external functions saves gas

G-06 State variables should be cached in stack variables rather than re-

reading them from storage

G-07 The result of external function calls should be cached rather than

re-calling the function

G-08 <x> += <y> costs more gas than <x> = <x> + <y> for state

variables

G-09 internal functions only called once can be inlined to save gas

G-10 <array>.length should not be looked up in every loop of a for -

loop

G-11 ++i / i++ should be unchecked{++i} / unchecked{++i} when it is not

possible for them to overflow, as is the case when used in for - and

while -loops

G-12 require() / revert() strings longer than 32 bytes cost extra gas

G-13 private functions not called by the contract should be removed to

save deployment gas

G-14 Not using the named return variables when a function returns,

wastes deployment gas

G-15 Remove unused local variable

G-16 Using bool s for storage incurs overhead

G-17 Use a more recent version of solidity

G-18 Use a more recent version of solidity

G-19 Use a more recent version of solidity

G-20 It costs more gas to initialize variables to zero than to let the default

of zero be applied

G-21 internal functions not called by the contract should be removed

to save deployment gas

G-22 ++i costs less gas than ++i , especially when it’s used in for -

loops (--i / i-- too)

G-23 Usage of uints / ints smaller than 32 bytes (256 bits) incurs

overhead

G-24 abi.encode() is less efficient than abi.encodePacked()

G-25 Expressions for constant values such as a call to keccak256() ,

should use immutable rather than constant

G-26 Using private rather than public for constants, saves gas

G-27 Don’t use SafeMath once the solidity version is 0.8.0 or greater

G-28 Duplicated require() / revert() checks should be refactored to a

modifier or function

G-29 Multiplication/division by two should use bit shifting

G-30 Empty blocks should be removed or emit something

G-31 Use custom errors rather than revert() / require() strings to save

deployment gas

G-32 Functions guaranteed to revert when called by normal users can be

marked payable

G-33 public functions not called by the contract should be declared

external instead

Disclosures

Code4rena (C4) is an open organization consisting of security researchers, auditors,

developers, and individuals with domain expertise in smart contracts.

Overview

About C4

A C4 audit contest is an event in which community participants, referred to as

Wardens, review, audit, or analyze smart contract logic in exchange for a bounty

provided by sponsoring projects.

During the audit contest outlined in this document, C4 conducted an analysis of the

Alchemix smart contract system written in Solidity. The audit contest took place

between May 5—May 18 2022.

74 Wardens contributed reports to the Alchemix contest:

1. hyh

2. AuditsAreUS

3. TerrierLover

4. WatchPug (jtp and ming)

5. cccz

6. Ruhum

7. 0x52

8. CertoraInc (egjlmn1, OriDabush, ItayG, and shakedwinder)

9. 0x1337

10. dirk_y

11. 0xsomeone

12. IllIllI

13. tintin

14. GimelSec (rayn and sces60107)

15. BowTiedWardens (BowTiedHeron and BowTiedPickle and m4rio_eth and

Dravee and BowTiedFirefox)

16. joestakey

17. 0x1f8b

18. 0xDjango

19. mics

Wardens

https://twitter.com/WatchPug_
https://github.com/jack-the-pug
https://github.com/mingwatch
https://twitter.com/0xruhum
https://twitter.com/CertoraInc
https://twitter.com/ori_dabush
https://github.com/alex-ppg
https://twitter.com/rayn731
https://code4rena.com/reports/2022-05-alchemix/BowTiedETHernal
https://twitter.com/JustDravee
https://twitter.com/JoeStakey

20. 0xkatana

21. fatherOfBlocks

22. robee

23. 0x4non

24. simon135

25. 0xNazgul

26. samruna

27. MaratCerby

28. csanuragjain

29. sikorico

30. horsefacts

31. catchup

32. ellahi

33. oyc_109

34. MiloTruck

35. Funen

36. throttle

37. Cityscape

38. bobirichman

39. Hawkeye (0xwags and 0xmint)

40. Waze

41. hake

42. kenta

43. JC

44. shenwilly

45. AlleyCat

46. jayjonah8

47. Picodes

https://twitter.com/father0fBl0cks
https://twitter.com/0xNazgul
https://twitter.com/MaratCerby
https://twitter.com/csanuragjain
https://twitter.com/catchup22
https://twitter.com/ellahinator
https://milotruck.github.io/
https://instagram.com/vanensurya
https://twitter.com/Throt7le
https://twitter.com/sm4rtcontr4ct
https://twitter.com/shenwilly_
https://twitter.com/thePicodes

48. cryptphi

49. BouSalman

50. delfin454000

51. kebabsec (okkothejawa and FlameHorizon)

52. sashik_eth

53. 0xf15ers (remora and twojoy)

54. Tomio

55. _Adam

56. hansfriese

57. ignacio

58. 0v3rf10w

59. Fitraldys

60. Randyyy

61. UnusualTurtle

62. augustg

This contest was judged by 0xleastwood.

Final report assembled by itsmetechjay.

The C4 analysis yielded an aggregated total of 17 unique vulnerabilities. Of these

vulnerabilities, 0 received a risk rating in the category of HIGH severity and 17

received a risk rating in the category of MEDIUM severity.

Additionally, C4 analysis included 46 reports detailing issues with a risk rating of

LOW severity or non-critical. There were also 46 reports recommending gas

optimizations.

All of the issues presented here are linked back to their original finding.

Summary

Scope

https://twitter.com/BouSalman
https://twitter.com/FlameHorizon1
https://twitter.com/meidhiwirara
https://twitter.com/hansfriese
https://twitter.com/igncarmona
https://twitter.com/_0v3rf10w
https://twitter.com/fitraldys
https://twitter.com/randyyramadhan
https://augustcomputing.com/
https://twitter.com/liam_eastwood13
https://twitter.com/itsmetechjay

The code under review can be found within the C4 Alchemix contest repository,

and is composed of 27 smart contracts written in the Solidity programming

language and includes 7,000 lines of Solidity code.

C4 assesses the severity of disclosed vulnerabilities according to a methodology

based on OWASP standards.

Vulnerabilities are divided into three primary risk categories: high, medium, and

low/non-critical.

High-level considerations for vulnerabilities span the following key areas when

conducting assessments:

Malicious Input Handling

Escalation of privileges

Arithmetic

Gas use

Further information regarding the severity criteria referenced throughout the

submission review process, please refer to the documentation provided on the C4

website.

Submitted by tintin, also found by 0xsomeone, AuditsAreUS, and hyh

AlchemicTokenV2Base.sol#L111-L124

AlchemicTokenV2Base.sol#L189-L191

An alchemist / user can mint more than their alloted amount of AlTokens by calling

lowerHasMinted() before they reach their minting cap.

Severity Criteria

Medium Risk Findings (17)

[M-01] Alchemist can mint AlTokens above their assigned
ceiling by calling lowerHasMinted()

Proof of Concept

https://github.com/code-423n4/2022-05-alchemix
https://owasp.org/www-community/OWASP_Risk_Rating_Methodology
https://code4rena.com/
https://github.com/code-423n4/2022-05-alchemix/blob/de65c34c7b6e4e94662bf508e214dcbf327984f4/contracts-full/AlchemicTokenV2Base.sol#L111-L124
https://github.com/code-423n4/2022-05-alchemix/blob/de65c34c7b6e4e94662bf508e214dcbf327984f4/contracts-full/AlchemicTokenV2Base.sol#L189-L191
https://github.com/code-423n4/2022-05-alchemix-findings/issues/166

Function mint() in AlchemicTokenV2Base.sol

Note the require conditional check that total > mintCeiling[msg.sender] .

In the same contract, there is the function lowerHasMinted() with the same

permission level as mint and is thus callable by the same user as well.

It is clear that a user can accumulate an infinite (within supply) amount of AlTokens

by calling lowerHasMinted() before any action that would make them exceed their

minting cap.

Manual review, VScode

Change the permissioning on lowerHasMinted() to be restricted to a higher

permissioned role like onlySentinel() , or deprecate this function as I could not

 function mint(address recipient, uint256 amount) external onlyWhite
 if (paused[msg.sender]) {
 revert IllegalState();
 }

 uint256 total = amount + totalMinted[msg.sender];
 if (total > mintCeiling[msg.sender]) {
 revert IllegalState();
 }

 totalMinted[msg.sender] = total;

 _mint(recipient, amount);
 }

 function lowerHasMinted(uint256 amount) external onlyWhitelisted {
 totalMinted[msg.sender] = totalMinted[msg.sender] - amount;
 }

Tools Used

Recommended Mitigation Steps

find any uses of it throughout the codebase or in tests.

0xfoobar (Alchemix) confirmed

0xleastwood (judge) commented:

Great find! This would allow whitelisted account to mint any number of tokens.

However, as this pertains to only whitelisted accounts, I think medium severity is

justified and correct.

Submitted by 0x52

Loss of funds in TransmuterBuffer

If the buffer is called during and unfavorable time then a large portion of deposited

funds may be lost due to slippage because deposit is called with 0 as the minimum

out allowing any level of slippage

Implement a slippage calculation similar to _alchemistWithdraw to protect against

it

0xfoobar (Alchemix) acknowledged, disagreed with severity and commented:

This function is only called by keeper bots harvesting yields, which should not be

subject to large slippage and could be sent through a private mempool if necessary.

However, we acknowledge that a configurable parameter could enable greater

protection, even if in practice the issue does not occur.

0xleastwood (judge) decreased severity to Medium and commented:

Because this requires the keeper role to sandwich attack the protocol when yield is

harvested, this better fits the criteria of a medium severity issue.

[M-02] TransmuterBuffer.sol calls depositUnderlying with no
slippage bounds

Proof of Concept

Recommended Mitigation Steps

https://github.com/code-423n4/2022-05-alchemix-findings/issues/166#issuecomment-1140762092
https://github.com/code-423n4/2022-05-alchemix-findings/issues/166#issuecomment-1145217432
https://github.com/code-423n4/2022-05-alchemix-findings/issues/222#issuecomment-1133985891
https://github.com/code-423n4/2022-05-alchemix-findings/issues/222#issuecomment-1146180192
https://github.com/code-423n4/2022-05-alchemix-findings/issues/222

Submitted by CertoraInc

FuseTokenAdapterV1.sol#L76

FuseTokenAdapterV1.sol#L98

The code is doing wrong check, so when things will work it will revert.

In the function wrap() there is this lines:

but mint returns the amount that minted, so when error = amount the check will

fail even though it worked good.

Same in unwrap :

the redeem returns the amount.

I recommend to change the lines like this: in wrap: if ((error =

ICERC20(token).mint(amount)) != amount) { revert FuseError(error); } and in

unwrap: if ((error = ICERC20(token).redeem(amount)) != amount) { revert

FuseError(error); }

0xfoobar (Alchemix) confirmed, disagreed with severity and commented:

[M-03] DoS in wrap and unwrap

Proof of Concept

 if ((error = ICERC20(token).mint(amount)) != NO_ERROR) {
 revert FuseError(error);
 }

if ((error = ICERC20(token).redeem(amount)) != NO_ERROR) {
 revert FuseError(error);
 }

Recommended Mitigation Steps

https://github.com/code-423n4/2022-05-alchemix/blob/de65c34c7b6e4e94662bf508e214dcbf327984f4/contracts-full/adapters/fuse/FuseTokenAdapterV1.sol#L76
https://github.com/code-423n4/2022-05-alchemix/blob/de65c34c7b6e4e94662bf508e214dcbf327984f4/contracts-full/adapters/fuse/FuseTokenAdapterV1.sol#L98
https://github.com/code-423n4/2022-05-alchemix-findings/issues/159#issuecomment-1133987052
https://github.com/code-423n4/2022-05-alchemix-findings/issues/159

This would not cause any loss of user funds because the deposit function would

revert, but it is a needed fix in the Fuse Adapter. So recommend a lower severity.

0xleastwood (judge) decreased severity to Medium and commented:

As no assets are at risk, medium risk seems correct because only the availability of

the protocol is impacted.

