
29.03.2021 AragonBlack Fundraising | ConsenSys Diligence

https://consensys.net/diligence/audits/2019/11/aragonblack-fundraising/ 1/73

A CONSENSYS DILIGENCE AUDIT REPORT

AragonBlack Fundraising

Date November 2019

Lead Auditor Martin Ortner

Co-auditors Sergii Kravchenko

1 Summary
ConsenSys Diligence conducted a security audit on Aragon Fundraising,
previously known as Apiary, an application based on the AragonOS
framework to facilitate emergent organizations to conduct (bonding curve)
fundraising campaigns and provides accountability throughout the lifecycle
of a project.

Project Name: AragonBlack Fundraising

Client Name: Aragon Black & The Aragon Association

Client Contact: Olivier Sarrouy (@osarrouy), Louis Giraux (@LouisGrx)

Lead Auditor: Martin Ortner (@tintinweb)

Co-auditors: Sergii Kravchenko

Date: 25 Nov 2019

Commit Hash: #5ad1332

https://pages.consensys.net/diligence-1-day-spot-check

29.03.2021 AragonBlack Fundraising | ConsenSys Diligence

https://consensys.net/diligence/audits/2019/11/aragonblack-fundraising/ 2/73

Repository: github/AragonBlack/fundraising

2 Audit Scope
This audit covered the following �iles:

File Name SHA-1 Hash

apps/aragon-
fundraising/contracts/AragonFundraisingC
ontroller.sol

aa3a996f66d715dc7a17ca9
adb�bbb9035d70a5d

apps/batched-bancor-market-
maker/contracts/BatchedBancorMarketMak
er.sol

ecdbb49b0d2e0c643287e
8d88106e71a866de6b2

apps/presale/contracts/Presale.sol
6210d6ec917ff7d152b5459
9130cfcf09892e1cd

apps/tap/contracts/Tap.sol
0b97e2d2439da8b04a446
5aa0726f5cd8cc9cae4

templates/multisig/contracts/FundraisingM
ultisigTemplate.sol

910556ecee995901e65eab
96a3c96c7b38bf602c

The audit also includes the interaction with relevant parts of the AragonOS
Framework (Kernel, ACL and Core DAO components used, as well as, Aragon
Applications Vault , TokenManager , Voting , Finance , Agent).

Besides contracts that mock functionality or are solely used for testing
purposes it was agreed that the following components are out of scope:

File Name SHA-1 Hash

apps/bancor-
formula/contracts/BancorFormula.sol

5f492a5d99549ae3ed72eabc1
231452e1c59c94e

apps/bancor-
formula/contracts/interfaces/IBancorFo
rmula.sol

7712ea788fd71e6dd39db7993
3ba5c9d17e90528

https://github.com/AragonBlack/fundraising/tree/5ad1332955bab9d36cfad345ae92b7ad7dc0bdbe

29.03.2021 AragonBlack Fundraising | ConsenSys Diligence

https://consensys.net/diligence/audits/2019/11/aragonblack-fundraising/ 3/73

File Name SHA-1 Hash

apps/bancor-
formula/contracts/utility/SafeMath.sol

8f4d141d30ff49230f90ca8fe11
90905cbe9f218

apps/bancor-
formula/contracts/utility/Utils.sol

ae9fca6a54fa1a7287e1013cd2e
881456bb2f097

It was also veri�ied that the logic of the 3rd party components were left
unchanged (Reference: BancorFormula.sol, IBancorFormula.sol,
SafeMath.sol, Utils.sol). The system uses BancorFormula v0.3 while the newer
version BancorFormula v4 is already available.

The system implements a granular role-based permission model. While
permissions can be assigned to any entity, the audit assumes the trust model
established with the set of permissions described with the provided
FundraisingMultisigTemplate.sol .

2.1 Documentation

The following documentation was available to the audit team:

Introduction: Aragon Fundraising

Aragon Documentation

Inline Code Documentation and Comments

The audit team evaluated that the system is secure, resilient, and working
according to its speci�ications. The audit activities can be grouped into the
following three broad categories:

�. Security: Identifying security related issues within the contract.

�. Architecture: Evaluating the system architecture through the lens of
established smart contract best practices.

