
29.03.2021 Amp | ConsenSys Diligence

https://consensys.net/diligence/audits/2020/06/amp/ 1/31

A CONSENSYS DILIGENCE AUDIT REPORT

Amp

Date June 2020

Lead Auditor Shayan Eskandari

Co-auditors Valentin Wüstholz

1 Executive Summary
This report presents the results of our engagement with Flexa to review Amp
Token and Flexa Collateral Manager. Flexa is a payment network, using
smart contract and Amp collateral to facilitate off-chain payments.

The review was conducted over the course of two weeks, from June 9, 2020
to June 19, 2020 by Shayan Eskandari and Valentin Wüstholz. A total of 15
person-days were spent.

The review of the initial report �ixes were performed from August 10, 2020 to
August 14, 2020 by Shayan Eskandari.

2 Scope

https://pages.consensys.net/diligence-1-day-spot-check

29.03.2021 Amp | ConsenSys Diligence

https://consensys.net/diligence/audits/2020/06/amp/ 2/31

Our review focused on the commit hash 4203e96d1138632a991d072d0c232fd8ba69c9e1

for amp-contracts , and 4203e96d1138632a991d072d0c232fd8ba69c9e1 for
flexa-collateral-manager . The list of �iles in scope can be found in the Appendix.

Update: The �inal review of the initial report �ixes were done on the commit
hash aece0f6b24df6348221da548a815528a6633a20e for amp-token-contracts , and
8d421c295c2ed5d3eef12e5992d96efb8d10d2d3 for flexa-collateral-manager .

2.1 Objectives

Together with the the Flexa team, we identi�ied the following priorities for our
review:

�. Ensure that the system is implemented consistently with the intended
functionality, and without unintended edge cases.

�. Identify known vulnerabilities particular to smart contract systems, as
outlined in our Smart Contract Best Practices, and the Smart Contract
Weakness Classi�ication Registry.

The second review was mainly a check for the �ixes of the issues �iled in the
initial report. The rest of the text in this report re�lects the initial review unless
explicitly tagged as Update.

3 System Overview
The following �igure is a visualization of the actors and the overview of Flexa
Collateral Manager with Amp Token:

Many of the internal calls to view/pure functions and details regarding
partitions are removed from this chart for more readability.

https://github.com/amptoken/amp-token-contracts/commit/aece0f6b24df6348221da548a815528a6633a20e
https://github.com/flexahq/flexa-collateral-manager/commit/8d421c295c2ed5d3eef12e5992d96efb8d10d2d3
https://consensys.github.io/smart-contract-best-practices/
https://swcregistry.io/
https://consensys.net/diligence/audits/2020/06/amp/files/Flexa_overview.png

29.03.2021 Amp | ConsenSys Diligence

https://consensys.net/diligence/audits/2020/06/amp/ 3/31

The Actors and their permissions in the system are described in Security
speci�ication section.

4 Security Specification
This section describes, from a security perspective, the expected behavior
of the system under audit. It is not a substitute for documentation. The
purpose of this section is to identify speci�ic security properties that were
validated by the audit team.

4.1 Actors

The relevant actors are listed below with their respective abilities:

Flexa Collateral Manager

owner

Can change ownership

Can set and change all other actors in the system at any time

Can call all functionalities that other actors can call

Can update the delay period (time-lock) in which fallback mechanism
is activated (fallbackWithdrawalDelaySeconds)

withdrawalPublisher

Can add Merkle Root for authorized token withdrawals
Note that the root is not veri�ied and can be an invalid value.
Also the call to add root will remove the speci�ied previous
withdrawal roots in the smart contract.

Can remove any of the previously added roots in the smart contract

fallbackPublisher

Can set Fallback Merkle Root, which will update the fallback SetDate,
MaxIncludedSupplyNonce and the root itself.

Note that the root is not veri�ied and can be an invalid value.

Can reset fallback mechanism date, resulting in delay in fallback
period without publishing new root, or to deactivate the fallback
mechanism temporarily

29.03.2021 Amp | ConsenSys Diligence

https://consensys.net/diligence/audits/2020/06/amp/ 4/31

withdrawalLimitPublisher

Can modify the global withdrawal limit
Note: setting this limit to 0, disables all withdrawals and breaks
the executions (e.g. _executeWithdrawal , _executeConsumption)

The value of withdrawalLimit also is decreased after every
consumer execution

consumer

Can execute consumption (consumption transfers)
Note that consumer is trusted, as in if consumer executes a
transfer, he can spend up to withdrawalLimit which then all
withdrawals will be impossible until withdrawalLimitPublisher
modi�ies the withdrawalLimit to a number other than 0 to re-
enable withdrawals.

partitionManager

Can add & remove new partitions to the system
Removed partition will be disallowed from incoming transfers

All the above actors in this system are trusted in this system, meaning that
they could misbehave and temporarily block other functionalities of the
system, however they all can be replaced by owner as well.