Submitted by Ruhum

YearnTokenAdapter.sol#L13

YearnTokenAdapter.sol#L43

YearnTokenAdapter allows slippage of 100% when withdrawing from the vault which

will cause a loss of funds.

Here’s the documentation straight from the vault contract:

https://github.com/yearn/yearn-vaults/blob/main/contracts/Vault.vy#L1025-

L1073 It allows the user to specify the maxLoss as the last parameter. It determines

how many shares can be burned to fulfill the withdrawal. Currently, the contract

uses 10.000 which is 100%. Meaning there is no slippage check at all. This is bound

to cause a loss of funds.

I’d suggest letting the user determine the slippage check themselves instead of

hardcoding it.

Current maxLoss value: https://github.com/code-423n4/2022-05-

alchemix/blob/main/contracts-full/adapters/yearn/YearnTokenAdapter.sol#L13

call to Yearn vault’s withdraw() function: https://github.com/code-423n4/2022-

05-alchemix/blob/main/contracts-

full/adapters/yearn/YearnTokenAdapter.sol#L43

[M-04] YearnTokenAdapter allows a maximum loss of 100%
when withdrawing

Proof of Concept

https://github.com/code-423n4/2022-05-alchemix-findings/issues/159#issuecomment-1146198103
https://github.com/code-423n4/2022-05-alchemix/blob/main/contracts-full/adapters/yearn/YearnTokenAdapter.sol#L13
https://github.com/code-423n4/2022-05-alchemix/blob/main/contracts-full/adapters/yearn/YearnTokenAdapter.sol#L43
https://github.com/yearn/yearn-vaults/blob/main/contracts/Vault.vy#L1025-L1073
https://github.com/code-423n4/2022-05-alchemix/blob/main/contracts-full/adapters/yearn/YearnTokenAdapter.sol#L13
https://github.com/code-423n4/2022-05-alchemix/blob/main/contracts-full/adapters/yearn/YearnTokenAdapter.sol#L43
https://github.com/code-423n4/2022-05-alchemix-findings/issues/60

Allow the user to specify the slippage value themselves:

If you don’t want to change the ITokenAdapter interface you can also leave the value

blank. The vault will then use the default value (0.01%)

0xfoobar (Alchemix) acknowledged, disagreed with severity and commented:

This could be made more configurable by the end user but yearn vaults do not

frequently experience high slippage. Slippage is handled upstream in the Alchemist

contract. The reason why this slippage is set to 100% is so to permit handling of

slippage in the Alchemist for all cases.

0xleastwood (judge) decreased severity to Medium and commented:

Because we can’t know how the yearn strategy implements withdrawals, its possible

that it might contain custom swap logic which exposes itself to sandwich attacks.

Recommended Mitigation Steps

 function unwrap(uint256 amount, address recipient, uint maxLoss) e
 TokenUtils.safeTransferFrom(token, msg.sender, address(this),

 uint256 balanceBefore = TokenUtils.safeBalanceOf(token, addre

 uint256 amountWithdrawn = IYearnVaultV2(token).withdraw(amount

 uint256 balanceAfter = TokenUtils.safeBalanceOf(token, addres

 // If the Yearn vault did not burn all of the shares then reve
 // performed by the system because the system always expects t
 // this sometimes does not happen in cases where strategies ca
 // example strategy where this can occur is with Compound and
 // they were lent out).
 if (balanceBefore - balanceAfter != amount) {
 revert IllegalState();
 }

 return amountWithdrawn;
 }

https://github.com/code-423n4/2022-05-alchemix-findings/issues/60#issuecomment-1133991312
https://github.com/code-423n4/2022-05-alchemix-findings/issues/60#issuecomment-1146206028

However, at face value, the current use of MAXIMUM_SLIPPAGE allows the contract to

successfully unwrap their tokens under poor network conditions, but it makes sense

for the user to have more control over this. Downgrading this to medium risk as I

believe it is more in line with that.

Submitted by 0x1337

AlchemicTokenV2Base.sol#L20

CrossChainCanonicalBase.sol#L12

TransmuterV2.sol#L26

CrossChainCanonicalAlchemicTokenV2.sol#L7

For upgradeable contracts, there must be storage gap to “allow developers to freely

add new state variables in the future without compromising the storage

compatibility with existing deployments” (quote OpenZeppelin). Otherwise it may be

very difficult to write new implementation code. Without storage gap, the variable in

child contract might be overwritten by the upgraded base contract if new variables

are added to the base contract. This could have unintended and very serious

consequences to the child contracts, potentially causing loss of user fund or cause

the contract to malfunction completely.

Refer to the bottom part of this article: https://docs.openzeppelin.com/upgrades-

plugins/1.x/writing-upgradeable

Several contracts are intended to be upgradeable contracts in the code base,

including

AlchemicTokenV2Base

CrossChainCanonicalBase

CrossChainCanonicalAlchemicTokenV2

TransmuterV2

[M-05] No Storage Gap for Upgradeable Contract Might
Lead to Storage Slot Collision

Proof of Concept

https://github.com/code-423n4/2022-05-alchemix/blob/de65c34c7b6e4e94662bf508e214dcbf327984f4/contracts-full/AlchemicTokenV2Base.sol#L20
https://github.com/code-423n4/2022-05-alchemix/blob/de65c34c7b6e4e94662bf508e214dcbf327984f4/contracts-full/CrossChainCanonicalBase.sol#L12
https://github.com/code-423n4/2022-05-alchemix/blob/de65c34c7b6e4e94662bf508e214dcbf327984f4/contracts-full/TransmuterV2.sol#L26
https://github.com/code-423n4/2022-05-alchemix/blob/de65c34c7b6e4e94662bf508e214dcbf327984f4/contracts-full/CrossChainCanonicalAlchemicTokenV2.sol#L7
https://docs.openzeppelin.com/upgrades-plugins/1.x/writing-upgradeable
https://github.com/code-423n4/2022-05-alchemix-findings/issues/44

However, none of these contracts contain storage gap. The storage gap is essential

for upgradeable contract because “It allows us to freely add new state variables in

the future without compromising the storage compatibility with existing

deployments”. Refer to the bottom part of this article:

https://docs.openzeppelin.com/contracts/3.x/upgradeable

As an example, both the AlchemicTokenV2Base and the CrossChainCanonicalBase

are intended to act as the base contracts in the project. If the contract inheriting the

base contract contains additional variable, then the base contract cannot be

upgraded to include any additional variable, because it would overwrite the variable

declared in its child contract. This greatly limits contract upgradeability.

Recommend adding appropriate storage gap at the end of upgradeable contracts

such as the below. Please reference OpenZeppelin upgradeable contract templates.

0xfoobar (Alchemix) confirmed

0xleastwood (judge) commented:

Agree with warden and severity. Storage gaps are essential wherever inheritance is

used by an upgradeable contract.

Submitted by hyh

Both contracts treat meta assets as if they have fixed decimals of 18. Minting logic

breaks when it’s not the case. However, meta tokens decimals aren’t controlled.

If actual meta assets have any other decimals, minting slippage control logic of both

contracts will break up as total is calculated as a plain sum of token amounts.

Recommended Mitigation Steps

uint256[50] private __gap;

[M-06] EthAssetManager and ThreePoolAssetManager don’t
control Meta tokens decimals

https://docs.openzeppelin.com/contracts/3.x/upgradeable
https://github.com/code-423n4/2022-05-alchemix-findings/issues/44#issuecomment-1140765969
https://github.com/code-423n4/2022-05-alchemix-findings/issues/44#issuecomment-1153292612
https://github.com/code-423n4/2022-05-alchemix-findings/issues/63

In the higher token decimals case minTotalAmount will be magnitudes higher than

actual amount Curve can provide and minting becomes unavailable.

In the lower token decimals case minTotalAmount will lack value and slippage

control will be rendered void, which opens up a possibility of a fund loss from the

excess slippage.

Setting severity to medium as the contract can be used with various meta tokens

(_metaPoolAssetCache can be filled with any assets) and, whenever decimals differ

from 18 add_liquidity uses, its logic be broken: the inability to mint violates the

contract purpose, the lack of slippage control can lead to fund losses.

I.e. this is system breaking impact conditional on a low probability assumption of

different meta token decimals.

Meta tokens decimals are de facto hard coded into the contract as plain amounts

are used (L. 905):

ThreePoolAssetManager.sol#L896-L905

ThreePoolAssetManager.sol#L915-L919

Proof of Concept

 function _mintMetaPoolTokens(
 uint256[NUM_META_COINS] calldata amounts
) internal returns (uint256 minted) {
 IERC20[NUM_META_COINS] memory tokens = _metaPoolAssetCache;

 uint256 total = 0;
 for (uint256 i = 0; i < NUM_META_COINS; i++) {
 if (amounts[i] == 0) continue;

 total += amounts[i];

 uint256 expectedOutput = total * CURVE_PRECISION / metaPoo
 uint256 minimumMintAmount = expectedOutput * metaPoolSlippage

https://github.com/code-423n4/2022-05-alchemix/blob/de65c34c7b6e4e94662bf508e214dcbf327984f4/contracts-full/ThreePoolAssetManager.sol#L896-L905
https://github.com/code-423n4/2022-05-alchemix/blob/de65c34c7b6e4e94662bf508e214dcbf327984f4/contracts-full/ThreePoolAssetManager.sol#L915-L919

The same plain sum approach is used in EthAssetManager._mintMetaPoolTokens:

EthAssetManager.sol#L566-L573

When this decimals assumption doesn’t hold, the slippage logic will not hold too:

either the mint be blocked or slippage control disabled.

Notice, that ThreePoolAssetManager.calculateRebalance do query alUSD decimals

(which is inconsistent with the above as it’s either fix and control on inception or do

not fix and accommodate the logic):

ThreePoolAssetManager.sol#L338-L338

If meta assets are always supposed to have fixed decimals of 18, consider controlling

it at the construction time.

I.e. the decimals can be controlled in constructors:

EthAssetManager.sol#L214-L219

 // Add the liquidity to the pool.
 minted = metaPool.add_liquidity(amounts, minimumMintAmount);

 uint256 total = 0;
 for (uint256 i = 0; i < NUM_META_COINS; i++) {
 // Skip over approving WETH since we are directly swapping
 if (i == uint256(MetaPoolAsset.ETH)) continue;

 if (amounts[i] == 0) continue;

 total += amounts[i];

decimals = SafeERC20.expectDecimals(address(alUSD));

Recommended Mitigation Steps

https://github.com/code-423n4/2022-05-alchemix/blob/de65c34c7b6e4e94662bf508e214dcbf327984f4/contracts-full/EthAssetManager.sol#L566-L573
https://github.com/code-423n4/2022-05-alchemix/blob/de65c34c7b6e4e94662bf508e214dcbf327984f4/contracts-full/ThreePoolAssetManager.sol#L338-L338
https://github.com/code-423n4/2022-05-alchemix/blob/de65c34c7b6e4e94662bf508e214dcbf327984f4/contracts-full/EthAssetManager.sol#L214-L219

ThreePoolAssetManager.sol#L254-L256

In this case further decimals reading as it’s done in calculateRebalance() is

redundant.

Otherwise (which is less recommended as fixed decimals assumption is viable and

simplify the logic) the meta token decimals can be added to calculations similarly to

stables:

ThreePoolAssetManager.sol#L779-L779

0xfoobar (Alchemix) confirmed

0xleastwood (judge) commented:

Agree with issue and its severity. minTotalAmount is affected by a change in a

token’s decimals, leading to improper handling by the contract.

 for (uint256 i = 0; i < NUM_META_COINS; i++) {
 _metaPoolAssetCache[i] = params.metaPool.coins(i);
 if (_metaPoolAssetCache[i] == IERC20(0xEeeeeEeeeEeEeeEeEe
 _metaPoolAssetCache[i] = weth;
+ } else {
+ // check the decimals

}
 }

 for (uint256 i = 0; i < NUM_META_COINS; i++) {
 _metaPoolAssetCache[i] = params.metaPool.coins(i);
+ // check the decimals
 }

normalizedTotal += amounts[i] * 10**missingDecimals;

https://github.com/code-423n4/2022-05-alchemix/blob/de65c34c7b6e4e94662bf508e214dcbf327984f4/contracts-full/ThreePoolAssetManager.sol#L254-L256
https://github.com/code-423n4/2022-05-alchemix/blob/de65c34c7b6e4e94662bf508e214dcbf327984f4/contracts-full/ThreePoolAssetManager.sol#L779-L779
https://github.com/code-423n4/2022-05-alchemix-findings/issues/63#issuecomment-1141380260
https://github.com/code-423n4/2022-05-alchemix-findings/issues/63#issuecomment-1153292871
https://github.com/code-423n4/2022-05-alchemix-findings/issues/144

Submitted by cccz

Some tokens (like USDT) do not work when changing the allowance from an existing

non-zero allowance value.They must first be approved by zero and then the actual

allowance must be approved.