�. Code quality: A full review of the contract source code. The primary
areas of focus include:

Correctness

Readability

Scalability

Code complexity

Quality of test coverage

https://github.com/bancorprotocol/contracts/blob/d7fec7ca44d68442c8a5ae4d9325b11b6249490f/solidity/contracts/converter/BancorFormula.sol
https://github.com/bancorprotocol/contracts/blob/d7fec7ca44d68442c8a5ae4d9325b11b6249490f/solidity/contracts/converter/interfaces/IBancorFormula.sol
https://github.com/bancorprotocol/contracts/blob/d7fec7ca44d68442c8a5ae4d9325b11b6249490f/solidity/contracts/utility/SafeMath.sol
https://github.com/bancorprotocol/contracts/blob/d7fec7ca44d68442c8a5ae4d9325b11b6249490f/solidity/contracts/utility/Utils.sol
https://github.com/bancorprotocol/contracts/blob/d7fec7ca44d68442c8a5ae4d9325b11b6249490f/solidity/contracts/converter/BancorFormula.sol
https://github.com/bancorprotocol/contracts/blob/f597dca99823991082407c470bcf176efc611574/solidity/contracts/converter/BancorFormula.sol
https://blog.aragon.org/introducing-aragon-fundraising/
https://hack.aragon.org/

29.03.2021 AragonBlack Fundraising | ConsenSys Diligence

https://consensys.net/diligence/audits/2019/11/aragonblack-fundraising/ 4/73

3 System Overview
AragonBlack Fundraising is an Aragon Application that implements a
fundraising system capable of accepting multiple ERC20 compliant tokens or
ETH as collateral. Individuals can participate in a fundraising campaign by

contributing to a presale phase or by trading collateral for bonding token.
Owning bonding token (Shareholder Token) gives individuals voting power in
the DAO Shareholder Voting Application but DAO Shareholder can only vote
on Board member proposals, they cannot create votings themselves. The
bonding token market is governed by a BancorFormula based bonding curve
market maker. Buy and sell orders have fees attached that are transferred to a
beneficiary in the system. Bonding tokens can be sold at any time.

Raised collateral is transferred to the fundraising Reserve where it can later be
withdrawn by the Board/Project Team. Withdrawal by Board members/the
Project Team is controlled by a Tap contract that limits the number of tokens
that can be withdrawn for each whitelisted collateral per time unit. The tap is
a control mechanism and incentive for the project team to continuously
delivery project milestones in return for funding. The monthly tap amount the
Project Team can withdraw is controlled by the Shareholders via the monthly
tap increase rate.

The fundraising application is built from �ive individual Aragon Applications
that are described in more detail in the next sections.

AragonFundraisingController

Presale

BatchedBancorMarketMaker and BancorFormula

Tap

Reserve

The system requires and interacts with the following Aragon default
applications: Voting , Finance , TokenManage , Vault , Agent .

3.1 Detailed Design

This section describes the top-level contracts, their inheritance structure,
actors, permissions and contract interactions.

https://github.com/aragon/aragon-apps/

29.03.2021 AragonBlack Fundraising | ConsenSys Diligence

https://consensys.net/diligence/audits/2019/11/aragonblack-fundraising/ 5/73

Inheritance Structure

Inheritance graph of the AragonBlack Fundraising Contracts (dot)

Call Graph

Call graph of the AragonBlack Fundraising Contracts (dot)

Components

The following graphic depicts the main contracts and their interfaces, actors
and high-level interactions with the fundraising application. Aragon default
Applications like Vault , Agent , and TokenManager have been left out for
simpli�ication. Actors were based on the FundraisingMultisigTemplate which
operates in a company-board like DAO scenario with Board members (every
member has the same voting power; tokens are not transferable) and
Shareholders (voting power per account not limited; token transferable). Most

of the contracts state-changing functionality is authenticated. However,
contributing, buying or selling collaterals and token in the system is
unrestricted. Anyone can participate in the fundraising without and there is
no functionality to whitelist approved accounts. The main point of interaction
is the AragonFundraisingController which serves as a stable API to the system.
Potential investors interact with this contract to deposit collateral in return
for stake in the DAO as a Shareholder (NewTokenHolder). All decisions are
steered by the Board and Board members can reach consensus to appoint

https://consensys.net/diligence/audits/2019/11/aragonblack-fundraising/surya/surya_inheritance_apps.dot.png
https://consensys.net/diligence/audits/2019/11/aragonblack-fundraising/surya/surya_inheritance_apps.dot
https://consensys.net/diligence/audits/2019/11/aragonblack-fundraising/surya/surya_graph_apps.dot.png
https://consensys.net/diligence/audits/2019/11/aragonblack-fundraising/surya/surya_graph_apps.dot

