
Security Audit Report
Algorand Governance Rewards
Delivered: September 30, 2021
Minor revision: October 14, 2021

Prepared for the Algorand Foundation by

Contents

Summary 2
Timeline . 2
Scope . 2
Findings . 2

Disclaimer 3

Goals 4

Scope 4

Methodology 5

Attack scenario analysis 6
A01. Obtaining control over the escrow . 6
A02. Multiple claims by the same governor . 7
A03. Malicious transaction draining escrow through transaction fees 7

Additional Findings 8
B01. Delayed reward claim may be compromised 8
B02. Unreachable code in compiled app_approval.teal 8

Appendices 9

1

Summary
The Algorand Foundation engaged Runtime Verification Inc to conduct a security audit of
the smart contracts implementing the Algorand Governance Rewards program.

The objective was to review the contracts’ business logic and implementation in PyTeal and
identify any issues that could potentially cause the system to malfunction or be exploited.

Timeline
The audit has been conducted under a tight time constraint over a period of 8 working days.

Scope
The audit was conducted by Georgy Lukyanov on the following artefacts provided by the
Foundation:

• Rewards Application contracts/rewards_application.py maintains a list of governors
and tracks their reward claims;

• Stateless Governance Escrow contracts/logicsig.py is an escrow account that holds the
rewards and verifies payment transactions to the eligible governors.

Note that the audit has been performed on the code from a private GitHub repository. The
links above refer to a curtailed public repository, but the relevant on-chain contract code
only differs in literal constants and one additional assertion to address the finding A01. The
additional short logic signature contracts/call_app.teal was not present in the scrutinised
private repository and thus is out of scope of the audit.

Findings
Several potential attacks scenarios on the contracts were considered:

• A01. Obtaining control over the escrow
• A02. Multiple claims by the same governor
• A03. Malicious transaction draining escrow through transaction fees

All attack scenarios are either blocked by the validation logic, or the validation logic will be
enhanced before deployment.

Additionally, we report several informative findings regarding the contracts design and im-
plementation:

• B01. Delayed reward claim may be compromised
• B02. Unreachable code in compiled app_approval.teal

None of the informative findings constitute a threat to the rewards distribution process, but
are still worth bringing to the attention of the Foundation and the wider Algorand community.

2

https://github.com/algorandfoundation/governance/blob/191f80907bf3dbbd0f840bb8c3ab171ab8d9486d/contracts/rewards_application.py
https://github.com/algorandfoundation/governance/blob/191f80907bf3dbbd0f840bb8c3ab171ab8d9486d/contracts/logicsig.py
https://github.com/algorandfoundation/governance/blob/191f80907bf3dbbd0f840bb8c3ab171ab8d9486d/contracts/call_app.teal

Disclaimer
This report does not constitute legal or investment advice. The preparers of this report
present it as an informational exercise documenting the due diligence involved in the secure
development of the target contracts only, and make no material claims or guarantees con-
cerning the contracts’ operation post-deployment. The preparers of this report assume no
liability for any and all potential consequences of the deployment or use of these contracts.

Smart contracts are still a nascent software arena, and their deployment and public offering
carries substantial risk. This report makes no claims that its analysis is fully comprehensive,
and recommends always seeking multiple opinions and audits.

This report is also not comprehensive in scope, excluding a number of components critical
to the correct operation of this system.

The possibility of human error in the manual review process is very real, and we recommend
seeking multiple independent opinions on any claims which impact a large quantity of funds.

3

Goals
The goals of the audit are:

• Review the architecture of the governance rewards smart contracts based on the pro-
vided documentation;

• Review the PyTeal implementation of the contracts and the compiled TEAL code to
identify any programming errors;

• Cross check the compiled TEAL code of the contracts with the documented high-level
design.

The audit focuses on trying to identify issues in the system’s logic and its implementation
that could potentially render the system vulnerable to attacks or cause it to malfunction.

Scope
We audit two smart contracts in the private Algorand Governance Rewards repository as
of commit 131c89304ea276c923ad025ec590ff4e1f551c3c. The linked repository remains pri-
vate. For public scrutiny, the Algorand Foundation has released the contracts’ code, and the
following links correspond to the public versions of the audited contracts:

• Rewards Application contracts/rewards_application.py maintains a list of governors
and tracks their reward claims;

• Stateless Governance Escrow contracts/logicsig.py is an escrow account that holds the
rewards and verifies payment transactions to the eligible governors.