AutoleverageBase.sol#L61-L63

AutoleverageBase.sol#L147-L147

AutoleverageBase.sol#L178-L179

0xtao (Alchemix) confirmed and commented:

This implementation will not work for tokens like USDT where the approval is not set

to 0 initially

0xleastwood (judge) commented:

It seems like approve() will fail to execute on non-standard tokens which require

the approval amount to start from zero. This is valid and should be updated to

handle such tokens.

Submitted by hyh

[M-07] AutoleverageBase: Must approve 0 first

Proof of Concept

Recommended Mitigation Steps

 function approve(address token, address spender) internal {
 + IERC20(token).approve(spender, 0);
 IERC20(token).approve(spender, type(uint256).max);
 }

[M-08] YearnTokenAdapter’s wrap can become stuck as it
uses one step approval for an arbitrary underlying

https://github.com/code-423n4/2022-05-alchemix/blob/71abbe683dfd5c0686b7e594fb4f78a14b668d8b/contracts-full/AutoleverageBase.sol#L61-L63
https://github.com/code-423n4/2022-05-alchemix/blob/71abbe683dfd5c0686b7e594fb4f78a14b668d8b/contracts-full/AutoleverageBase.sol#L147-L147
https://github.com/code-423n4/2022-05-alchemix/blob/71abbe683dfd5c0686b7e594fb4f78a14b668d8b/contracts-full/AutoleverageBase.sol#L178-L179
https://github.com/code-423n4/2022-05-alchemix-findings/issues/144#issuecomment-1134868843
https://github.com/code-423n4/2022-05-alchemix-findings/issues/144#issuecomment-1146364549
https://github.com/code-423n4/2022-05-alchemix-findings/issues/144
https://github.com/code-423n4/2022-05-alchemix-findings/issues/99

Some tokens do not allow for approval of positive amount when allowance is

positive already (to handle approval race condition, most known example is USDT).

This can cause the function to stuck whenever a combination of such a token and

leftover approval be met. The latter can be possible if, for example, yearn vault is

becoming full on a particular wrap() call and accepts only a part of amount, not

utilizing the approval fully.

Then each next safeApprove will revert and wrap becomes permanently unavailable.

Setting the severity to medium as depositing (wrapping) is core functionality for the

contract and its availability is affected.

wrap use one step approve:

YearnTokenAdapter.sol#L30-L32

Some ERC20 forbid the approval of positive amount when the allowance is positive:

https://github.com/d-xo/weird-erc20#approval-race-protections

For example, USDT is supported by Yearn and can be the underlying asset:

https://yearn.finance/#/vault/0x7Da96a3891Add058AdA2E826306D812C638D8

7a7

As the most general approach consider approving zero before doing so for the

amount:

Proof of Concept

 function wrap(uint256 amount, address recipient) external override
 TokenUtils.safeTransferFrom(underlyingToken, msg.sender, addre
 TokenUtils.safeApprove(underlyingToken, token, amount);

Recommended Mitigation Steps

 function wrap(uint256 amount, address recipient) external override

https://github.com/code-423n4/2022-05-alchemix/blob/de65c34c7b6e4e94662bf508e214dcbf327984f4/contracts-full/adapters/yearn/YearnTokenAdapter.sol#L30-L32
https://github.com/d-xo/weird-erc20#approval-race-protections
https://yearn.finance/#/vault/0x7Da96a3891Add058AdA2E826306D812C638D87a7

0xfoobar (Alchemix) confirmed

0xleastwood (judge) commented:

It seems like approve() will fail to execute on non-standard tokens which require

the approval amount to start from zero. This is valid and should be updated to

handle such tokens.

Submitted by hyh

Currently setAlchemist doesn’t check whether there are any open positions left with

the old Alchemist before switching to the new one.

As this require a number of checks the probability of operational mistake isn’t low

and it’s prudent to introduce the main controls directly to the code to minimize it. In

the case if the system go on with new Alchemist before realizing that there are some

funds left in the old one, tedious and error prone manual recovery will be needed.

There is also going to be a corresponding reputational damage.

Setting the severity to medium as while the function is admin only, the impact is up

to massive user fund freeze, i.e. this is system breaking with external assumptions.

Alchemist implementation change can happen while there are open deposits

remaining with the current contract. As there looks to be no process to transfer

them in the code, such TransmuterBuffer’s funds will be frozen with old alchemist:

TransmuterBuffer.sol#L230-L232

 TokenUtils.safeTransferFrom(underlyingToken, msg.sender, addre
+ TokenUtils.safeApprove(underlyingToken, token, 0);
 TokenUtils.safeApprove(underlyingToken, token, amount);

[M-09] TransmuterBuffer’s setAlchemist will freeze deposited
funds

Proof of Concept

https://github.com/code-423n4/2022-05-alchemix-findings/issues/99#issuecomment-1141378852
https://github.com/code-423n4/2022-05-alchemix-findings/issues/99#issuecomment-1146364671
https://github.com/code-423n4/2022-05-alchemix/blob/de65c34c7b6e4e94662bf508e214dcbf327984f4/contracts-hardhat/TransmuterBuffer.sol#L230-L232
https://github.com/code-423n4/2022-05-alchemix-findings/issues/117

Consider requiring that all exposure to the old Alchemist is closed, for example both

getAvailableFlow and getTotalCredit is zero.

TransmuterBuffer.sol#L230-L231

0xfoobar (Alchemix) confirmed

0xleastwood (judge) commented:

This is useful in preventing loss of funds when changing the protocol’s alchemist

contract.

Submitted by hyh, also found by 0xsomeone

An attacker can become the first depositor for a recently created gALCX contract,

providing a tiny amount of ALCX tokens by calling stake(1) (raw values here, 1 is

1 wei , 1e18 is 1 ALCX). Then the attacker can directly transfer, for example, 10^6

* 1e18 - 1 of ALCX to the gALCX contract and run bumpExchangeRate(),

effectively setting the cost of 1 gALCX to be 10^6 * 1e18 of ALCX. The attacker

will still own 100% of the gALCX’s ALCX pool being the only depositor.

 function setAlchemist(address _alchemist) external override onlyAd
 sources[alchemist] = false;
 sources[_alchemist] = true;

Recommended Mitigation Steps

 function setAlchemist(address _alchemist) external override onlyAd
+ require(getTotalCredit() == 0, "Credit exists with o
+ for (uint256 j = 0; j < registeredUnderlyings.length; j++) {
+ require(getTotalUnderlyingBuffered[registeredUnderlyings[j
+ }
 sources[alchemist] = false;

[M-10] New gALCX token denomination can be depressed by
the first depositor

https://github.com/code-423n4/2022-05-alchemix/blob/de65c34c7b6e4e94662bf508e214dcbf327984f4/contracts-full/TransmuterBuffer.sol#L230-L231
https://github.com/code-423n4/2022-05-alchemix-findings/issues/117#issuecomment-1140762972
https://github.com/code-423n4/2022-05-alchemix-findings/issues/117#issuecomment-1153293529
https://github.com/code-423n4/2022-05-alchemix-findings/issues/135

All subsequent depositors will have their ALCX token investments rounded to 10^6 *

1e18 , due to the lack of precision which initial tiny deposit caused, with the

remainder divided between all current depositors, i.e. the subsequent depositors

lose value to the attacker.

For example, if the second depositor brings in 1.9*10^6 * 1e18 of ALCX, only 1 of

new vault to be issued as 1.9*10^6 * 1e18 divided by 10^6 * 1e18 will yield just

1 , which means that 2.9*10^6 * 1e18 total ALCX pool will be divided 50/50

between the second depositor and the attacker, as each will have 1 wei of the total

2 wei of vault tokens, i.e. the depositor lost and the attacker gained 0.45 * 10^6 *

1e18 of ALCX tokens.

As there are no penalties to exit with gALCX.unstake(), the attacker can remain

staked for an arbitrary time, gathering the share of all new deposits’ remainder

amounts.

Placing severity to be medium as this is principal funds loss scenario for many users

(most of depositors), easily executable, but only new gALCX contract instances are

vulnerable.

gAmount of gALCX to be minted is determined as a quotient of amount provided

and exchangeRate :

gALCX.sol#L93-L94

gALCX.sol#L15

exchangeRate accumulates balance increments relative to total gALCX supply:

Proof of Concept

 uint gAmount = amount * exchangeRatePrecision / exchangeRate;
 _mint(msg.sender, gAmount);

uint public constant exchangeRatePrecision = 1e18;

https://github.com/code-423n4/2022-05-alchemix/blob/de65c34c7b6e4e94662bf508e214dcbf327984f4/contracts-hardhat/gALCX.sol#L93-L94
https://github.com/code-423n4/2022-05-alchemix/blob/de65c34c7b6e4e94662bf508e214dcbf327984f4/contracts-full/gALCX.sol#L15

gALCX.sol#L69-L76

When gALCX contract is new, the very first stake -> bumpExchangeRate() yields

nothing as the balance is empty, i.e. exchangeRate is still 1e18 and gAmount ==

amount :

gALCX.sol#L85-L93

This way, as there is no minimum amount or special treatment for the first deposit,

the very first gAmount can be made 1 wei with stake(1) call.

Then, a combination of direct ALCX transfer and bumpExchangeRate() will make

exchangeRate equal to the total amount provided by the attacker, say 10^6 * 1e18

* 1e18 , as totalSupply is 1 wei .

When a second depositor enters, the amount of gALCX to be minted is calculated

as amount * exchangeRatePrecision / exchangeRate , which is amount / (10^6 *

 function bumpExchangeRate() public {
 // Claim from pool
 pools.claim(poolId);
 // Bump exchange rate
 uint balance = alcx.balanceOf(address(this));

 if (balance > 0) {
 exchangeRate += (balance * exchangeRatePrecision) / totalS

 function stake(uint amount) external {
 // Get current exchange rate between ALCX and gALCX
 bumpExchangeRate();
 // Then receive new deposits
 bool success = alcx.transferFrom(msg.sender, address(this), am
 require(success, "Transfer failed");
 pools.deposit(poolId, amount);
 // gAmount always <= amount
 uint gAmount = amount * exchangeRatePrecision / exchangeRate;

https://github.com/code-423n4/2022-05-alchemix/blob/de65c34c7b6e4e94662bf508e214dcbf327984f4/contracts-full/gALCX.sol#L69-L76
https://github.com/code-423n4/2022-05-alchemix/blob/de65c34c7b6e4e94662bf508e214dcbf327984f4/contracts-full/gALCX.sol#L85-L93

1e18) , which will trunk the amount to the nearest divisor of 10^6 * 1e18 ,

effectively dividing the remainder between the depositor and the attacker.

For example, if the second depositor brings in 1.9*10^6 ALCX, only 1 (1 wei) of

gALCX to be issued as 1.9*10^6 * 1e18 * 1e18 / (10^6 * 1e18 * 1e18) = 1 .

As the attacker and depositor both have 1 of gALCX, each owns (2.9 / 2)*10^6 *

1e18 = 1.45*10^6 * 1e18 , so the attacker effectively stole 0.45*10^6 * 1e18 from

the depositor.

Any deposit lower than total attacker’s stake, 10^6 * 1e18 , will be fully stolen from

the depositor as 0 gALCX tokens will be issued in this case.