29.03.2021 AragonBlack Fundraising | ConsenSys Diligence

https://consensys.net/diligence/audits/2019/11/aragonblack-fundraising/ 6/73

other users as new Board members. Most of the decisions and especially the
critical ones (Kernel, ACL, …) require approval by Shareholders. Shareholders
cannot create votes themselves and require at least one Board member to
create a vote. This also means that if the Board turns rogue, Shareholders
need at least one honest Board member to propose countermeasures they
can vote on. Some components specify a bene�iciary that receives token
from the presale, fees from token exchange in the market maker and tapped
funds from the fundraising campaigns vault. The bene�iciary can be the DAO
Board members Vault (as speci�ied in the FundraisingMultisigTemplate).
Shareholders do not have access to this vault. Fundraising collaterals are
stored in a Reserve, which is a default Aragon Agent application (Agent is a
Vault). Market making is done via the BancorFormula in BatchedBancorMarketMaker .

Please refer to section 5 - Security Speci�ication for a security-centric view on
the system.

AragonFundraisingController

EtherTokenConstant
IsContract
IAragonFundraisingController
AragonApp

📚SafeERC20 for ERC20
📚SafeMath for uint256

bytes32 UPDATE_BENEFICIARY_ROLE
bytes32 UPDATE_FEES_ROLE
bytes32 ADD_COLLATERAL_TOKEN_ROLE
bytes32 REMOVE_COLLATERAL_TOKEN_ROLE
bytes32 UPDATE_COLLATERAL_TOKEN_ROLE
bytes32 UPDATE_MAXIMUM_TAP_RATE_INCREASE_PCT_ROLE
bytes32 UPDATE_MAXIMUM_TAP_FLOOR_DECREASE_PCT_ROLE
bytes32 ADD_TOKEN_TAP_ROLE
bytes32 UPDATE_TOKEN_TAP_ROLE
bytes32 OPEN_PRESALE_ROLE
bytes32 OPEN_TRADING_ROLE
bytes32 CONTRIBUTE_ROLE
bytes32 OPEN_BUY_ORDER_ROLE
bytes32 OPEN_SELL_ORDER_ROLE
bytes32 WITHDRAW_ROLE
uint256 TO_RESET_CAP
string ERROR_CONTRACT_IS_EOA
string ERROR_INVALID_TOKENS
Presale presale
BatchedBancorMarketMaker marketMaker
Agent reserve
Tap tap
address toReset

initialize()
updateBeneficiary()
updateFees()
openPresale()
closePresale()
💰contribute()
refund()
openTrading()
💰openBuyOrder()
openSellOrder()
claimBuyOrder()
claimSellOrder()
addCollateralToken()
reAddCollateralToken()
removeCollateralToken()
updateCollateralToken()
updateMaximumTapRateIncreasePct()
updateMaximumTapFloorDecreasePct()
addTokenTap()
updateTokenTap()
withdraw()
🔍token()
🔍contributionToken()
🔍getMaximumWithdrawal()
🔍collateralsToBeClaimed()
🔍balanceOf()
🔍_tokenIsContractOrETH()

BatchedBancorMarketMaker

EtherTokenConstant
IsContract
AragonApp

📚SafeERC20 for ERC20
📚SafeMath for uint256

bytes32 OPEN_ROLE
bytes32 UPDATE_FORMULA_ROLE
bytes32 UPDATE_BENEFICIARY_ROLE
bytes32 UPDATE_FEES_ROLE
bytes32 ADD_COLLATERAL_TOKEN_ROLE
bytes32 REMOVE_COLLATERAL_TOKEN_ROLE
bytes32 UPDATE_COLLATERAL_TOKEN_ROLE
bytes32 OPEN_BUY_ORDER_ROLE
bytes32 OPEN_SELL_ORDER_ROLE
uint256 PCT_BASE
uint32 PPM
string ERROR CONTRACT IS EOA

Tap

TimeHelpers
EtherTokenConstant

user

«Anyone»

TokenHolder

«DAO Stakeholder BOND»

BoardMember

«DAO Bordmember»

NewBoardMember

open

contribute / buy / sell

proposes changes/actions to (via voting Share)

approves proposed actions (via voting Share)

open presale (via voting Board)

appoints new board member

https://consensys.net/diligence/audits/2019/11/aragonblack-fundraising/images/fundraising_uml.svg