Update: consumer was renamed to directTransferer to remove confusion. All
associated actions were also renamed, such as consume –> directTransfer
and so on.

Amp Token

owner

Can set partition strategy addresses, linking PartitionStrategy
contracts to speci�ic pre�ixes in the system

operator

Anyone can authorize an Operator for all their token balance or a
speci�ic partition.

29.03.2021 Amp | ConsenSys Diligence

https://consensys.net/diligence/audits/2020/06/amp/ 5/31

Can transfer from user’s balance (or the partition the operator is
authorized for)

Any token holder is also his own operator

4.2 Important Security Properties & Trust Model

In any system, it’s important to identify what trust is expected/required
between various actors. For this audit, we established the following trust
model:

Flexa (Actors in the system) are trusted, they can misbehave and update
the contract in a way that the withdrawals are blocked.

The Merkle Tree Roots published on the smart contract can be
removed/replaced by the publisher actor, making the valid withdrawals
invalid. However the premise is that the publisher will act honestly and is
part of the system.

There are some concerns about external call in Amp.Swap() regarding
reentrancy or other malicious token implementations, however as
swapToken here is previously deployed Flexa ERC20 token, we assume
the token is trusted and does not have malicious intentions.

It should be noted that ERC777 introduces the hooks that have been used
for reentrancy attack vectors in other DApps that have interacted with
the ERC777 smart contract.

Partition Strategies are set by the Amp owner and we assume they are
trusted, as there are external calls to the functions de�ined in these
contracts.

5 Issues
Each issue has an assigned severity:

Minor issues are subjective in nature. They are typically suggestions
around best practices or readability. Code maintainers should use their
own judgment as to whether to address such issues.

Medium issues are objective in nature but are not security vulnerabilities.
These should be addressed unless there is a clear reason not to.

Major issues are security vulnerabilities that may not be directly
exploitable or may require certain conditions in order to be exploited. All

29.03.2021 Amp | ConsenSys Diligence

https://consensys.net/diligence/audits/2020/06/amp/ 6/31

major issues should be addressed.

Critical issues are directly exploitable security vulnerabilities that need to
be �ixed.

5.1 Eliminate assembly code by using ABI decode Major
✓ Fixed

Resolution

All assembly code was replaced with proper use of abi.decode() .

Description

There are several locations where assembly code is used to access and
decode byte arrays (including uses inside loops). Even though assembly code
was used for gas optimization, it reduces the readability (and future
updatability) of the code.

Examples

code/amp-contracts/contracts/partitions/PartitionsBase.sol:L39-L44

assembly {
 flag := mload(add(_data, 32))
}
if (flag == CHANGE_PARTITION_FLAG) {
 assembly {
 toPartition := mload(add(_data, 64))

code/amp-contracts/contracts/partitions/PartitionsBase.sol:L43-L44

assembly {
 toPartition := mload(add(_data, 64))

Same code as above is also present here:
/flexa-collateral-manager/contracts/FlexaCollateralManager.sol#L1403
flexa-collateral-manager/contracts/FlexaCollateralManager.sol#L1407

29.03.2021 Amp | ConsenSys Diligence

https://consensys.net/diligence/audits/2020/06/amp/ 7/31

code/�lexa-collateral-
manager/contracts/FlexaCollateralManager.sol:L1463-L1470

for (uint256 i = 116; i <= _operatorData.length; i = i + 32) {
 bytes32 temp;
 assembly {
 temp := mload(add(_operatorData, i))
 }
 proof[index] = temp;
 index++;
}

Recommendation

As discussed in the mid-audit meeting, it is a good solution to use ABI
decode since all uses of assembly simply access 32-byte chunks of data from
user input. This should eliminate all assembly code and make the code
signi�icantly more clean. In addition, it might allow for more compact
encoding in some cases (for instance, by eliminating or reducing the size of
the �lags).

This suggestion can be also applied to Merkle Root veri�ications/calculation
code, which can reduce the for loops and complexity of these functions.

5.2 Ignored return value for transferFrom call Major ✓ Fixed

Resolution

Fixed by adding a require to validate the success/failure of transferFrom()

.