The issue is similar to the TOB-YEARN-003 one of the Trail of Bits audit of Yearn

Finance:

https://github.com/yearn/yearn-

security/tree/master/audits/20210719_ToB_yearn_vaultsv2

A minimum for deposit value can drastically reduce the economic viability of the

attack. I.e. stake() can require each amount to surpass the threshold, and then an

attacker would have to provide too big direct investment to capture any meaningful

share of the subsequent deposits.

An alternative is to require only the first depositor to freeze big enough initial

amount of liquidity. This approach has been used long enough by various projects,

for example in Uniswap V2:

Uniswap/UniswapV2Pair.sol#L119-L121

0xfoobar (Alchemix) acknowledged, disagreed with severity and commented:

Not a risk with current >400 tokenholders, but good to incorporated into future

designs.

References

Recommended Mitigation Steps

https://github.com/yearn/yearn-security/tree/master/audits/20210719_ToB_yearn_vaultsv2
https://github.com/Uniswap/v2-core/blob/master/contracts/UniswapV2Pair.sol#L119-L121
https://github.com/code-423n4/2022-05-alchemix-findings/issues/135#issuecomment-1140704865

0xleastwood (judge) commented:

I think from the perspective of the contest, it is fair to assume that contracts are

somewhat fresh. I’d be inclined to keep this as medium because it outlines a viable

attack path that should be made public.

Submitted by TerrierLover

An attacker can make the contract unusable when totalSupply is 0. Specifically,

bumpExchangeRate function does not work correctly which results in making stake ,

unstake and migrateSource functions that do not work as expected.

Here are steps on how the gALCX contract can be unusable.

1. gALCX contract is deployed

2. The attacker sends the ALCX token to the deployed gALCX contract directly

instead of using stake function so that the following balance variable has

value.

gALCX.sol#L73-L75

uint balance = alcx.balanceOf(address(this));

3. Since the ALCX token is given to the gALCX contract directly, totalSupply ==

0 and alcx.balanceOf(address(this)) > 0 becomes true.

gALCX.sol#L76

[M-11] [gALCX.sol] Attacker can make the contract unusable
when totalSupply is 0

Proof of Concept

if (balance > 0) {

exchangeRate += (balance * exchangeRatePrecision) / totalSupply;

https://github.com/code-423n4/2022-05-alchemix-findings/issues/135#issuecomment-1146370503
https://github.com/code-423n4/2022-05-alchemix/blob/main/contracts-hardhat/gALCX.sol#L73-L75
https://github.com/code-423n4/2022-05-alchemix/blob/main/contracts-hardhat/gALCX.sol#L76
https://github.com/code-423n4/2022-05-alchemix-findings/issues/198

4. Non attackers try to call stake function, but bumpExchangeRate function fails

because of (balance * exchangeRatePrecision) / totalSupply when

totalSupply is 0.

5. Owner cannot call migrateSource function since bumpExchangeRate will be in

the same situation mentioned in the step4 above

Add handling when totalSupply is 0 but alcx.balanceOf(address(this)) is more

than 0.

0xfoobar (Alchemix) acknowledged and commented:

Given that the gALCX deployment has 412 unique tokenholders on mainnet, this

series of events is extraordinarily unlikely to occur. But we will keep it in mind for

future deployments.

0xleastwood (judge) commented:

Nice find! Early stakers can DoS new contract deployments, making it impossible for

other users to participate in the protocol. As this does not lead to lost funds and is

recoverable through redeployment, I believe medium severity to be justified by the

warden.

Submitted by hyh

TransmuterBuffer’s refreshStrategies() is the only way to actualize _yieldTokens array.

The function requires registeredUnderlyings array to match current Alchemist’s

_supportedUnderlyingTokens. In the same time registeredUnderlyings can be only

increased via registerAsset(): there is no way to reduce, remove or reconstruct the

array.

This way if registerAsset() was mistakenly called extra time or alchemist was

switched with setAlchemist to a new one with less supported assets, then the

Recommended Mitigation Steps

[M-12] registerAsset misuse can permanently disable
TransmuterBuffer and break the system

https://github.com/code-423n4/2022-05-alchemix-findings/issues/198#issuecomment-1133996854
https://github.com/code-423n4/2022-05-alchemix-findings/issues/198#issuecomment-1146895463
https://github.com/code-423n4/2022-05-alchemix-findings/issues/113

strategy refresh becomes impossible and the TransmuterBuffer be blocked as it

cannot be properly used without synchronization with Alchemist.

The redeployment of the contract doesn’t provide an easy fix as it holds the

accounting data that needs to be recreated (flowAvailable, currentExchanged

mappings).

refreshStrategies require registeredUnderlyings to be equal to Alchemist’s

supportedUnderlyingTokens:

TransmuterBuffer.sol#L377-L379

If registeredUnderlyings has length more than Alchemist’s

_supportedUnderlyingTokens it doesn’t look to be fixable and prohibits the future

use of the contract, i.e. breaks the system.

The issue is that there is no way to unregister the asset, so consider introducing a

function to remove the underlying or simply delete the array so it can be

reconstructed with a sequence of registerAsset calls.

thetechnocratic (Alchemix) acknowledged and commented:

There is no way for registerAsset to be accidentally called too many times, and it

reverts if an asset doesn’t exist in the Alchemist or has already been registered.

The TransmuterBuffer could be assigned a new Alchemist with fewer assets, but it is

safe to assume that the operator will not make such a grand oversight.

0xleastwood (judge) commented:

Proof of Concept

 if (registeredUnderlyings.length != supportedUnderlyingTokens
 revert IllegalState();
 }

Recommended Mitigation Steps

https://github.com/code-423n4/2022-05-alchemix/blob/de65c34c7b6e4e94662bf508e214dcbf327984f4/contracts-full/TransmuterBuffer.sol#L377-L379
https://github.com/code-423n4/2022-05-alchemix-findings/issues/113#issuecomment-1139901087
https://github.com/code-423n4/2022-05-alchemix-findings/issues/113#issuecomment-1153294243

Useful mitigation to prevent the TransmuterBuffer from being assigned a new

Alchemist with fewer assets. In this event, the availability of the protocol is impacted.

Valid medium.

Submitted by hyh

exchange() -> _exchange() -> _alchemistWithdraw() is user funds utilizing call

sequence and the slippage hard coded to 1% there can cause a range of issues.

For example, if there is not enough shares, the number of shares to withdraw will be

unconditionally reduced to the number of the shares available. This can pass under

1% slippage and user will give away up to 1% without giving a consent to such a fee,

which is big enough to notice.

On the other hand, in a similar situation when there is not enough shares available a

user might knowingly want to execute with even bigger fee, but hard coded slippage

will not be met and the withdraw be unavailable and funds frozen.

Setting the severity to medium as the end impact is either modest user fund loss or

exchange functionality unavailability.

_alchemistWithdraw uses hard coded 1% slippage threshold and rewrites

wantShares to be availableShares once TransmuterBuffer’s position isn’t big enough:

TransmuterBuffer.sol#L511-L524

[M-13] TransmuterBuffer’s _alchemistWithdraw use hard
coded slippage that can lead to user losses

Proof of Concept

 function _alchemistWithdraw(address token, uint256 amountUnderlyi
 uint8 decimals = TokenUtils.expectDecimals(token);
 uint256 pricePerShare = IAlchemistV2(alchemist).getUnderlyingT
 uint256 wantShares = amountUnderlying * 10**decimals / pricePe
 (uint256 availableShares, uint256 lastAccruedWeight) = IAlchem
 if (wantShares > availableShares) {
 wantShares = availableShares;

https://github.com/code-423n4/2022-05-alchemix/blob/de65c34c7b6e4e94662bf508e214dcbf327984f4/contracts-hardhat/TransmuterBuffer.sol#L511-L524
https://github.com/code-423n4/2022-05-alchemix-findings/issues/127

Alchemist’s _unwrap will revert withdrawUnderlying call once minimumAmountOut

isn’t met:

AlchemistV2.sol#L1344-L1346

There are 2 use cases for the function:

exchange (onlyKeeper) -> _exchange -> _alchemistWithdraw,

setFlowRate (onlyAdmin) -> _exchange -> _alchemistWithdraw

exchange() is the most crucial as it should be able to fulfil various types of user funds

exchange requests:

TransmuterBuffer.sol#L526-L546

 }
 // Allow 1% slippage
 uint256 minimumAmountOut = amountUnderlying - amountUnderlying
 if (wantShares > 0) {
 IAlchemistV2(alchemist).withdrawUnderlying(token, wantSha
 }
 }

 if (amountUnwrapped < minimumAmountOut) {
 revert SlippageExceeded(amountUnwrapped, minimumAmountOut
 }

 /// @notice Pull necessary funds from the Alchemist and exchange t
 ///
 /// @param underlyingToken The underlying-token to exchange.
 function _exchange(address underlyingToken) internal {
 _updateFlow(underlyingToken);

 uint256 totalUnderlyingBuffered = getTotalUnderlyingBuffered(u
 uint256 initialLocalBalance = TokenUtils.safeBalanceOf(underly
 uint256 want = 0;

https://github.com/code-423n4/2022-05-alchemix/blob/de65c34c7b6e4e94662bf508e214dcbf327984f4/contracts-full/AlchemistV2.sol#L1344-L1346
https://github.com/code-423n4/2022-05-alchemix/blob/de65c34c7b6e4e94662bf508e214dcbf327984f4/contracts-full/TransmuterBuffer.sol#L526-L546

This way, one issue here is that user can end up giving away the full 1%

unconditionally to market situation because there are not enough shares available.

Another one is that knowing that the conditions are bad or that there are not

enough shares available and willing to run the exchange with bigger slippage the

user will not be able to as there are no means to control it and the functionality will

end up unavailable, being reverted by Alchemist’s _unwrap check.

Consider adding the function argument with a default value of 1%, so the slippage

can be tuned when it is needed.

thetechnocratic (Alchemix) acknowledged and commented:

Allowing for a caller-defined slippage would enable more flexibility when using the

exchange() and setFlowRate() calls. However, the possibility of needing this

flexibility at this time is very small, and because these functions are run by

admins/keepers, there is room to modify the code if and when the flexibility

becomes required.

0xleastwood (judge) commented:

Agree with warden. During periods of high volatility, assets will be locked within the

contract. As this limits protocol availability, potentially leading to further loss of funds

as users cannot freely exit the protocol and sell tokens, medium risk is justified.

 // Here we assume the invariant underlyingToken.balanceOf(add
 if (totalUnderlyingBuffered < flowAvailable[underlyingToken])
 // Pull the rest of the funds from the Alchemist.
 want = totalUnderlyingBuffered - initialLocalBalance;
 } else if (initialLocalBalance < flowAvailable[underlyingToken
 // totalUnderlyingBuffered > flowAvailable so we have fund
 want = flowAvailable[underlyingToken] - initialLocalBalanc
 }

 if (want > 0) {
 _alchemistAction(want, underlyingToken, _alchemistWithdraw
 }

Recommended Mitigation Steps

https://github.com/code-423n4/2022-05-alchemix-findings/issues/127#issuecomment-1139827436
https://github.com/code-423n4/2022-05-alchemix-findings/issues/127#issuecomment-1153294479

Submitted by dirky_

AlchemistV2.sol#L676-L683

AlchemistV2.sol#L704

Limiters.sol#L84

In the AlchemistV2 contract, users can deposit collateral to then borrow/mint the

synthetic tokens offered by the protocol. The protocol also defines a minting limit

that specifies how many synthetic tokens can be minted in a given time period. This

exists to prevent unbounded minting of synthetic tokens.

Every time a user calls mint , the internal _mint method decreases the current mint

limit. This works as intended. However, there is nothing stopping an attacker from

immediately burning their synthetic tokens by calling burn and then calling mint

again. This is possible because the debt position is updated during the burn phase,

which lets the user then mint again against the same deposited collateral.

In most cases this probably wouldn’t be a problem if the mint limit is sufficiently

high. However, it is currently possible for a well financed attacker to grief the

contract by repeatedly minting and burning synthetic tokens to keep the contract

pegged at the mint limit. This will prevent any normal users from minting any

synthetic tokens, and hence prevents the protocol from performing as it should.