29.03.2021 AragonBlack Fundraising | ConsenSys Diligence

https://consensys.net/diligence/audits/2019/11/aragonblack-fundraising/ 7/73

beneficiary

«Board Vault»

string ERROR_CONTRACT_IS_EOA
string ERROR_INVALID_BENEFICIARY
string ERROR_INVALID_BATCH_BLOCKS
string ERROR_INVALID_PERCENTAGE
string ERROR_INVALID_RESERVE_RATIO
string ERROR_INVALID_TM_SETTING
string ERROR_INVALID_COLLATERAL
string ERROR_INVALID_COLLATERAL_VALUE
string ERROR_INVALID_BOND_AMOUNT
string ERROR_ALREADY_OPEN
string ERROR_NOT_OPEN
string ERROR_COLLATERAL_ALREADY_WHITELISTED
string ERROR_COLLATERAL_NOT_WHITELISTED
string ERROR_NOTHING_TO_CLAIM
string ERROR_BATCH_NOT_OVER
string ERROR_BATCH_CANCELLED
string ERROR_BATCH_NOT_CANCELLED
string ERROR_SLIPPAGE_EXCEEDS_LIMIT
string ERROR_INSUFFICIENT_POOL_BALANCE
string ERROR_TRANSFER_FROM_FAILED
IAragonFundraisingController controller
TokenManager tokenManager
ERC20 token
Vault reserve
address beneficiary
IBancorFormula formula
uint256 batchBlocks
uint256 buyFeePct
uint256 sellFeePct
bool isOpen
uint256 tokensToBeMinted
address=>uint256 collateralsToBeClaimed
address=>Collateral collaterals
uint256=>MetaBatch metaBatches

initialize()
open()
updateFormula()
updateBeneficiary()
updateFees()
addCollateralToken()
removeCollateralToken()
updateCollateralToken()
💰openBuyOrder()
openSellOrder()
claimBuyOrder()
claimSellOrder()
claimCancelledBuyOrder()
claimCancelledSellOrder()
🔍getCurrentBatchId()
🔍getCollateralToken()
🔍getBatch()
🔍getStaticPricePPM()
🔍_staticPricePPM()
🔍_currentBatchId()
🔍_beneficiaryIsValid()
🔍_feeIsValid()
🔍_reserveRatioIsValid()
🔍_tokenManagerSettingIsValid()
🔍_collateralValueIsValid()
🔍_bondAmountIsValid()
🔍_collateralIsWhitelisted()
🔍_batchIsOver()
🔍_batchIsCancelled()
🔍_userIsBuyer()
🔍_userIsSeller()
🔍_poolBalanceIsSufficient()
🔍_slippageIsValid()
🔍_buySlippageIsValid()
🔍_sellSlippageIsValid()
_currentBatch()
_open()
_updateBeneficiary()
_updateFormula()
_updateFees()
_cancelCurrentBatch()
_addCollateralToken()
_removeCollateralToken()
_updateCollateralToken()
_openBuyOrder()
_openSellOrder()
_claimBuyOrder()
_claimSellOrder()
_claimCancelledBuyOrder()
_claimCancelledSellOrder()
_updatePricing()
_transfer()

BancorFormula

IBancorFormula
Utils

📚SafeMath for uint256

string version
uint256 ONE
uint32 MAX_WEIGHT
uint8 MIN_PRECISION
uint8 MAX_PRECISION
uint256 FIXED_1
uint256 FIXED_2
uint256 MAX_NUM
uint256 LN2_NUMERATOR
uint256 LN2_DENOMINATOR
uint256 OPT_LOG_MAX_VAL
uint256 OPT_EXP_MAX_VAL
uint256 maxExpArray

__constructor__()
🔍calculatePurchaseReturn()
🔍calculateSaleReturn()
🔍calculateCrossConnectorReturn()
🔍power()
🔍generalLog()
🔍floorLog2()
🔍findPositionInMaxExpArray()
🔍generalExp()
🔍optimalLog()
🔍optimalExp()