The only changes in the publicly released contracts are revised address constants and an
additional assertion to address the finding A01.

Additionally, we use the design document for governance rewards smart contracts as a refer-
ence.

4

https://github.com/algofoundation/governance
https://github.com/algofoundation/governance/tree/131c89304ea276c923ad025ec590ff4e1f551c3c
https://github.com/algorandfoundation/governance/blob/191f80907bf3dbbd0f840bb8c3ab171ab8d9486d/contracts/rewards_application.py
https://github.com/algorandfoundation/governance/blob/191f80907bf3dbbd0f840bb8c3ab171ab8d9486d/contracts/logicsig.py
https://github.com/algorandfoundation/governance/blob/191f80907bf3dbbd0f840bb8c3ab171ab8d9486d/Algorand-Governance_Rewards-claiming.pdf

Methodology
The timeline was very tight, therefore we have only performed a best-effort audit.

Both smart contracts are implemented in PyTeal, a Python EDSL for writing TEAL pro-
grams. In order to exclude the PyTeal compiler form the trusted base, we compiled the
contracts to TEAL and performed the audit on the compiled code.

We derived a control-flow graph for the contracts using a tool called Tealer. The graphs can
be found in appendices to this document.

Basing on the CFG, we built a best-effort model of the contracts’ semantics as a transition
system embedded in the K Framework. The purpose of modelling was not to build a complete
model, but rather to improve our understanding of the contracts’ behaviour through the
modelling process.

The model abstracts away the low-level details of the contracts, in particular the storage
layout which is implemented as bit slices. We model storage as a traditional key-value data
structure.

A combination of modelling and manual code review has enabled us to construct the attack
scenarios presented above.

To encode the potential attack scenarios, we modified the provided test suite to include the
malicious transaction groups. We used a local devnet setup provided by Algorand Foundation
to execute the scenarios. We analyse the individual scenarios in further sections.

5

https://github.com/crytic/tealer
kframework.org

Attack scenario analysis
After reviewing the design and implementation of the contracts, we identified several possible
attack scenarios, targeting two objectives:

• Stealing the funds from the rewards escrow;
• Disrupting the operation of the governance contracts;
• Partially burning the funds of the escrow via fees of the malicious transactions.

All these attacks have either proved to be impossible or the necessary mitigation measures
were introduced.

However, the programming pattern we came across in the contracts’ implementation has
alerted us to perform additional checks, since it was divergent from the official Algorand
developer guidelines. In particular, neither of the two contracts checks the size of an incoming
transaction group. Therefore, we checked if a number of malicious transactions grouped with
the valid ones could be approved. The rest of the section describes these malicious groups in
more detail and confirms their denial by the contracts.

A01. Obtaining control over the escrow
The governance escrow will hold the rewards and issue payment to the governors. The
Foundation plans to make this account non-participating to exclude it from the consensus
and block it from earning rewards.

However, the validation code for this KeyRegTxn transaction does not check the RekeyTo
field, enabling anyone to add an arbitrary authorised address for the escrow. This authorised
address, if overlooked, may be used to steal the rewards after the escrow was funded by the
rewards pool.

The attack scenario has been brought to our attention by Shai Halevi — a member of the
Algorand Foundation. This episode proves the vitality of close contact between the auditors
and developers.

Recommendation

Check that the RekeyTo field of the transaction to make the escrow non-participating is set
to ZeroAddress, thus blocking rekying completely. As per the design document, the escrow
changes every governance period. Therefore there is no need to support rekeying it, since
there is also no need to keep its public address static.

Status

A check that the KeyRegTxn transaction does not perform rekeying has been introduced.

6

https://developer.algorand.org/docs/reference/teal/guidelines/

A02. Multiple claims by the same governor
A governor could attempt to submit a valid claim and an additional payment transaction,
causing them to be payed twice.

We tried executing the attack on the sandboxed devnet provided by the Algorand Foundation.
To our surprise, to make the transactions be even considered by the ledger, we had to make
them unique, i.e. include random notes in the duplicate malicious transactions.