An attacker can repeatedly call mint followed by burn after depositing some

collateral with deposit . If this is appropriately sized and timed, it can cause the

mint call to fail for another user due to the check here that is called during mint

here.

VSCode

[M-14] A well financed attacker could prevent any other users
from minting synthetic tokens

Proof of Concept

Tools Used

Recommended Mitigation Steps

https://github.com/code-423n4/2022-05-alchemix/blob/main/contracts-full/AlchemistV2.sol#L676-L683
https://github.com/code-423n4/2022-05-alchemix/blob/main/contracts-full/AlchemistV2.sol#L704
https://github.com/code-423n4/2022-05-alchemix/blob/main/contracts-full/libraries/Limiters.sol#L84
https://github.com/code-423n4/2022-05-alchemix/blob/main/contracts-full/AlchemistV2.sol#L1068
https://github.com/code-423n4/2022-05-alchemix/blob/main/contracts-full/AlchemistV2.sol#L1192
https://github.com/code-423n4/2022-05-alchemix-findings/issues/155

There should be an additional method added to the Limiters library that can

increment the mint limit. This method can then be called during a burn call in the

AlchemistV2 contract.

0xfoobar (Alchemix) disputed and commented:

If somebody griefed, let alone the insanely high capital requirements, governance

could simply raise the mint limit.

0xleastwood (judge) commented:

As far as I can tell, this seems like a valid griefing attack. Assuming no fees are

charged on mint/burn actions, it would be viable to use a flash loan to use up the

entire mint limit, preventing other users from participating in the protocol. This could

be mostly mitigated by charging a small fee on mints, which is sent to the protocol’s

governance contract or distributed to pre-existing stakers. Could you confirm this

@0xfoobar ?

0xfoobar (Alchemix) commented:

Upon further review the griefing action of

1. initiate flashloan

2. deposit

3. mint

4. burn

5. repay flashloan

would be a valid approach to grief the protocol. No funds are at risk but we’ll discuss

internally how to best mitigate this.

function increase(LinearGrowthLimiter storage self, uint256 amount) in
 uint256 value = self.get();
 self.lastValue = value + amount > self.maximum ? self.maximum : valu
}

https://github.com/code-423n4/2022-05-alchemix-findings/issues/155#issuecomment-1134046370
https://github.com/code-423n4/2022-05-alchemix-findings/issues/155#issuecomment-1147232259
https://github.com/code-423n4/2022-05-alchemix-findings/issues/155#issuecomment-1147991797

0xleastwood (judge) commented:

Agreed, keeping this issue as is!

This could have been upgraded to high risk if the ease of attack involved:

Limits on burning tokens.

The griefing attack is somewhat cheap, making it easy for attackers to maintain.

But as the issue raised does not lead to a loss of user’s funds, I believe medium risk

to be justified.

Submitted by AuditsAreUS

The Lido adapter incorrectly calculates the price of WETH in terms of WstETH.

The function returns the price of WstETH in terms of stETH. The underlying token

which we desire is WETH. Since stETH does not have the same value as WETH the

output price incorrect.

The impact is severe as all the balance calculations require the price of the yield

token converted to underlying. The incorrect price may over or understate the

harvestable amount which is a core calculation in the protocol.

The function IWstETH(token).getStETHByWstETH() only converts WstETH to stETH.

Thus, price() returns the value of WstETH in terms of stETH.

[M-15] Lido adapter incorrectly calculates the price of the
underlying token

Proof of Concept

 function price() external view returns (uint256) {
 return IWstETH(token).getStETHByWstETH(10**SafeERC20.expectDe
 }

Recommended Mitigation Steps

https://github.com/code-423n4/2022-05-alchemix-findings/issues/155#issuecomment-1149856681
https://github.com/code-423n4/2022-05-alchemix-findings/issues/97

Add extra steps to price() to approximate the rate for converting stETH to ETH.

This can be done using the same curve pool that is used to convert stETH to ETH in

unwrap() .

0xfoobar (Alchemix) disputed and commented:

The design mechanism relies upon stETH reaching eventual 1:1 redeemability for

ETH after the merge and shanghai enables withdrawals. This is core to out like-kind

collateral/asset model. We will update the stETH token adapter at that time to do

direct redemptions instead of Curve swaps. So in the meantime, the protocol

accrues discounted assets.

0xleastwood (judge) decreased severity to Medium and commented:

While the sponsor’s comments suggest that this will be a non-issue after the

merge/shanghai enables withdrawals, I believe there is legitimacy in the fact that the

protocol will accrue discounted assets. It does not lead to the loss of assets, but

value can be leaked if WETH is priced incorrectly. As such, I’m downgrading this to

medium severity.

Submitted by AuditsAreUS

AlchemistV2.sol#L1290-L1300

AlchemistV2.sol#L1268

AlchemistV2.sol#L1532

AlchemistV2.sol#L899

AlchemistV2.sol#L1625

It is possible for the contract to become stuck and unable to perform any actions if

the totalShares of a yield token fall to zero while there is some pendingCredit still

to be paid.

It will then be impossible to call deposit or withdraw functions, mints, burns, repay,

liquidate, donate or harvest due to division by zero reverts in:

[M-16] If totalShares for a token falls to zero while there is
pendingCredit the contract will become stuck

https://github.com/code-423n4/2022-05-alchemix-findings/issues/97#issuecomment-1133989793
https://github.com/code-423n4/2022-05-alchemix-findings/issues/97#issuecomment-1150012226
https://github.com/code-423n4/2022-05-alchemix/blob/de65c34c7b6e4e94662bf508e214dcbf327984f4/contracts-full/AlchemistV2.sol#L1290-L1300
https://github.com/code-423n4/2022-05-alchemix/blob/de65c34c7b6e4e94662bf508e214dcbf327984f4/contracts-full/AlchemistV2.sol#L1268
https://github.com/code-423n4/2022-05-alchemix/blob/de65c34c7b6e4e94662bf508e214dcbf327984f4/contracts-full/AlchemistV2.sol#L1532
https://github.com/code-423n4/2022-05-alchemix/blob/de65c34c7b6e4e94662bf508e214dcbf327984f4/contracts-full/AlchemistV2.sol#L899
https://github.com/code-423n4/2022-05-alchemix/blob/de65c34c7b6e4e94662bf508e214dcbf327984f4/contracts-full/AlchemistV2.sol#L1625
https://github.com/code-423n4/2022-05-alchemix-findings/issues/104

_distributeCredit()

_distributeUnlockedCredit()

_calculateUnrealizedDebt()

_convertSharesToYieldTokens()

donate()

Furthermore, any pendingCredit amount of tokens are still in the contract will

become permanently stuck.

This case may arise under the follow steps a) deposit() is called by a user then

time passes to earn some yield b) harvest() is called by the keeper which calls

_distributeCredit() and increases pendingCredit c) withdraw() is called by the

user to withdraw all funds

Since there is pendingCredit the following will have a non-zero balance for

unlockedCredit however yieldTokenParams.totalShares is zero and thus we get a

division by zero which reverts the entire transaction.

Each of the other listed functions will reach the same issue by attempting to divide

some numerator by the totalShares which is zero.

Proof of Concept

 function _distributeUnlockedCredit(address yieldToken) internal {
 YieldTokenParams storage yieldTokenParams = _yieldTokens[yield

 uint256 unlockedCredit = _calculateUnlockedCredit(yieldToken)
 if (unlockedCredit == 0) {
 return;
 }

 yieldTokenParams.accruedWeight += unlockedCredit * FIXED_P
 yieldTokenParams.distributedCredit += unlockedCredit;
 }

Consider preventing totalShares from over becoming zero once it is set. That is

enforce a user to leave at least 1 unit if they are the last user to withdraw.

Another option is to transfer the first 1000 shares to a “burn” account (e.g. 0x000…

01), when the first user deposits.

Alternatively, when the last user withdraws, transfer all pending credit to this user

and set the required variables to zero to replicate the state before any users have

deposited.

0xfoobar (Alchemix) confirmed, disagreed with severity and commented:

Disagree with severity because given the depth of distinct users using Alchemix, it is

unlikely this scenario would occur.

0xleastwood (judge) commented:

This is an interesting issue. At the moment, it sits somewhere between medium and

high risk, so I will need to think about this more before coming to a decision.

0xleastwood (judge) decreased severity to Medium and commented:

After further thought, I think this does not fit the criteria of high severity for the

following reasons:

The protocol can be DoS’d on new deployments via front-running, but it does

not lead to lost funds by users. It’d only require a new deployment by the

Alchemist team.

If the protocol was to migrate to a new version of the protocol, a mass

withdrawal event could lead to locked pendingCredit . However, because

rewards are harvested by a keeper, I believe this to be unlikely as migrations will

most certainly be coordinated by the protocol and its keepers. As such, users

will be aware that they would miss out on rewards if the keeper does not harvest

rewards prior to the migration.

Recommended Mitigation Steps

https://github.com/code-423n4/2022-05-alchemix-findings/issues/104#issuecomment-1133988067
https://github.com/code-423n4/2022-05-alchemix-findings/issues/104#issuecomment-1146196263
https://github.com/code-423n4/2022-05-alchemix-findings/issues/104#issuecomment-1150102500

Rewards are regularly harvested by the keeper, and as such, the value at risk is

somewhat negligible.

For these reasons, I believe medium severity to be justified.

Submitted by WatchPug

AlchemistV2.sol#L1679-L1682

AlchemistV2.sol#L743-L786

When repaying the debt with an underlyingToken , the amount in terms of the

underlyingToken (adjusted for decimals) will always be taken in a 1:1 ratio/price for

the subtrahend of the debt.

We believe this design is flawed and be exploited by arbitrageurs and eventually

drives the market price of alToken to match the worst depegged underlyingToken.

[M-17] Debt can be repaid with a depegged underlyingToken,
which can be exploited by arbitrageurs and drives the market
price of alToken to match the worst depegged
underlyingToken

function _normalizeUnderlyingTokensToDebt(address underlyingToken, uin
 return amount * _underlyingTokens[underlyingToken].conversionFacto
}

function repay(address underlyingToken, uint256 amount, address recip
 ...
 uint256 credit = _normalizeUnderlyingTokensToDebt(underlyingToken

 // Update the recipient's debt.
 _updateDebt(recipient, -SafeCast.toInt256(credit));
 ...

https://github.com/code-423n4/2022-05-alchemix/blob/de65c34c7b6e4e94662bf508e214dcbf327984f4/contracts-full/AlchemistV2.sol#L1679-L1682
https://github.com/code-423n4/2022-05-alchemix/blob/de65c34c7b6e4e94662bf508e214dcbf327984f4/contracts-full/AlchemistV2.sol#L743-L786
https://github.com/code-423n4/2022-05-alchemix-findings/issues/161

Because if alToken is trading at a higher price against the depegged

underlyingToken, the arbitrageur can always mint alToken and market sell for more

depegged underlyingToken and repay the debt.

Given:

alUSD is trading at $1

minimumCollateralization: 4/3

An arbitrageur can:

1. Deposit 100M USDC as collateral and mint 75M alUSD (100*0.75);

2. Market buy 75M USDT with 67.5M alUSD (75*0.9) and repay the debt;

3. Withdraw the 100M USDC collateral;

4. Dump the remaining 7.5M alUSD (75-67.5) for profit.

This can be repeated until the market price of alUSD drops to $0.9 , the same price

as USDT.

Consider updating the repay() function and change to market buy using the

underlyingToken to alToken and then burn() the alToken to reduce debt.

0xfoobar (Alchemix) acknowledged, disagreed with severity and commented:

This is a core design choice underlying the Alchemix system. Like-kind collateral and

debt assumes that assets will hold their relationship. The onus lies on governance to

choose safe collateral assets.