Presale

EtherTokenConstant
IsContract
AragonApp

📚SafeERC20 for ERC20
📚SafeMath for uint256
📚SafeMath64 for uint64

bytes32 OPEN_ROLE
bytes32 CONTRIBUTE_ROLE
uint256 PPM
string ERROR_CONTRACT_IS_EOA
string ERROR_INVALID_BENEFICIARY
string ERROR_INVALID_CONTRIBUTE_TOKEN
string ERROR_INVALID_GOAL
string ERROR_INVALID_EXCHANGE_RATE
string ERROR_INVALID_TIME_PERIOD
string ERROR_INVALID_PCT
string ERROR_INVALID_STATE
string ERROR_INVALID_CONTRIBUTE_VALUE
string ERROR_INSUFFICIENT_BALANCE
string ERROR_INSUFFICIENT_ALLOWANCE
string ERROR_NOTHING_TO_REFUND
string ERROR_TOKEN_TRANSFER_REVERTED
IAragonFundraisingController controller
TokenManager tokenManager
ERC20 token
address reserve
address beneficiary
ERC20 contributionToken
uint256 goal
uint64 period
uint256 exchangeRate
uint64 vestingCliffPeriod
uint64 vestingCompletePeriod
uint256 supplyOfferedPct
uint256 fundingForBeneficiaryPct
uint64 openDate
bool isClosed
uint64 vestingCliffDate
uint64 vestingCompleteDate
uint256 totalRaised
address=>mapping uint256=>uint256 contributions

initialize()
open()
💰contribute()
refund()
close()
🔍contributionToTokens()
🔍state()
🔍_timeSinceOpen()
_setOpenDate()
_setVestingDatesWhenOpenDateIsKnown()
_open()
_contribute()
_refund()
_close()
_transfer()

IsContract
AragonApp

📚SafeERC20 for ERC20
📚SafeMath for uint256

bytes32 UPDATE_CONTROLLER_ROLE
bytes32 UPDATE_RESERVE_ROLE
bytes32 UPDATE_BENEFICIARY_ROLE
bytes32 UPDATE_MAXIMUM_TAP_RATE_INCREASE_PCT_ROLE
bytes32 UPDATE_MAXIMUM_TAP_FLOOR_DECREASE_PCT_ROLE
bytes32 ADD_TAPPED_TOKEN_ROLE
bytes32 REMOVE_TAPPED_TOKEN_ROLE
bytes32 UPDATE_TAPPED_TOKEN_ROLE
bytes32 RESET_TAPPED_TOKEN_ROLE
bytes32 WITHDRAW_ROLE
uint256 PCT_BASE
string ERROR_CONTRACT_IS_EOA
string ERROR_INVALID_BENEFICIARY
string ERROR_INVALID_BATCH_BLOCKS
string ERROR_INVALID_FLOOR_DECREASE_PCT
string ERROR_INVALID_TOKEN
string ERROR_INVALID_TAP_RATE
string ERROR_INVALID_TAP_UPDATE
string ERROR_TOKEN_ALREADY_TAPPED
string ERROR_TOKEN_NOT_TAPPED
string ERROR_WITHDRAWAL_AMOUNT_ZERO
IAragonFundraisingController controller
Vault reserve
address beneficiary
uint256 batchBlocks
uint256 maximumTapRateIncreasePct
uint256 maximumTapFloorDecreasePct
address=>uint256 rates
address=>uint256 floors
address=>uint256 lastWithdrawals
address=>uint256 lastTapUpdates

initialize()
updateController()
updateReserve()
updateBeneficiary()
updateMaximumTapRateIncreasePct()
updateMaximumTapFloorDecreasePct()
addTappedToken()
removeTappedToken()
updateTappedToken()
resetTappedToken()
withdraw()
🔍getMaximumWithdrawal()
🔍_currentBatchId()
🔍_maximumWithdrawal()
🔍_beneficiaryIsValid()
🔍_maximumTapFloorDecreasePctIsValid()
🔍_tokenIsContractOrETH()
🔍_tokenIsTapped()
🔍_tapRateIsValid()
🔍_tapUpdateIsValid()
🔍_tapRateUpdateIsValid()
🔍_tapFloorUpdateIsValid()
_updateController()
_updateReserve()
_updateBeneficiary()
_updateMaximumTapRateIncreasePct()
_updateMaximumTapFloorDecreasePct()
_addTappedToken()
_removeTappedToken()
_updateTappedToken()
_resetTappedToken()
_withdraw()