Description

When burning swap tokens the return value of the transferFrom call is ignored.
Depending on the token’s implementation this could allow an attacker to mint
an arbitrary amount of Amp tokens.

Note that the severity of this issue could have been Critical if Flexa token was
any arbitrarily tokens. We quickly veri�ied that Flexa token implementation

https://etherscan.io/address/0x4a57e687b9126435a9b19e4a802113e266adebde#code

29.03.2021 Amp | ConsenSys Diligence

https://consensys.net/diligence/audits/2020/06/amp/ 8/31

would revert if the amount exceeds the allowance, however it might not be
the case for other token implementations.

code/amp-contracts/contracts/Amp.sol:L619-L620

swapToken.transferFrom(_from, swapTokenGraveyard, amount);

Recommendation

The code should be changed like this:

require(swapToken.transferFrom(_from, swapTokenGraveyard, amount));

5.3 No integration tests for the two main components Medium

✓ Fixed

Resolution

amp-contracts added as a submodule to collateral-manager and
full integration tests added

It is recommended to write test suites that achieve high code coverage
to prevent missing obvious bugs that tests could cover.

Description

The existing tests cover each of the two main components and each set of
tests mocks the other component. While this is good for unit testing some
issues might be missed without proper system/integration tests that cover all
components.

Recommendation

Consider adding system/integration tests for all components. As we’ve seen
in the recent issues in multi-contract smart contract systems, it’s becoming
more crucial to have a full test suits for future changes to the code base. Not

29.03.2021 Amp | ConsenSys Diligence

https://consensys.net/diligence/audits/2020/06/amp/ 9/31

having inter-component tests, could result in issues in the next development
and deployment cycles.

5.4 Potentially insufficient validation for operator transfers
Medium ✓ Fixed

Resolution

removing operatorTransferByPartition and simplifying the interfaces to only
tranferByPartition

This removes the existing tranferByPartition, converting
operatorTransferByPartition to it. The reason for this is to make
the client interface simpler, where there is one method to
transfer by partition, and that method can be called by either a
sender wanting to transfer from their own address, or an
operator wanting to transfer from a different token holder
address. We found that it was redundant to have multiple
methods, and the client convenience wasn’t worth the
confusion.

Description

For operator transfers, the current validation does not require the sender to
be an operator (as long as the transferred value does not exceed the
allowance):

code/amp-contracts/contracts/Amp.sol:L755-L759

require(
 _isOperatorForPartition(_partition, msg.sender, _from) ||
 (_value <= _allowedByPartition[_partition][_from][msg.sender]),
 EC_53_INSUFFICIENT_ALLOWANCE
);

It is unclear if this is the intention or whether the logical or should be a
logical and .

29.03.2021 Amp | ConsenSys Diligence

https://consensys.net/diligence/audits/2020/06/amp/ 10/31

Recommendation

Con�irm that the code matches the intention. If so, consider documenting
the behavior (for instance, by changing the name of function
operatorTransferByPartition .

5.5 Potentially missing nonce check Medium Acknowledged

Resolution

Nothing was done here, as Dave M writes:

The �irst two are working as intended, and the third does check
that the value is monotonically increasing.

Description

When executing withdrawals in the collateral manager the per-address
withdrawal nonce is simply updated without checking that the new nonce is
one greater than the previous one (see Examples). It seems like without such
a check it might be easy to make mistakes and causing issues with ordering
of withdrawals.

Examples

code/�lexa-collateral-
manager/contracts/FlexaCollateralManager.sol:L663-L664

addressToWithdrawalNonce[_partition][supplier] = withdrawalRootNonce;

code/�lexa-collateral-
manager/contracts/FlexaCollateralManager.sol:L845-L846

addressToWithdrawalNonce[_partition][supplier] = maxWithdrawalRootNonce;

29.03.2021 Amp | ConsenSys Diligence

https://consensys.net/diligence/audits/2020/06/amp/ 11/31

code/�lexa-collateral-
manager/contracts/FlexaCollateralManager.sol:L1155-L1156

maxWithdrawalRootNonce = _nonce;

Recommendation

Consider adding more validation and sanity checks for nonces on per-
address withdrawals.

5.6 Unbounded loop when validating Merkle proofs Medium
✓ Fixed

Resolution

The loop was removed by switching to abi.decode .

Description

It seems like the loop for validating Merkle proofs is unbounded. If possible it
would be good to have an upper bound to prevent DoS-like attacks. It seems
like the depth of the tree, and thus, the length of the proof could be
bounded.