0xleastwood (judge) decreased severity to Medium and commented:

I agree with what was raised by the warden but disagree with the associated

severity. Because user’s assets are tied to the underlying collateral, it makes sense

that the a depegged token would be reflected in the price of alToken . As a result,

Proof of Concept

When USDT is slightly depegged, and trading at $0.9 :

Recommendation

https://github.com/code-423n4/2022-05-alchemix-findings/issues/161#issuecomment-1133953254
https://github.com/code-423n4/2022-05-alchemix-findings/issues/161#issuecomment-1150112042

arbitrageurs are free to profit off this by driving the price of alToken down to its

true value.

I consider this to be medium risk because of an unlikely assumption made when

considering the likelihood of a depeg event. Assets are not at direct risk, but value

can be leaked under certain assumptions.

For this contest, 46 reports were submitted by wardens detailing low risk and non-

critical issues. The report highlighted below by IllIllI received the top score from the

judge.

The following wardens also submitted reports: GimelSec, AuditsAreUS, 0x1f8b,

0xsomeone, 0xDjango, joestakey, TerrierLover, cccz, fatherOfBlocks, hyh, robee,

Ruhum, shenwilly, WatchPug, csanuragjain, jayjonah8, MaratCerby,

BowTiedWardens, horsefacts, sikorico, tintin, catchup, cryptphi, ellahi, oyc_109,

Picodes, throttle, BouSalman, 0x4non, bobirichman, Cityscape, delfin454000,

mics, MiloTruck, simon135, 0xNazgul, Funen, 0xkatana, hake, Hawkeye, JC,

kebabsec, kenta, samruna, and Waze.

Issue Instances

1 Latent funds can be stolen 1

2 Low level calls don’t check for contract existence 1

3 Set sane maximums for input parameters 2

4 Behavior described by comment is incomplete 1

5 Unsafe use of transfer() / transferFrom() with IERC20 4

6 Return values of transfer() / transferFrom() not checked 2

7 Unused/empty receive() function 2

8 safeApprove() is deprecated 32

9 Missing checks for address(0x0) when assigning values to address state

variables

24

Low Risk and Non-Critical Issues

Summary

Low Risk Issues

https://github.com/code-423n4/2022-05-alchemix-findings/issues/228
https://github.com/code-423n4/2022-05-alchemix-findings/issues/193
https://github.com/code-423n4/2022-05-alchemix-findings/issues/103
https://github.com/code-423n4/2022-05-alchemix-findings/issues/86
https://github.com/code-423n4/2022-05-alchemix-findings/issues/119
https://github.com/code-423n4/2022-05-alchemix-findings/issues/201
https://github.com/code-423n4/2022-05-alchemix-findings/issues/177
https://github.com/code-423n4/2022-05-alchemix-findings/issues/223
https://github.com/code-423n4/2022-05-alchemix-findings/issues/126
https://github.com/code-423n4/2022-05-alchemix-findings/issues/221
https://github.com/code-423n4/2022-05-alchemix-findings/issues/136
https://github.com/code-423n4/2022-05-alchemix-findings/issues/94
https://github.com/code-423n4/2022-05-alchemix-findings/issues/62
https://github.com/code-423n4/2022-05-alchemix-findings/issues/146
https://github.com/code-423n4/2022-05-alchemix-findings/issues/165
https://github.com/code-423n4/2022-05-alchemix-findings/issues/46
https://github.com/code-423n4/2022-05-alchemix-findings/issues/70
https://github.com/code-423n4/2022-05-alchemix-findings/issues/50
https://github.com/code-423n4/2022-05-alchemix-findings/issues/215
https://github.com/code-423n4/2022-05-alchemix-findings/issues/218
https://github.com/code-423n4/2022-05-alchemix-findings/issues/90
https://github.com/code-423n4/2022-05-alchemix-findings/issues/168
https://github.com/code-423n4/2022-05-alchemix-findings/issues/142
https://github.com/code-423n4/2022-05-alchemix-findings/issues/211
https://github.com/code-423n4/2022-05-alchemix-findings/issues/130
https://github.com/code-423n4/2022-05-alchemix-findings/issues/84
https://github.com/code-423n4/2022-05-alchemix-findings/issues/179
https://github.com/code-423n4/2022-05-alchemix-findings/issues/204
https://github.com/code-423n4/2022-05-alchemix-findings/issues/116
https://github.com/code-423n4/2022-05-alchemix-findings/issues/96
https://github.com/code-423n4/2022-05-alchemix-findings/issues/92
https://github.com/code-423n4/2022-05-alchemix-findings/issues/167
https://github.com/code-423n4/2022-05-alchemix-findings/issues/133
https://github.com/code-423n4/2022-05-alchemix-findings/issues/82
https://github.com/code-423n4/2022-05-alchemix-findings/issues/173
https://github.com/code-423n4/2022-05-alchemix-findings/issues/138
https://github.com/code-423n4/2022-05-alchemix-findings/issues/57
https://github.com/code-423n4/2022-05-alchemix-findings/issues/154
https://github.com/code-423n4/2022-05-alchemix-findings/issues/125
https://github.com/code-423n4/2022-05-alchemix-findings/issues/65
https://github.com/code-423n4/2022-05-alchemix-findings/issues/226
https://github.com/code-423n4/2022-05-alchemix-findings/issues/212
https://github.com/code-423n4/2022-05-alchemix-findings/issues/200
https://github.com/code-423n4/2022-05-alchemix-findings/issues/152
https://github.com/code-423n4/2022-05-alchemix-findings/issues/101
https://github.com/code-423n4/2022-05-alchemix-findings/issues/175

Issue Instances

10 abi.encodePacked() should not be used with dynamic types when passing

the result to a hash function such as keccak256()
1

11 Upgradeable contract is missing a __gap[50] storage variable to allow for

new storage variables in later versions

3

Total: 73 instances over 11 issues

Issue Instances

1 Adding a return statement when the function defines a named return

variable, is redundant

4

2 override function arguments that are unused should have the variable name

removed or commented out to avoid compiler warnings

1

3 public functions not called by the contract should be declared external

instead

12

4 2**<n> - 1 should be re-written as type(uint<n>).max 1

5 constant s should be defined rather than using magic numbers 20

6 Redundant cast 4

7 Numeric values having to do with time should use time units for readability 1

8 Missing event for critical parameter change 3

9 Use a more recent version of solidity 12

10 Use a more recent version of solidity 1

11 Use scientific notation (e.g. 1e18) rather than exponentiation (e.g. 10**18) 2

12 Inconsistent spacing in comments 11

13 Non-library/interface files should use fixed compiler versions, not floating
ones

16

14 Typos 12

15 File does not contain an SPDX Identifier 32

16 File is missing NatSpec 27

17 NatSpec is incomplete 17

Non-critical Issues

Issue Instances

18 Event is missing indexed fields 111

19 Use allowlist/denylist rather than blacklist/whitelist 1

Total: 288 instances over 19 issues

If someone manages, through either a bug or a mistake (self-destructing and

sending funds to the contract), another user can claim the funds as their own.

Measure the balance before and after, and use the difference, rather than measuring

the total balance of the contract

There is 1 instance of this issue:

https://github.com/code-423n4/2022-05-

alchemix/blob/de65c34c7b6e4e94662bf508e214dcbf327984f4/contracts-

full/WETHGateway.sol#L70-L75

Low level calls return success if called on a destructed contract. See OpenZeppelin’s

Address.so which checks address.code.length

There is 1 instance of this issue:

[L-01] Latent funds can be stolen

File: contracts-full/WETHGateway.sol #1

70 IAlchemistV2(alchemist).withdrawUnderlyingFrom(msg.sende
71
72 uint256 amount = WETH.balanceOf(address(this));
73 WETH.withdraw(amount);
74
75: (bool success,) = recipient.call{value: amount}(new byte

[L-02] Low level calls don’t check for contract existence

File: contracts-full/libraries/TokenUtils.sol #1

https://github.com/code-423n4/2022-05-alchemix/blob/de65c34c7b6e4e94662bf508e214dcbf327984f4/contracts-full/WETHGateway.sol#L70-L75

https://github.com/code-423n4/2022-05-

alchemix/blob/de65c34c7b6e4e94662bf508e214dcbf327984f4/contracts-

full/libraries/TokenUtils.sol#L65-L68

There should be an upper limit to reasonable fees

There are 2 instances of this issue.

For further details on this (and the warden’s other findings with multiple

instances), please see their full report

The event is not emitted when the fee is updated the first time (in the constructor)

There is 1 instance of this issue:

65 function safeTransfer(address token, address recipient, uint2
66 (bool success, bytes memory data) = token.call(
67 abi.encodeWithSelector(IERC20Minimal.transfer.selecto
68:);

[L-03] Set sane maximums for input parameters

[L-04] Behavior described by comment is incomplete

File: contracts-full/AlchemicTokenV2.sol #1

50 /// @notice An event which is emitted when the flash mint fee
51 ///
52 /// @param fee The new flash mint fee.
53 event SetFlashMintFee(uint256 fee);
54
55 constructor(string memory _name, string memory _symbol, uint256
56 _setupRole(ADMIN_ROLE, msg.sender);
57 _setupRole(SENTINEL_ROLE, msg.sender);
58 _setRoleAdmin(SENTINEL_ROLE, ADMIN_ROLE);
59 _setRoleAdmin(ADMIN_ROLE, ADMIN_ROLE);
60 flashMintFee = _flashFee;
61: }

https://github.com/code-423n4/2022-05-alchemix/blob/de65c34c7b6e4e94662bf508e214dcbf327984f4/contracts-full/libraries/TokenUtils.sol#L65-L68
https://github.com/code-423n4/2022-05-alchemix-findings/issues/228

https://github.com/code-423n4/2022-05-

alchemix/blob/de65c34c7b6e4e94662bf508e214dcbf327984f4/contracts-

full/AlchemicTokenV2.sol#L50-L61

Some tokens do not implement the ERC20 standard properly but are still accepted

by most code that accepts ERC20 tokens. For example Tether (USDT)‘s transfer()

and transferFrom() functions do not return booleans as the specification requires,

and instead have no return value. When these sorts of tokens are cast to IERC20 ,

their function signatures do not match and therefore the calls made, revert. Use

OpenZeppelin’s SafeERC20 ’s safeTransfer() / safeTransferFrom() instead

There are 4 instances of this issue.

Not all IERC20 implementations revert() when there’s a failure in

transfer() / transferFrom() . The function signature has a boolean return value

and they indicate errors that way instead. By not checking the return value,

operations that should have marked as failed, may potentially go through without

actually making a payment

There are 2 instances of this issue.

If the intention is for the Ether to be used, the function should call another function,

otherwise it should revert

There are 2 instances of this issue.

Deprecated in favor of safeIncreaseAllowance() and safeDecreaseAllowance() . If

only setting the initial allowance to the value that means infinite,

safeIncreaseAllowance() can be used instead

[L-05] Unsafe use of transfer() / transferFrom() with
IERC20

[L-06] Return values of transfer() / transferFrom() not
checked

[L-07] Unused/empty receive() function

[L-08] safeApprove() is deprecated

https://github.com/code-423n4/2022-05-alchemix/blob/de65c34c7b6e4e94662bf508e214dcbf327984f4/contracts-full/AlchemicTokenV2.sol#L50-L61
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/bfff03c0d2a59bcd8e2ead1da9aed9edf0080d05/contracts/token/ERC20/utils/SafeERC20.sol#L38-L45

There are 32 instances of this issue.

There are 24 instances of this issue.

Use abi.encode() instead which will pad items to 32 bytes, which will prevent hash

collisions (e.g. abi.encodePacked(0x123,0x456) => 0x123456 =>

abi.encodePacked(0x1,0x23456) , but abi.encode(0x123,0x456) =>

0x0...1230...456). “Unless there is a compelling reason, abi.encode should be

preferred”. If there is only one argument to abi.encodePacked() it can often be cast

to bytes() or bytes32() instead.

There is 1 instance of this issue:

https://github.com/code-423n4/2022-05-

alchemix/blob/71abbe683dfd5c0686b7e594fb4f78a14b668d8b/contracts-

full/libraries/RocketPool.sol#L14

See this link for a description of this storage variable. While some contracts may not

currently be sub-classed, adding the variable now protects against forgetting to add

it in the future.