Agent

IERC165
ERC1271Bytes
IForwarder
IsContract
Vault

bytes32 EXECUTE_ROLE
bytes32 SAFE_EXECUTE_ROLE
bytes32 ADD_PROTECTED_TOKEN_ROLE
bytes32 REMOVE_PROTECTED_TOKEN_ROLE
bytes32 ADD_PRESIGNED_HASH_ROLE
bytes32 DESIGNATE_SIGNER_ROLE
bytes32 RUN_SCRIPT_ROLE
uint256 PROTECTED_TOKENS_CAP
bytes4 ERC165_INTERFACE_ID
string ERROR_TARGET_PROTECTED
string ERROR_PROTECTED_TOKENS_MODIFIED
string ERROR_PROTECTED_BALANCE_LOWERED
string ERROR_TOKENS_CAP_REACHED
string ERROR_TOKEN_NOT_ERC20
string ERROR_TOKEN_ALREADY_PROTECTED
string ERROR_TOKEN_NOT_PROTECTED
string ERROR_DESIGNATED_TO_SELF
string ERROR_CAN_NOT_FORWARD
bytes32=>bool isPresigned
address designatedSigner
address protectedTokens

execute()
safeExecute()
addProtectedToken()
removeProtectedToken()
presignHash()
setDesignatedSigner()
🔍isForwarder()
forward()
🔍canForward()
🔍supportsInterface()
🔍isValidSignature()
🔍getProtectedTokensLength()
_addProtectedToken()
_removeProtectedToken()
🔍_isERC20()
🔍_protectedTokenIndex()
🔍_tokenIsProtected()
🔍_getScriptACLParam()
🔍_getSig()

Vault

Reserve

NewTokenHolder

initial amounttapped amountbuy/sell feecreates new tokenholder

https://consensys.net/diligence/audits/2019/11/aragonblack-fundraising/images/fundraising_uml.svg

29.03.2021 AragonBlack Fundraising | ConsenSys Diligence

https://consensys.net/diligence/audits/2019/11/aragonblack-fundraising/ 8/73

High-Level Application Overview

AragonFundraisingController

The external interface of the application and the main entry point for
interaction with the system. The contract provides a stable API to the
fundraising application and allows individuals to contribute to fundraising
campaigns (presale, token market). It allows Board members and Stakeholder
to change parameters or perform actions and interacts with the four main
back-end components: Presale , BatchedBancorMarketMaker , Tap , Reserve .

Call graph of the AragonBlack Fundraising Controller (dot)

https://consensys.net/diligence/audits/2019/11/aragonblack-fundraising/surya/surya_graph_apps_controller.dot.png
https://consensys.net/diligence/audits/2019/11/aragonblack-fundraising/surya/surya_graph_apps_controller.dot

29.03.2021 AragonBlack Fundraising | ConsenSys Diligence

https://consensys.net/diligence/audits/2019/11/aragonblack-fundraising/ 9/73

AragonFundraisingController

EtherTokenConstant
IsContract
IAragonFundraisingController
AragonApp

📚SafeERC20 for ERC20
📚SafeMath for uint256

bytes32 UPDATE_BENEFICIARY_ROLE
bytes32 UPDATE_FEES_ROLE
bytes32 ADD_COLLATERAL_TOKEN_ROLE
bytes32 REMOVE_COLLATERAL_TOKEN_ROLE
bytes32 UPDATE_COLLATERAL_TOKEN_ROLE
bytes32 UPDATE_MAXIMUM_TAP_RATE_INCREASE_PCT_ROLE
bytes32 UPDATE_MAXIMUM_TAP_FLOOR_DECREASE_PCT_ROLE
bytes32 ADD_TOKEN_TAP_ROLE
bytes32 UPDATE_TOKEN_TAP_ROLE
bytes32 OPEN_PRESALE_ROLE
bytes32 OPEN_TRADING_ROLE
bytes32 CONTRIBUTE_ROLE
bytes32 OPEN_BUY_ORDER_ROLE
bytes32 OPEN_SELL_ORDER_ROLE
bytes32 WITHDRAW_ROLE
uint256 TO_RESET_CAP
string ERROR_CONTRACT_IS_EOA
string ERROR_INVALID_TOKENS
Presale presale
BatchedBancorMarketMaker marketMaker
Agent reserve
Tap tap
address toReset

initialize()
updateBeneficiary()
updateFees()
openPresale()
closePresale()
💰contribute()
refund()
openTrading()
💰openBuyOrder()
openSellOrder()
claimBuyOrder()
claimSellOrder()
addCollateralToken()
reAddCollateralToken()
removeCollateralToken()
updateCollateralToken()
updateMaximumTapRateIncreasePct()
updateMaximumTapFloorDecreasePct()
addTokenTap()
updateTokenTap()
withdraw()
🔍token()
🔍contributionToken()
🔍getMaximumWithdrawal()
🔍collateralsToBeClaimed()
🔍balanceOf()
🔍_tokenIsContractOrETH()