This could also simplify the decoding and make it more robust. For instance,
in _decodeWithdrawalOperatorData it is unclear what happens if the data length is
not a multiple of 32. It seems like it might result in out-of-bound reads.

code/�lexa-collateral-
manager/contracts/FlexaCollateralManager.sol:L1460-L1470

29.03.2021 Amp | ConsenSys Diligence

https://consensys.net/diligence/audits/2020/06/amp/ 12/31

uint256 proofNb = (_operatorData.length - 84) / 32;
bytes32[] memory proof = new bytes32[](proofNb);
uint256 index = 0;
for (uint256 i = 116; i <= _operatorData.length; i = i + 32) {
 bytes32 temp;
 assembly {
 temp := mload(add(_operatorData, i))
 }
 proof[index] = temp;
 index++;
}

Recommendation

Consider enforcing a bound on the length of Merkle proofs.

Also note that if similar mitigation method as issue 5.1 is used, this method
can be replaced by a simpler function using ABI Decode, which does not
have any unbounded issues as the sizes of the hashes are �ixed (or can be
indicated in the passed objects)

5.7 Mitigation for possible reentrancy in token transfers
Medium ✓ Fixed

Resolution

Fixed as recommended.

Description

ERC777 adds signi�icant features to the token implementation, however there
are some known risks associated with this token, such as possible reentrancy
attack vector. Given that the Amp token uses hooks to communicate to
Collateral manager, it seems that the environment is trusted and safe.
However, a minor modi�ication to the implementation can result in safer
implementation of the token transfer.

Examples

In Amp.sol --> _transferByPartition()

https://medium.com/consensys-diligence/uniswap-audit-b90335ac007

29.03.2021 Amp | ConsenSys Diligence

https://consensys.net/diligence/audits/2020/06/amp/ 13/31

code/amp-contracts/contracts/Amp.sol:L1152-L1177

require(
 _balanceOfByPartition[_from][_fromPartition] >= _value,
 EC_52_INSUFFICIENT_BALANCE
);

bytes32 toPartition = _fromPartition;
if (_data.length >= 64) {
 toPartition = _getDestinationPartition(_fromPartition, _data);
}

_callPreTransferHooks(
 _fromPartition,
 _operator,
 _from,
 _to,
 _value,
 _data,
 _operatorData
);

_removeTokenFromPartition(_from, _fromPartition, _value);
_transfer(_from, _to, _value);
_addTokenToPartition(_to, toPartition, _value);

_callPostTransferHooks(
 toPartition,

Recommendation

It is suggested to move any condition check that is checking the balance to
after the external call. However _callPostTransferHooks needs to be called after
the state changes, so the suggested mitigation here is to move the require at
line 1152 to after _callPreTransferHooks() function (e.g. line 1171).

5.8 Potentially inconsistent input validation Medium ✓ Fixed

Resolution

transferWithData was removed as a resolution of another �iled issue, the
rest are documented properly.

29.03.2021 Amp | ConsenSys Diligence

https://consensys.net/diligence/audits/2020/06/amp/ 14/31

The msg.sender cannot be authorized or revoked from being an
operator for itself. This should also be clear from the natspec
comments now.

Description

There are some functions that might require additional input validation
(similar to other functions):

Examples

Amp.transferWithData :
require(_isOperator(msg.sender, _from), EC_58_INVALID_OPERATOR); like in

code/amp-contracts/contracts/Amp.sol:L699

require(_isOperator(msg.sender, _from), EC_58_INVALID_OPERATOR);

Amp.authorizeOperatorByPartition : require(_operator != msg.sender); like in

code/amp-contracts/contracts/Amp.sol:L789

require(_operator != msg.sender);

Amp.revokeOperatorByPartition : require(_operator != msg.sender); like in

code/amp-contracts/contracts/Amp.sol:L800

require(_operator != msg.sender);

Recommendation

Consider adding additional input validation.

5.9 ERC20 compatibility of Amp token using
defaultPartition Medium ✓ Fixed

29.03.2021 Amp | ConsenSys Diligence

https://consensys.net/diligence/audits/2020/06/amp/ 15/31

Resolution

This �ix resulted in signi�icant changes to the token allowance work �low.
The new implementation of balanceOf represents the total balance of
tokens at that address (across any partition), instead of only default
partition.

The approve + allowance based operations were using a
distinct global allowance mapping, while the rest of the ERC20
compat operations were using the partition state mappings
with the default partition. This makes the allowance operations
behave the same as the balance based operations.

Description

It is somewhat unclear how the Amp token ensures ERC20 compatibility.
While the default partition is used in some places (for instance, in function
balanceOf) there are also separate �ields for (aggregated)

balances/allowances. This seems to introduce some redundancy and raises
certain questions about when which �ields are relevant.