There are 3 instances of this issue.

[L-09] Missing checks for address(0x0) when assigning
values to address state variables

[L-10] abi.encodePacked() should not be used with dynamic
types when passing the result to a hash function such as
keccak256()

File: contracts-full/libraries/RocketPool.sol #1

14: keccak256(abi.encodePacked("contract.address", "roc

[L-11] Upgradeable contract is missing a __gap[50] storage
variable to allow for new storage variables in later versions

https://docs.soliditylang.org/en/v0.8.13/abi-spec.html#non-standard-packed-mode
https://ethereum.stackexchange.com/questions/30912/how-to-compare-strings-in-solidity#answer-82739
https://github.com/code-423n4/2022-05-alchemix/blob/71abbe683dfd5c0686b7e594fb4f78a14b668d8b/contracts-full/libraries/RocketPool.sol#L14
https://docs.openzeppelin.com/contracts/4.x/upgradeable#storage_gaps

There are 4 instances of this issue.

There is 1 instance of this issue:

https://github.com/code-423n4/2022-05-

alchemix/blob/71abbe683dfd5c0686b7e594fb4f78a14b668d8b/contracts-

full/AutoleverageCurveMetapool.sol#L20

Contracts are allowed to override their parents’ functions and change the visibility

from external to public .

There are 12 instances of this issue.

Earlier versions of solidity can use uint<n>(-1) instead. Expressions not including

the - 1 can often be re-written to accomodate the change (e.g. by using a >

rather than a >= , which will also save some gas)

There is 1 instance of this issue:

[N-01] Adding a return statement when the function defines
a named return variable, is redundant

[N-02] override function arguments that are unused should
have the variable name removed or commented out to avoid
compiler warnings

File: contracts-full/AutoleverageCurveMetapool.sol #1

20: function _maybeConvertCurveOutput(uint256 amountOut) interna

[N-03] public functions not called by the contract should be
declared external instead

[N-04] 2**<n> - 1 should be re-written as
type(uint<n>).max

File: contracts-full/libraries/SafeCast.sol #1

https://github.com/code-423n4/2022-05-alchemix/blob/71abbe683dfd5c0686b7e594fb4f78a14b668d8b/contracts-full/AutoleverageCurveMetapool.sol#L20
https://docs.soliditylang.org/en/latest/contracts.html#function-overriding

https://github.com/code-423n4/2022-05-

alchemix/blob/71abbe683dfd5c0686b7e594fb4f78a14b668d8b/contracts-

full/libraries/SafeCast.sol#L13

There are 20 instances of this issue.

The type of the variable is the same as the type to which the variable is being cast

There are 4 instances of this issue.

There are units for seconds, minutes, hours, days, and weeks

There is 1 instance of this issue:

https://github.com/code-423n4/2022-05-

alchemix/blob/71abbe683dfd5c0686b7e594fb4f78a14b668d8b/contracts-

full/libraries/Limiters.sol#L12

There are 3 instances of this issue.

13: if (y >= 2**255) {

[N-05] constant s should be defined rather than using magic
numbers

[N-06] Redundant cast

[N-07] Numeric values having to do with time should use
time units for readability

File: contracts-full/libraries/Limiters.sol #1

12: uint256 constant public MAX_COOLDOWN_BLOCKS = 7200;

[N-08] Missing event for critical parameter change

[N-09] Use a more recent version of solidity

https://github.com/code-423n4/2022-05-alchemix/blob/71abbe683dfd5c0686b7e594fb4f78a14b668d8b/contracts-full/libraries/SafeCast.sol#L13
https://docs.soliditylang.org/en/latest/units-and-global-variables.html#time-units
https://github.com/code-423n4/2022-05-alchemix/blob/71abbe683dfd5c0686b7e594fb4f78a14b668d8b/contracts-full/libraries/Limiters.sol#L12

Use a solidity version of at least 0.8.13 to get the ability to use using for with a list

of free functions

There are 12 instances of this issue.

Use a solidity version of at least 0.8.4 to get bytes.concat() instead of

abi.encodePacked(<bytes>,<bytes>) Use a solidity version of at least 0.8.12 to get

string.concat() instead of abi.encodePacked(<str>,<str>)

There is 1 instance of this issue:

https://github.com/code-423n4/2022-05-

alchemix/blob/71abbe683dfd5c0686b7e594fb4f78a14b668d8b/contracts-

full/libraries/RocketPool.sol#L1

There are 2 instances of this issue.

Some lines use // x and some use //x . The instances below point out the usages

that don’t follow the majority, within each file

There are 11 instances of this issue.

There are 16 instances of this issue.

[N-10] Use a more recent version of solidity

File: contracts-full/libraries/RocketPool.sol #1

1: pragma solidity >=0.5.0;

[N-11] Use scientific notation (e.g. 1e18) rather than
exponentiation (e.g. 10**18)

[N-12] Inconsistent spacing in comments

[N-13] Non-library/interface files should use fixed compiler
versions, not floating ones

[N-14] Typos

https://github.com/code-423n4/2022-05-alchemix/blob/71abbe683dfd5c0686b7e594fb4f78a14b668d8b/contracts-full/libraries/RocketPool.sol#L1

There are 12 instances of this issue.

There are 32 instances of this issue.

There are 27 instances of this issue.

There are 17 instances of this issue.

Each event should use three indexed fields if there are three or more fields

There are 111 instances of this issue.

There is 1 instance of this issue:

https://github.com/code-423n4/2022-05-

alchemix/blob/de65c34c7b6e4e94662bf508e214dcbf327984f4/contracts-

full/AlchemicTokenV1.sol#L110

0xfoobar (Alchemix) commented:

Incredibly comprehensive, great writeup

[N-15] File does not contain an SPDX Identifier

[N-16] File is missing NatSpec

[N-17] NatSpec is incomplete

[N-18] Event is missing indexed fields

[N-19] Use allowlist/denylist rather than blacklist/whitelist

File: contracts-full/AlchemicTokenV1.sol #1

110: function setBlacklist(address minter) external onlySentinel {

Gas Optimizations

https://github.com/code-423n4/2022-05-alchemix/blob/de65c34c7b6e4e94662bf508e214dcbf327984f4/contracts-full/AlchemicTokenV1.sol#L110
https://github.com/code-423n4/2022-05-alchemix-findings/issues/228#issuecomment-1140785384

For this contest, 46 reports were submitted by wardens detailing gas optimizations.

The report highlighted below by IllIllI received the top score from the judge.

The following wardens also submitted reports: BowTiedWardens, joestakey,

0xkatana, AlleyCat, mics, WatchPug, 0x4non, 0xNazgul, simon135,

fatherOfBlocks, robee, samruna, sashik_eth, TerrierLover, _Adam, 0x1f8b,

0xf15ers, 0xsomeone, catchup, ellahi, Funen, GimelSec, MiloTruck, oyc_109,

Tomio, 0xDjango, csanuragjain, hake, hansfriese, Hawkeye, ignacio, MaratCerby,

sikorico, Waze, 0v3rf10w, Fitraldys, horsefacts, kenta, Randyyy, throttle,

UnusualTurtle, augustg, bobirichman, Cityscape, and JC.

Saves a storage slot. If the variable is assigned a non-zero value, saves Gsset

(20000 gas). If it’s assigned a zero value, saves Gsreset (2900 gas). If the variable

remains unassigned, there is no gas savings. If the state variable is overriding an

interface’s public function, mark the variable as constant or immutable so that it

does not use a storage slot, and manually add a getter function

For further details on this (and the warden’s other gas optimizations), please see

their full report.

Saves a storage slot for the mapping. Depending on the circumstances and sizes of

types, can avoid a Gsset (20000 gas) per mapping combined. Reads and

subsequent writes can also be cheaper when a function requires both values and

they both fit in the same storage slot

Avoids a Gsset (20000 gas) in the constructor, and replaces each Gwarmacces

(100 gas) with a PUSH32 (3 gas). If getters are still desired, ’_’ can be added to the

variable name and the getter can be added manually

[G-01] Remove or replace unused state variables

[G-02] Multiple address mappings can be combined into a
single mapping of an address to a struct , where
appropriate

[G-03] State variables only set in the constructor should be
declared immutable

[G-04] Structs can be packed into fewer storage slots

https://github.com/code-423n4/2022-05-alchemix-findings/issues/28
https://github.com/code-423n4/2022-05-alchemix-findings/issues/137
https://github.com/code-423n4/2022-05-alchemix-findings/issues/171
https://github.com/code-423n4/2022-05-alchemix-findings/issues/124
https://github.com/code-423n4/2022-05-alchemix-findings/issues/32
https://github.com/code-423n4/2022-05-alchemix-findings/issues/81
https://github.com/code-423n4/2022-05-alchemix-findings/issues/164
https://github.com/code-423n4/2022-05-alchemix-findings/issues/95
https://github.com/code-423n4/2022-05-alchemix-findings/issues/56
https://github.com/code-423n4/2022-05-alchemix-findings/issues/139
https://github.com/code-423n4/2022-05-alchemix-findings/issues/220
https://github.com/code-423n4/2022-05-alchemix-findings/issues/93
https://github.com/code-423n4/2022-05-alchemix-findings/issues/100
https://github.com/code-423n4/2022-05-alchemix-findings/issues/214
https://github.com/code-423n4/2022-05-alchemix-findings/issues/224
https://github.com/code-423n4/2022-05-alchemix-findings/issues/216
https://github.com/code-423n4/2022-05-alchemix-findings/issues/85
https://github.com/code-423n4/2022-05-alchemix-findings/issues/148
https://github.com/code-423n4/2022-05-alchemix-findings/issues/118
https://github.com/code-423n4/2022-05-alchemix-findings/issues/143
https://github.com/code-423n4/2022-05-alchemix-findings/issues/129
https://github.com/code-423n4/2022-05-alchemix-findings/issues/153
https://github.com/code-423n4/2022-05-alchemix-findings/issues/195
https://github.com/code-423n4/2022-05-alchemix-findings/issues/172
https://github.com/code-423n4/2022-05-alchemix-findings/issues/83
https://github.com/code-423n4/2022-05-alchemix-findings/issues/145
https://github.com/code-423n4/2022-05-alchemix-findings/issues/202
https://github.com/code-423n4/2022-05-alchemix-findings/issues/45
https://github.com/code-423n4/2022-05-alchemix-findings/issues/66
https://github.com/code-423n4/2022-05-alchemix-findings/issues/169
https://github.com/code-423n4/2022-05-alchemix-findings/issues/225
https://github.com/code-423n4/2022-05-alchemix-findings/issues/110
https://github.com/code-423n4/2022-05-alchemix-findings/issues/49
https://github.com/code-423n4/2022-05-alchemix-findings/issues/89
https://github.com/code-423n4/2022-05-alchemix-findings/issues/174
https://github.com/code-423n4/2022-05-alchemix-findings/issues/197
https://github.com/code-423n4/2022-05-alchemix-findings/issues/188
https://github.com/code-423n4/2022-05-alchemix-findings/issues/219
https://github.com/code-423n4/2022-05-alchemix-findings/issues/151
https://github.com/code-423n4/2022-05-alchemix-findings/issues/176
https://github.com/code-423n4/2022-05-alchemix-findings/issues/205
https://github.com/code-423n4/2022-05-alchemix-findings/issues/196
https://github.com/code-423n4/2022-05-alchemix-findings/issues/105
https://github.com/code-423n4/2022-05-alchemix-findings/issues/91
https://github.com/code-423n4/2022-05-alchemix-findings/issues/170
https://github.com/code-423n4/2022-05-alchemix-findings/issues/213
https://github.com/code-423n4/2022-05-alchemix-findings/issues/28

Each slot saved can avoid an extra Gsset (20000 gas) for the first setting of the

struct. Subsequent reads as well as writes have smaller gas savings

When a function with a memory array is called externally, the abi.decode() step has

to use a for-loop to copy each index of the calldata to the memory index. Each

iteration of this for-loop costs at least 60 gas (i.e. 60 * <mem_array>.length). Using

calldata directly, obliviates the need for such a loop in the contract code and

runtime execution. Structs have the same overhead as an array of length one

The instances (outlined in the warden’s full report) point to the second+ access of a

state variable within a function. Caching will replace each Gwarmaccess (100 gas)

with a much cheaper stack read. Less obvious fixes/optimizations include having

local storage variables of mappings within state variable mappings or mappings

within state variable structs, having local storage variables of structs within

mappings, having local memory caches of state variable structs, or having local

caches of state variable contracts/addresses.