EtherTokenConstant IsContract IAragonFundraisingController AragonApp SafeERC20 SafeMath

for ERC20 for uint256

Controller

Presale

Allows the Project Team/Board to start the Fundraising Campaign with a
time-limited token presale that sells token at a �ixed rate with con�igurable
token vesting for contributors. The presale can only be started once.

https://consensys.net/diligence/audits/2019/11/aragonblack-fundraising/images/controller.svg

29.03.2021 AragonBlack Fundraising | ConsenSys Diligence

https://consensys.net/diligence/audits/2019/11/aragonblack-fundraising/ 10/73

Call graph of the AragonBlack Presale Contract (dot)

reservebeneficiary

Presale

EtherTokenConstant
IsContract
AragonApp

📚SafeERC20 for ERC20
📚SafeMath for uint256
📚SafeMath64 for uint64

bytes32 OPEN_ROLE
bytes32 CONTRIBUTE_ROLE
uint256 PPM
string ERROR_CONTRACT_IS_EOA
string ERROR_INVALID_BENEFICIARY
string ERROR_INVALID_CONTRIBUTE_TOKEN
string ERROR_INVALID_GOAL
string ERROR_INVALID_EXCHANGE_RATE
string ERROR_INVALID_TIME_PERIOD
string ERROR_INVALID_PCT
string ERROR_INVALID_STATE
string ERROR_INVALID_CONTRIBUTE_VALUE
string ERROR_INSUFFICIENT_BALANCE
string ERROR_INSUFFICIENT_ALLOWANCE
string ERROR_NOTHING_TO_REFUND
string ERROR_TOKEN_TRANSFER_REVERTED
IAragonFundraisingController controller
TokenManager tokenManager
ERC20 token
address reserve
address beneficiary
ERC20 contributionToken
uint256 goal
uint64 period
uint256 exchangeRate
uint64 vestingCliffPeriod
uint64 vestingCompletePeriod
uint256 supplyOfferedPct
uint256 fundingForBeneficiaryPct
uint64 openDate
bool isClosed
uint64 vestingCliffDate
uint64 vestingCompleteDate
uint256 totalRaised
address=>mapping uint256=>uint256 contributions

initialize()
open()
💰contribute()
refund()
close()
🔍contributionToTokens()
🔍state()
🔍_timeSinceOpen()
_setOpenDate()
_setVestingDatesWhenOpenDateIsKnown()
_open()
_contribute()
_refund()
_close()
_transfer()

EtherTokenConstant IsContract AragonApp SafeERC20 SafeMath SafeMath64

for ERC20 for uint256 for uint64

https://consensys.net/diligence/audits/2019/11/aragonblack-fundraising/surya/surya_graph_apps_presale.dot.png
https://consensys.net/diligence/audits/2019/11/aragonblack-fundraising/surya/surya_graph_apps_presale.dot
https://consensys.net/diligence/audits/2019/11/aragonblack-fundraising/images/presale.svg

29.03.2021 AragonBlack Fundraising | ConsenSys Diligence

https://consensys.net/diligence/audits/2019/11/aragonblack-fundraising/ 11/73

Presale

BatchedBancorMarketMaker

Implements the Shareholder token market logic based on the 3rd party
BancorFormula and the fee economics. It is an AragonApp that is acting as the

market making contract for token transfers and facilitates the buying and
selling of bonding tokens investors receive for their investments. The
contract interfaces with the BancorFormula and is critical to the system. It also
collects fees and transfers the invested token or ETH to the pool or fee
recipient.