Examples

_allowed is used in function allowance instead of _allowedByPartition with
the default partition

An Approval event should be emitted when approving the default
partition

code/amp-contracts/contracts/Amp.sol:L1494

emit ApprovalByPartition(_partition, _tokenHolder, _spender, _amount);

increaseAllowance() vs. increaseAllowanceByPartition()

Recommendation

29.03.2021 Amp | ConsenSys Diligence

https://consensys.net/diligence/audits/2020/06/amp/ 16/31

After the mid-audit discussion, it was clear that the general balanceOf method
(with no partition) is not needed and can be replaced with a balanceOf

function that returns balance of the default partition, similarly for allowance,
the general increaseAllowance function can simply call
increaseAllowanceByPartition using default partition (same for

decreaseAllowance).

5.10 Duplicate code better be moved to shared library Minor
✓ Fixed

Resolution

aforementioned functions were moved to a shared library
PartitionUtils.sol , which also �ixed the inconsistency in function

implementations.

Description

There are some functionalities that the code is duplicated between different
smart contracts.

Examples

_getDestinationPartition() is present in both PartitionBase.sol and
FlexaCollateralManager.sol

Note that in PartitionBase the usage results in dead code in the
contract.

code/amp-contracts/contracts/Amp.sol:L1158-L1160

if (_data.length >= 64) {
 toPartition = _getDestinationPartition(_fromPartition, _data);
}

code/amp-contracts/contracts/partitions/PartitionsBase.sol:L33-L36

29.03.2021 Amp | ConsenSys Diligence

https://consensys.net/diligence/audits/2020/06/amp/ 17/31

toPartition = _fromPartition;
if (_data.length < 64) {
 return toPartition;
}

_splitPartition() is present in FlexaCollateralManager.sol , PartitionBase.sol

with slightly different implementations. One has an extra return value for
subPartition which is not used in the code under audit

Recommendation

Use a shared library for these functions, possibly ParitionBased.sol can be
used in Collateral Manager.

5.11 Additional validation for canReceive Minor ✓ Fixed

Resolution

Added proper checks and merged _canReceive() with canReceive() .

Description

For FlexaCollateralManager.tokensReceived there is validation to ensure that only
the Amp calls the function. In contrast, there is no such validation for
canReceive and it is unclear if this is the intention.

Examples

code/�lexa-collateral-
manager/contracts/FlexaCollateralManager.sol:L492-L493

require(msg.sender == amp, "Invalid sender");

Recommendation

Consider adding a conjunct msg.sender == amp in function _canReceive .

29.03.2021 Amp | ConsenSys Diligence

https://consensys.net/diligence/audits/2020/06/amp/ 18/31

code/�lexa-collateral-
manager/contracts/FlexaCollateralManager.sol:L468-L470

5.12 Update to Solidity 0.6.10 Minor ✓ Fixed

Resolution

Updated to 0.6.10 .

Description

Due to an issue found in 0.6.9, it is recommended to update the compiler
version to latest version 0.6.10.

5.13 Discrepancy between code and comments Minor ✓ Fixed

Description

There are some discrepancies between (uncommented) code and the
documentations comment:

Examples

code/amp-contracts/contracts/Amp.sol:L459-L462

// Indicate token verifies Amp, ERC777 and ERC20 interfaces
ERC1820Implementer._setInterface(AMP_INTERFACE_NAME);
ERC1820Implementer._setInterface(ERC20_INTERFACE_NAME);
// ERC1820Implementer._setInterface(ERC777_INTERFACE_NAME);

code/�lexa-collateral-
manager/contracts/FlexaCollateralManager.sol:L268-L279

function _canReceive(address _to, bytes32 _destinationPartition) internal vi
 return _to == address(this) && partitions[_destinationPartition];
}

https://solidity.ethereum.org/2020/06/11/solidity-0610-release-announcement/

29.03.2021 Amp | ConsenSys Diligence

https://consensys.net/diligence/audits/2020/06/amp/ 19/31

/**
 * @notice Indicates a supply refund was executed
 * @param supplier Address whose refund authorization was executed
 * @param partition Partition from which the tokens were transferred
 * @param amount Amount of tokens transferred
 */
event SupplyRefund(
 address indexed supplier,
 bytes32 indexed partition,
 uint256 amount,
 uint256 indexed nonce
);

Recommendation

Consider updating either the code or the comment.