The instances (outlined in the warden’s full report) point to the second+ call of the

function within a single function

Not inlining costs 20 to 40 gas because of two extra JUMP instructions and

additional stack operations needed for function calls.

[G-05] Using calldata instead of memory for read-only
arguments in external functions saves gas

[G-06] State variables should be cached in stack variables
rather than re-reading them from storage

[G-07] The result of external function calls should be cached
rather than re-calling the function

[G-08] <x> += <y> costs more gas than <x> = <x> + <y> for
state variables

[G-09] internal functions only called once can be inlined to
save gas

https://github.com/code-423n4/2022-05-alchemix-findings/issues/228
https://github.com/code-423n4/2022-05-alchemix-findings/issues/228

The overheads outlined below are PER LOOP, excluding the first loop

storage arrays incur a Gwarmaccess (100 gas)

memory arrays use MLOAD (3 gas)

calldata arrays use CALLDATALOAD (3 gas)

Caching the length changes each of these to a DUP<N> (3 gas), and gets rid of the

extra DUP<N> needed to store the stack offset

The unchecked keyword is new in solidity version 0.8.0, so this only applies to that

version or higher, which these instances are. This saves 30-40 gas PER LOOP

https://github.com/code-423n4/2022-05-

alchemix/blob/71abbe683dfd5c0686b7e594fb4f78a14b668d8b/contracts-

full/TransmuterBuffer.sol#L515

[G-10] <array>.length should not be looked up in every loop
of a for -loop

[G-11] ++i / i++ should be unchecked{++i} / unchecked{++i}
when it is not possible for them to overflow, as is the case
when used in for - and while -loops

[G-12] require() / revert() strings longer than 32 bytes cost
extra gas

[G-13] private functions not called by the contract should
be removed to save deployment gas

[G-14] Not using the named return variables when a function
returns, wastes deployment gas

[G-15] Remove unused local variable

File: contracts-full/TransmuterBuffer.sol #1

515 (uint256 availableShares, uint256 lastAccruedWeight) =

https://gist.github.com/hrkrshnn/ee8fabd532058307229d65dcd5836ddc#the-increment-in-for-loop-post-condition-can-be-made-unchecked
https://github.com/code-423n4/2022-05-alchemix/blob/71abbe683dfd5c0686b7e594fb4f78a14b668d8b/contracts-full/TransmuterBuffer.sol#L515

https://github.com/OpenZeppelin/openzeppelin-

contracts/blob/58f635312aa21f947cae5f8578638a85aa2519f5/contracts/security

/ReentrancyGuard.sol#L23-L27

Use uint256(1) and uint256(2) for true/false

Use a solidity version of at least 0.8.0 to get overflow protection without SafeMath

Use a solidity version of at least 0.8.2 to get compiler automatic inlining Use a

solidity version of at least 0.8.3 to get better struct packing and cheaper multiple

storage reads Use a solidity version of at least 0.8.4 to get custom errors, which are

cheaper at deployment than revert()/require() strings Use a solidity version of at

least 0.8.10 to have external calls skip contract existence checks if the external call

has a return value

Use a solidity version of at least 0.8.10 to have external calls skip contract existence

checks if the external call has a return value

https://github.com/code-423n4/2022-05-

alchemix/blob/71abbe683dfd5c0686b7e594fb4f78a14b668d8b/contracts-

full/libraries/SafeERC20.sol#L2

[G-16] Using bool s for storage incurs overhead

 // Booleans are more expensive than uint256 or any type that take
 // word because each write operation emits an extra SLOAD to first
 // slot's contents, replace the bits taken up by the boolean, and
 // back. This is the compiler's defense against contract upgrades
 // pointer aliasing, and it cannot be disabled.

[G-17] Use a more recent version of solidity

[G-18] Use a more recent version of solidity

File: contracts-full/libraries/SafeERC20.sol #1

2 pragma solidity >=0.8.4;

[G-19] Use a more recent version of solidity

https://github.com/OpenZeppelin/openzeppelin-contracts/blob/58f635312aa21f947cae5f8578638a85aa2519f5/contracts/security/ReentrancyGuard.sol#L23-L27
https://github.com/code-423n4/2022-05-alchemix/blob/71abbe683dfd5c0686b7e594fb4f78a14b668d8b/contracts-full/libraries/SafeERC20.sol#L2

Use a solidity version of at least 0.8.2 to get compiler automatic inlining Use a

solidity version of at least 0.8.3 to get better struct packing and cheaper multiple

storage reads Use a solidity version of at least 0.8.4 to get custom errors, which are

cheaper at deployment than revert()/require() strings Use a solidity version of at

least 0.8.10 to have external calls skip contract existence checks if the external call

has a return value

https://github.com/code-423n4/2022-05-

alchemix/blob/71abbe683dfd5c0686b7e594fb4f78a14b668d8b/contracts-

full/interfaces/external/IProxyAdmin.sol#L3

If the functions are required by an interface, the contract should inherit from that

interface and use the override keyword

Saves 6 gas PER LOOP

When using elements that are smaller than 32 bytes, your contract’s gas usage may

be higher. This is because the EVM operates on 32 bytes at a time. Therefore, if the

element is smaller than that, the EVM must use more operations in order to reduce

the size of the element from 32 bytes to the desired size.

File: contracts-full/interfaces/external/IProxyAdmin.sol #1

3 pragma solidity ^0.8.0;

[G-20] It costs more gas to initialize variables to zero than to
let the default of zero be applied

[G-21] internal functions not called by the contract should
be removed to save deployment gas

[G-22] ++i costs less gas than ++i , especially when it’s used
in for -loops (--i / i-- too)

[G-23] Usage of uints / ints smaller than 32 bytes (256 bits)
incurs overhead

https://github.com/code-423n4/2022-05-alchemix/blob/71abbe683dfd5c0686b7e594fb4f78a14b668d8b/contracts-full/interfaces/external/IProxyAdmin.sol#L3

https://github.com/code-423n4/2022-05-

alchemix/blob/71abbe683dfd5c0686b7e594fb4f78a14b668d8b/contracts-

full/AutoleverageBase.sol#L102-L110

See this issue for a detail description of the issue

If needed, the value can be read from the verified contract source code. Savings are

due to the compiler not having to create non-payable getter functions for

deployment calldata, and not adding another entry to the method ID table

Version 0.8.0 introduces internal overflow checks, so using SafeMath is redundant

and adds overhead

[G-24] abi.encode() is less efficient than
abi.encodePacked()

File: contracts-full/AutoleverageBase.sol #1

102 bytes memory params = abi.encode(Details({
103 pool: pool,
104 poolInputIndex: poolInputIndex,
105 poolOutputIndex: poolOutputIndex,
106 alchemist: alchemist,
107 yieldToken: yieldToken,
108 recipient: msg.sender,
109 targetDebt: targetDebt
110 }));

[G-25] Expressions for constant values such as a call to
keccak256() , should use immutable rather than constant

[G-26] Using private rather than public for constants,
saves gas

[G-27] Don’t use SafeMath once the solidity version is 0.8.0
or greater

File: contracts-full/TransmuterBuffer.sol #1

https://github.com/code-423n4/2022-05-alchemix/blob/71abbe683dfd5c0686b7e594fb4f78a14b668d8b/contracts-full/AutoleverageBase.sol#L102-L110
https://github.com/ethereum/solidity/issues/9232

https://github.com/code-423n4/2022-05-

alchemix/blob/71abbe683dfd5c0686b7e594fb4f78a14b668d8b/contracts-

full/TransmuterBuffer.sol#L7

Saves deployment costs

https://github.com/code-423n4/2022-05-

alchemix/blob/71abbe683dfd5c0686b7e594fb4f78a14b668d8b/contracts-

full/gALCX.sol#L107

<x> * 2 is equivalent to <x> << 1 and <x> / 2 is the same as <x> >> 1 . The MUL

and DIV opcodes cost 5 gas, whereas SHL and SHR only cost 3 gas

https://github.com/code-423n4/2022-05-

alchemix/blob/71abbe683dfd5c0686b7e594fb4f78a14b668d8b/contracts-

full/ThreePoolAssetManager.sol#L355

The code should be refactored such that they no longer exist, or the block should do

something useful, such as emitting an event or reverting. If the block is an empty if-

statement block to avoid doing subsequent checks in the else-if/else conditions, the

7 import "@openzeppelin/contracts/utils/math/SafeMath.sol";

[G-28] Duplicated require() / revert() checks should be
refactored to a modifier or function

File: contracts-full/gALCX.sol #1

107 require(success, "Transfer failed");

[G-29] Multiplication/division by two should use bit shifting

File: contracts-full/ThreePoolAssetManager.sol #1

355 if ((examineBalance = (v.maximum + v.minimum) / 2) =

[G-30] Empty blocks should be removed or emit something

https://github.com/code-423n4/2022-05-alchemix/blob/71abbe683dfd5c0686b7e594fb4f78a14b668d8b/contracts-full/TransmuterBuffer.sol#L7
https://github.com/code-423n4/2022-05-alchemix/blob/71abbe683dfd5c0686b7e594fb4f78a14b668d8b/contracts-full/gALCX.sol#L107
https://github.com/code-423n4/2022-05-alchemix/blob/71abbe683dfd5c0686b7e594fb4f78a14b668d8b/contracts-full/ThreePoolAssetManager.sol#L355

else-if/else conditions should be nested under the negation of the if-statement,

because they involve different classes of checks, which may lead to the introduction

of errors when the code is later modified (if(x){}else if(y){...}else{...} =>

if(!x){if(y){...}else{...}})

Custom errors are available from solidity version 0.8.4. The instances below match

or exceed that version

If a function modifier such as onlyOwner is used, the function will revert if a normal

user tries to pay the function. Marking the function as payable will lower the gas

cost for legitimate callers because the compiler will not include checks for whether a

payment was provided. The extra opcodes avoided are

CALLVALUE (2), DUP1 (3), ISZERO (3), PUSH2 (3), JUMPI (10), PUSH1 (3), DUP1 (3), REVERT

(0), JUMPDEST (1), POP (2), which costs an average of about 21 gas per call to the

function, in addition to the extra deployment cost

Contracts are allowed to override their parents’ functions and change the visibility

from external to public and can save gas by doing so.

0xfoobar (Alchemix) commented:

Incredibly comprehensive, great work with the explanations and detailed line

number links

C4 is an open organization governed by participants in the community.

[G-31] Use custom errors rather than revert() / require()
strings to save deployment gas

[G-32] Functions guaranteed to revert when called by normal
users can be marked payable

[G-33] public functions not called by the contract should be
declared external instead

Disclosures

https://docs.soliditylang.org/en/latest/contracts.html#function-overriding
https://github.com/code-423n4/2022-05-alchemix-findings/issues/28#issuecomment-1140784192

C4 Contests incentivize the discovery of exploits, vulnerabilities, and bugs in smart

contracts. Security researchers are rewarded at an increasing rate for finding higher-

risk issues. Contest submissions are judged by a knowledgeable security researcher

and solidity developer and disclosed to sponsoring developers. C4 does not

conduct formal verification regarding the provided code but instead provides final

verification.

C4 does not provide any guarantee or warranty regarding the security of this

project. All smart contract software should be used at the sole risk and responsibility

of users.

Top

An open organization | Twitter | Discord | GitHub | Medium | Newsletter | Media kit |

code4rena.eth

https://twitter.com/code4rena
https://discord.gg/code4rena
https://github.com/code-423n4/
https://medium.com/code4rena
https://code4rena.com/newsletter-signup
https://github.com/code-423n4/media-kit
https://etherscan.io/address/0xC2BC2F890067C511215F9463A064221577A53E10