We tried submitting malicious groups of transactions of size 3 and 4:

Group 1. A valid group with an additional payment transaction: [pay, appl,
pay]

Group 1 is rejected because there is no accompanying ApplicationCallTxn transaction for
the extra pay transaction submitted. More specifically, the evaluation of the escrow’s TEAL
program failed on the additional payment transaction because an attempted out-of-bounds
access by the gtxns opcode.

Group 2. A valid group with both transactions duplicated: [pay, appl, pay,
appl]

Group 2 is rejected because by the TEAL approval program of the stateful smart contract.
The effects of the first, valid, ApplicationCallTxn transaction are being applied to the
tentative block; thus the governor’s bit, tracking if the reward had already been payed, is
already set to one, hence the rejection of the second ApplicationCallTxn.

Recommendation

We recommend introducing a global GroupSize == 2 check into the escrow TEAL program.
This would greatly simplify understanding of which transaction groups are considered valid,
thus making it easier to ensure security.

Additionally, we suggest adding a negative integration test case describing the attack scenar-
ios presented above.

A03. Malicious transaction draining escrow through transaction
fees
Since the group size is not checked, another potential attack scenario was to submit a number
of dummy AssetCreation transactions, thus forcing the escrow to pay network fees.

The scenario fails for the same reason that A02 does: the alignment of with an
ApplicationCallTxn is not satisfied.

Recommendation

Same as for A02, we recommend adding a group size check to simplify the make the transac-
tion validation logic easier to understand.

7

Additional Findings

B01. Delayed reward claim may be compromised
Description

The Algorand Governance FAQ, answering the question Q59, states that governors can claim
their rewards at a later time since they may want to delay the claim for tax reasons. However,
any third party account can trigger a claim for any eligible governor without their permission,
causing the governor to get custody of their reward; thus potentially requiring them to report
it to the tax authorities, depending on the jurisdiction.

Status

The Algorand Foundation is aware of this discrepancy. The incentive for a third party to
trigger somebody else’s claim is deemed to be negligible, since the said party does not gain
anything. Allowing an external account being able to trigger an arbitrary governor’s claim
enables improving the user experience by providing a user-friendly web interface or a similar
facility to claim rewards.

B02. Unreachable code in compiled app_approval.teal
The compiled stateful contract contains an unreachable label as a second entry point to the
“claim” subprogram. The label is an artefact of the PyTeal compiler and is harmless; hence
this finding is purely informational.

Potentially, dead code could become a problem if the contract size approaches the limits
prescribed by AVM.

8

https://algorand.foundation/gov-faq

Appendices
We include the control-flow graphs of the two contracts when compiled to TEAL. Please zoom
the page in your PDF viewer to enlarge the graphs. You may want to omit the appendices
when printing the report on paper.

9

1. #pragma version 4

2. intcblock

3. bytecblock

4. txn ApplicationID

5. intc_0

6. ==

7. bnz main_l14

0

8. txn OnCompletion

9. pushint 4

10. ==

11. bnz main_l13

1

66. main_l14:

67. intc_1

68. return

13

12. txn OnCompletion

13. intc_1

14. ==

15. bnz main_l9

2
61. main_l13:

62. txn Sender

63. global CreatorAddress

64. ==

65. return

12

16. txn OnCompletion

17. intc_0

18. ==

19. txna ApplicationArgs 0

20. pushbytes 0x5698b72d

21. ==

22. &&

23. bnz main_l8

3

32. main_l9:

33. txn Sender

34. bytec_1

35. txna ApplicationArgs 1

36. app_local_put

37. intc_0

38. store 0

8

24. intc_0

25. return

4
27. main_l8:

28. txna ApplicationArgs 1

29. callsub sub0

6 39. main_l10:

40. load 0

41. pushint 15

42. <

43. bnz main_l12

9

70. sub0:

71. store 1

72. txn GroupIndex

73. intc_1

74. -

75. Gtxns TypeEnum

76. intc_1

77. ==

78. load 1

79. btoi

80. pushint 15240

81. <

82. &&

83. txn GroupIndex

84. intc_1

85. -

86. Gtxns Sender

87. txna Accounts 1

88. bytec_1

89. app_local_get

90. ==

91. &&

92. txna Accounts 1

93. bytec_0

94. intc_0

95. load 1

96. btoi

97. intc_2

98. /

99. setbyte

100. app_local_get

101. len

102. intc_3

103. ==

104. &&

105. txna Accounts 1

106. bytec_0

107. intc_0

108. load 1

109. btoi

110. intc_2

111. /

112. setbyte

113. app_local_get

114. load 1

115. btoi

116. intc_2

117. %

118. getbit

119. intc_0

120. ==

121. &&

122. assert

123. txna Accounts 1

124. bytec_0

125. intc_0

126. load 1

127. btoi

128. intc_2

129. /

130. setbyte

131. txna Accounts 1

132. bytec_0

133. intc_0

134. load 1

135. btoi

136. intc_2

137. /

138. setbyte

139. app_local_get

140. load 1

141. btoi

142. intc_2

143. %

144. intc_1

145. setbit

146. app_local_put

147. retsub

15

26. b main_l15

5

69. main_l15:

14

30. intc_1

31. return

7

44. intc_1

45. return

10

46. main_l12:

47. txn Sender

48. load 0

49. itob

50. pushint 7

51. pushint 8

52. substring3

53. intc_3

54. bzero

55. app_local_put

56. load 0

57. intc_1

58. +

59. store 0

60. b main_l10

11

app_approval.teal

1. #pragma version 4

2. intcblock

3. txn TypeEnum

4. intc_1

5. ==

6. txn LastValid

7. pushint 16529000

8. ==

9. &&

10. txn Lease

11. pushbytes 0x0001

12. ==

13. &&

14. bz main_l2

0

15. intc_0

16. return

1

17. main_l2:

18. txn RekeyTo

19. global ZeroAddress

20. ==

21. txn CloseRemainderTo

22. global ZeroAddress

23. ==

24. &&

25. txn Fee

26. intc_1

27. global MinTxnFee

28. *

29. <=

30. &&

31. assert

32. txn GroupIndex

33. intc_0

34. +

35. Gtxns TypeEnum

36. pushint 6

37. ==

38. assert

39. txn GroupIndex

40. intc_0

41. +

42. Gtxns ApplicationID

43. pushint 25814147

44. ==

45. txn GroupIndex

46. intc_0

47. +

48. Gtxnsa ApplicationArgs 0

49. pushbytes 0x5698b72d

50. ==

51. &&

52. assert

53. pushbytes 0x0001

54. txn GroupIndex

55. intc_0

56. +

57. Gtxnsa Accounts 1

58. concat

59. txn GroupIndex

60. intc_0

61. +

62. Gtxnsa ApplicationArgs 1

63. concat

64. txn Receiver

65. concat

66. txn Amount

67. txn Fee

68. +

69. itob

70. concat

71. callsub sub0

2

77. sub0:

78. store 0

79. pushint 0

80. store 1

81. arg 0

82. len

83. intc_2

84. ==

85. bnz sub0_l5

4

86. sub0_l1:

87. arg 1

88. len

89. intc_2

90. ==

91. bnz sub0_l4

5

115. sub0_l5:

116. load 1

117. load 0

118. arg 0

119. pushbytes 0xedaf0656eacf72373f387b6ea1e5911a2d13ccac36d9b6dbb1f8603f9cd36544

120. ed25519verify

121. +

122. store 1

123. b sub0_l1

9

72. intc_1

73. >=

74. assert

75. intc_0

76. return

3

92. sub0_l2:

93. arg 2

94. len

95. intc_2

96. ==

97. bz sub0_l6

6

106. sub0_l4:

107. load 1

108. load 0

109. arg 1

110. pushbytes 0xd2d873f2d02b7a2ad595601c38a6e3a4b9aef43c0cb85b4404d080c6eb188113

111. ed25519verify

112. +

113. store 1

114. b sub0_l2

8

98. load 1

99. load 0

100. arg 2

101. pushbytes 0x075911b76dcde31f295c4ece724f0ca9876d0f2a6dd139b1b3f302c854dc0173

102. ed25519verify

103. +

104. store 1

105. b sub0_l6

7

124. sub0_l6:

125. load 1

126. retsub

10

logicsig.teal

	Summary
	Timeline
	Scope
	Findings

	Disclaimer
	Goals
	Scope
	Methodology
	Attack scenario analysis
	A01. Obtaining control over the escrow
	A02. Multiple claims by the same governor
	A03. Malicious transaction draining escrow through transaction fees

	Additional Findings
	B01. Delayed reward claim may be compromised
	B02. Unreachable code in compiled app_approval.teal

	Appendices