5.14 Several fields could potentially be private Minor
 Acknowledged

Resolution

Comment from Flexa team:

We audited the suggested �ields, and determined that we
would like them to be public for transparency and/or
functionality reasons.

Description

Several �ields in Amp could possibly be private:

Examples

swapToken :

code/amp-contracts/contracts/Amp.sol:L261

ISwapToken public swapToken;

29.03.2021 Amp | ConsenSys Diligence

https://consensys.net/diligence/audits/2020/06/amp/ 20/31

swapTokenGraveyard :

code/amp-contracts/contracts/Amp.sol:L268

collateralManagers :

code/amp-contracts/contracts/Amp.sol:L236

address[] public collateralManagers;

partitionStrategies :

code/amp-contracts/contracts/Amp.sol:L248

bytes4[] public partitionStrategies;

The same hold for several �ields in FlexaCollateralManager . For instance:

partitions :

code/�lexa-collateral-manager/contracts/FlexaCollateralManager.sol:L78

mapping(bytes32 => bool) public partitions;

nonceToSupply :

code/�lexa-collateral-manager/contracts/FlexaCollateralManager.sol:L144

mapping(uint256 => Supply) public nonceToSupply;

withdrawalRootToNonce :

code/�lexa-collateral-manager/contracts/FlexaCollateralManager.sol:L163

mapping(bytes32 => uint256) public withdrawalRootToNonce;

address public constant swapTokenGraveyard = 0x00000000000000000000000000000

29.03.2021 Amp | ConsenSys Diligence

https://consensys.net/diligence/audits/2020/06/amp/ 21/31

Recommendation

Double-check that you really want to expose those �ields.

5.15 Several fields could be declared immutable Minor
 Acknowledged

Resolution

Comment from Flexa team:

We tried to add this, but found that it made validating the
contract on Etherscan impossible. We have added comments
to a reader of the contract indicating the �ields are immutable
after deployment, though.

Description

Several �ields could be declared immutable to make clear that they never
change after construction:

Examples

Amp._name :

code/amp-contracts/contracts/Amp.sol:L129

string internal _name;

Amp._symbol :

code/amp-contracts/contracts/Amp.sol:L134

string internal _symbol;

29.03.2021 Amp | ConsenSys Diligence

https://consensys.net/diligence/audits/2020/06/amp/ 22/31

Amp.swapToken :

code/amp-contracts/contracts/Amp.sol:L261

ISwapToken public swapToken;

FlexaCollateralManager.amp :

code/�lexa-collateral-manager/contracts/FlexaCollateralManager.sol:L73

address public amp;

Recommendation

Use the immutable annotation in Solidity (see Immutable).

Appendix 1 - Artifacts
This section contains some of the artifacts generated during our review by
automated tools, the test suite, etc. If any issues or recommendations were
identi�ied by the output presented here, they have been addressed in the
appropriate section above.

A.1.1 Harvey

As part of the audit, we performed several fuzzing campaigns using Harvey,
our in-house greybox fuzzer for smart contracts, to check 8 custom
properties. In order to fuzz the entire contract system, we used Flexa’s
existing deployment scripts to set up an initial state for the fuzzer containing
the following contracts:

Amp

FlexaCollateralManager

ERC1820Registry

MockFXC

HolderCollateralPartitionValidator

CollateralPoolPartitionValidator

https://solidity.readthedocs.io/en/latest/contracts.html#immutable
https://arxiv.org/pdf/1905.06944.pdf

29.03.2021 Amp | ConsenSys Diligence

https://consensys.net/diligence/audits/2020/06/amp/ 23/31

We extended the deployment scripts to distribute MockFXC tokens to several
known users such that they could interact with the system after approving
the Amp contract. We also made a small number of changes to the code to
improve the effectiveness of the fuzzer. Our �inal 24-hour fuzzing campaign
was able to detect 3 property violations that were reviewed as part of the
audit.

Note that—to support the auditor—several properties check if certain (not
necessarily bad/dangerous) states are feasible and violations do not
necessarily indicate issues with the code.

The graphs below provide an indication of the instruction and basic block
transition coverage achieved by Harvey over time. After 24 hours, Harvey
achieved the following coverage:

EVM instruction coverage: 28090

Path coverage: 7747

EVM basic block transition coverage: 1904

A.1.2 Tests Coverage

https://consensys.net/diligence/audits/2020/06/amp/files/flexa-bbt-cov-plot-output.png

29.03.2021 Amp | ConsenSys Diligence

https://consensys.net/diligence/audits/2020/06/amp/ 24/31

Below is the coverage output generated by running the test suite:

File % Stmts % Branch % Funcs % Lines
Unc

d L

contracts/ 99.44 90.79 100 99.44

Amp.sol 99.44 90.79 100 99.44 1571

contracts/
codes/

100 100 100 100

ErrorCode
s.sol

100 100 100 100

contracts/
erc1820/

88.89 100 80 88.89

ERC1820Cl
ient.sol

80 100 66.67 80 53

ERC1820I
mplement
er.sol

100 100 100 100

https://consensys.net/diligence/audits/2020/06/amp/files/flexa-instr-cov-plot-output.png

29.03.2021 Amp | ConsenSys Diligence

https://consensys.net/diligence/audits/2020/06/amp/ 25/31

File % Stmts % Branch % Funcs % Lines
Unc

d L

contracts/
extensions
/

100 100 100 100

IAmpToke
nsRecipien
t.sol

100 100 100 100

IAmpToke
nsSender.s
ol

100 100 100 100

contracts/
mocks/

88.33 78.26 82.86 88.98

ExampleC
ollateralMa
nager.sol

89.02 71.88 87.5 89.53
…
305,3
10

MockAmp
TokensRec
ipient.sol

85.71 100 75 87.5 29

MockAmp
TokensSen
der.sol

85.71 100 75 87.5 29

MockColla
teralPool.s
ol

84.21 83.33 66.67 85 58,71

MockERC2
0Interacto
r.sol

100 100 100 100

MockFXC.s
ol

100 100 100 100

29.03.2021 Amp | ConsenSys Diligence

https://consensys.net/diligence/audits/2020/06/amp/ 26/31

File % Stmts % Branch % Funcs % Lines
Unc

d L

MockPartit
ionBase.so
l

100 100 100 100

contracts/
partitions/

95 75 86.67 95.24

AmpPartiti
onStrateg
yValidator
Base.sol

80 100 50 80 88

CollateralP
oolPartitio
nValidator.
sol

100 80 100 100

HolderColl
ateralPartit
ionValidat
or.sol

100 71.43 100 100

IAmpPartit
ionStrateg
yValidator.
sol

100 100 100 100

PartitionsB
ase.sol

90.91 75 100 92.31 35

All �iles 94.83 84.21 91.67 94.96

File % Stmts % Branch % Funcs % Lines
Unc

d L

contracts/ 88.78 83.65 89.13 89.22

FlexaCollat
eralManag
er.sol

88.78 83.65 89.13 89.22
…
51,95
8

29.03.2021 Amp | ConsenSys Diligence

https://consensys.net/diligence/audits/2020/06/amp/ 27/31

It’s important to note that “100% test coverage” is not a silver bullet. Our
review also included a inspection of the test suite to ensure that testing
included important edge cases.

Appendix 2 - Files in Scope
This audit covered the following �iles:

File SHA-1 hash

�lexa-collateral-
manager/contracts/FlexaCollateralManag
er.sol

416586f57559b9c673ebde0
6121f314d9f781c42

File % Stmts % Branch % Funcs % Lines
Unc

d L

contracts/
amp/

50 100 60 50

IAmp.sol 100 100 100 100

IAmpToke
nsRecipien
t.sol

100 100 100 100

IAmpToke
nsSender.s
ol

100 100 100 100

MockAmp.
sol

50 100 60 50 23,25

contracts/
erc1820/

100 100 100 100

ERC1820Cl
ient.sol

100 100 100 100

All �iles 87.38 83.65 86.54 87.85

29.03.2021 Amp | ConsenSys Diligence

https://consensys.net/diligence/audits/2020/06/amp/ 28/31

File SHA-1 hash

�lexa-collateral-
manager/contracts/amp/IAmp.sol

cf5b55544a4aa60e86461e5f
59b067218e1b5e1f

�lexa-collateral-
manager/contracts/amp/IAmpTokensReci
pient.sol

bc6989130031ab842d44b0
7�b4869631743f86f8

�lexa-collateral-
manager/contracts/amp/IAmpTokensSen
der.sol

87c1435d51�bb6ab35a63ad
b7f9d89432edfe724

�lexa-collateral-
manager/contracts/erc1820/ERC1820Clie
nt.sol

0e�b9dca16afe6da2b8b4b2
5408b985e1ef289b0

amp-contracts/contracts/Amp.sol
d7c402dcd�b9edf88d7cec7
39932d1f6c2259437

�lexa-collateral-
manager/contracts/FlexaCollateralManag
er.sol

416586f57559b9c673ebde0
6121f314d9f781c42

�lexa-collateral-
manager/contracts/amp/IAmp.sol

cf5b55544a4aa60e86461e5f
59b067218e1b5e1f

�lexa-collateral-
manager/contracts/amp/IAmpTokensReci
pient.sol

bc6989130031ab842d44b0
7�b4869631743f86f8

�lexa-collateral-
manager/contracts/amp/IAmpTokensSen
der.sol

87c1435d51�bb6ab35a63ad
b7f9d89432edfe724

�lexa-collateral-
manager/contracts/erc1820/ERC1820Clie
nt.sol

0e�b9dca16afe6da2b8b4b2
5408b985e1ef289b0

amp-
contracts/contracts/erc1820/ERC1820Clie
nt.sol

e99262a96ee7e3d055055c
fffe4168e8497ce2b0

29.03.2021 Amp | ConsenSys Diligence

https://consensys.net/diligence/audits/2020/06/amp/ 29/31

File SHA-1 hash

amp-
contracts/contracts/erc1820/ERC1820Imp
lementer.sol

b82a2caee3db82521bcf3d8
4412441db9d1c139a

amp-
contracts/contracts/partitions/IAmpPartiti
onStrategyValidator.sol

6e55bfed60d5175b9adef6aa
a33822c3c078ee93

amp-
contracts/contracts/partitions/PartitionsB
ase.sol

12b764eac1f6f5059d201a08
a049c03989127538

amp-
contracts/contracts/codes/ErrorCodes.so
l

f6e6c7dcc9dff16ec98086ab
82684650cc886100

Appendix 3 - Disclosure
ConsenSys Diligence (“CD”) typically receives compensation from one or
more clients (the “Clients”) for performing the analysis contained in these
reports (the “Reports”). The Reports may be distributed through other means,
including via ConsenSys publications and other distributions.

The Reports are not an endorsement or indictment of any particular project
or team, and the Reports do not guarantee the security of any particular
project. This Report does not consider, and should not be interpreted as
considering or having any bearing on, the potential economics of a token,
token sale or any other product, service or other asset. Cryptographic tokens
are emergent technologies and carry with them high levels of technical risk
and uncertainty. No Report provides any warranty or representation to any
Third-Party in any respect, including regarding the bugfree nature of code,
the business model or proprietors of any such business model, and the legal
compliance of any such business. No third party should rely on the Reports in
any way, including for the purpose of making any decisions to buy or sell any
token, product, service or other asset. Speci�ically, for the avoidance of
doubt, this Report does not constitute investment advice, is not intended to
be relied upon as investment advice, is not an endorsement of this project or

29.03.2021 Amp | ConsenSys Diligence

https://consensys.net/diligence/audits/2020/06/amp/ 30/31

team, and it is not a guarantee as to the absolute security of the project. CD
owes no duty to any Third-Party by virtue of publishing these Reports.

PURPOSE OF REPORTS The Reports and the analysis described therein are
created solely for Clients and published with their consent. The scope of our
review is limited to a review of Solidity code and only the Solidity code we
note as being within the scope of our review within this report. The Solidity
language itself remains under development and is subject to unknown risks
and �laws. The review does not extend to the compiler layer, or any other
areas beyond Solidity that could present security risks. Cryptographic tokens
are emergent technologies and carry with them high levels of technical risk
and uncertainty.

CD makes the Reports available to parties other than the Clients (i.e., “third
parties”) – on its website. CD hopes that by making these analyses publicly
available, it can help the blockchain ecosystem develop technical best
practices in this rapidly evolving area of innovation.

LINKS TO OTHER WEB SITES FROM THIS WEB SITE You may, through
hypertext or other computer links, gain access to web sites operated by
persons other than ConsenSys and CD. Such hyperlinks are provided for your
reference and convenience only, and are the exclusive responsibility of such
web sites’ owners. You agree that ConsenSys and CD are not responsible for
the content or operation of such Web sites, and that ConsenSys and CD shall
have no liability to you or any other person or entity for the use of third party
Web sites. Except as described below, a hyperlink from this web Site to
another web site does not imply or mean that ConsenSys and CD endorses
the content on that Web site or the operator or operations of that site. You
are solely responsible for determining the extent to which you may use any
content at any other web sites to which you link from the Reports. ConsenSys
and CD assumes no responsibility for the use of third party software on the
Web Site and shall have no liability whatsoever to any person or entity for the
accuracy or completeness of any outcome generated by such software.

TIMELINESS OF CONTENT The content contained in the Reports is current as
of the date appearing on the Report and is subject to change without notice.
Unless indicated otherwise, by ConsenSys and CD.