Call graph of the AragonBlack MarketMaker Contract (dot)

BatchedBancorMarketMaker

EtherTokenConstant
IsContract
AragonApp

📚SafeERC20 for ERC20
📚SafeMath for uint256

bytes32 OPEN_ROLE
bytes32 UPDATE_FORMULA_ROLE
bytes32 UPDATE_BENEFICIARY_ROLE
bytes32 UPDATE_FEES_ROLE
bytes32 ADD_COLLATERAL_TOKEN_ROLE
bytes32 REMOVE_COLLATERAL_TOKEN_ROLE
bytes32 UPDATE_COLLATERAL_TOKEN_ROLE
bytes32 OPEN_BUY_ORDER_ROLE
bytes32 OPEN_SELL_ORDER_ROLE
uint256 PCT_BASE
uint32 PPM
string ERROR_CONTRACT_IS_EOA
string ERROR_INVALID_BENEFICIARY
string ERROR_INVALID_BATCH_BLOCKS
string ERROR_INVALID_PERCENTAGE
string ERROR_INVALID_RESERVE_RATIO
string ERROR_INVALID_TM_SETTING
string ERROR_INVALID_COLLATERAL
string ERROR_INVALID_COLLATERAL_VALUE
string ERROR_INVALID_BOND_AMOUNT
string ERROR_ALREADY_OPEN
string ERROR_NOT_OPEN
string ERROR_COLLATERAL_ALREADY_WHITELISTED
string ERROR_COLLATERAL_NOT_WHITELISTED
string ERROR NOTHING TO CLAIM

https://consensys.net/diligence/audits/2019/11/aragonblack-fundraising/surya/surya_graph_apps_marketmaker.dot.png
https://consensys.net/diligence/audits/2019/11/aragonblack-fundraising/surya/surya_graph_apps_marketmaker.dot
https://consensys.net/diligence/audits/2019/11/aragonblack-fundraising/images/marketmaker.svg

29.03.2021 AragonBlack Fundraising | ConsenSys Diligence

https://consensys.net/diligence/audits/2019/11/aragonblack-fundraising/ 12/73

beneficiary

string ERROR_NOTHING_TO_CLAIM
string ERROR_BATCH_NOT_OVER
string ERROR_BATCH_CANCELLED
string ERROR_BATCH_NOT_CANCELLED
string ERROR_SLIPPAGE_EXCEEDS_LIMIT
string ERROR_INSUFFICIENT_POOL_BALANCE
string ERROR_TRANSFER_FROM_FAILED
IAragonFundraisingController controller
TokenManager tokenManager
ERC20 token
Vault reserve
address beneficiary
IBancorFormula formula
uint256 batchBlocks
uint256 buyFeePct
uint256 sellFeePct
bool isOpen
uint256 tokensToBeMinted
address=>uint256 collateralsToBeClaimed
address=>Collateral collaterals
uint256=>MetaBatch metaBatches

initialize()
open()
updateFormula()
updateBeneficiary()
updateFees()
addCollateralToken()
removeCollateralToken()
updateCollateralToken()
💰openBuyOrder()
openSellOrder()
claimBuyOrder()
claimSellOrder()
claimCancelledBuyOrder()
claimCancelledSellOrder()
🔍getCurrentBatchId()
🔍getCollateralToken()
🔍getBatch()
🔍getStaticPricePPM()
🔍_staticPricePPM()
🔍_currentBatchId()
🔍_beneficiaryIsValid()
🔍_feeIsValid()
🔍_reserveRatioIsValid()
🔍_tokenManagerSettingIsValid()
🔍_collateralValueIsValid()
🔍_bondAmountIsValid()
🔍_collateralIsWhitelisted()
🔍_batchIsOver()
🔍_batchIsCancelled()
🔍_userIsBuyer()
🔍_userIsSeller()
🔍_poolBalanceIsSufficient()
🔍_slippageIsValid()
🔍_buySlippageIsValid()
🔍_sellSlippageIsValid()
_currentBatch()
_open()
_updateBeneficiary()
_updateFormula()
_updateFees()
_cancelCurrentBatch()
_addCollateralToken()
_removeCollateralToken()
_updateCollateralToken()
_openBuyOrder()
_openSellOrder()
_claimBuyOrder()
_claimSellOrder()
_claimCancelledBuyOrder()
_claimCancelledSellOrder()
_updatePricing()
_transfer()

EtherTokenConstant IsContract AragonApp SafeERC20 SafeMath

for ERC20 for uint256

MarketMaker

BancorFormula

https://consensys.net/diligence/audits/2019/11/aragonblack-fundraising/images/marketmaker.svg

29.03.2021 AragonBlack Fundraising | ConsenSys Diligence

https://consensys.net/diligence/audits/2019/11/aragonblack-fundraising/ 13/73

BancorFormula.sol is the implementation of the Bancor bonding curve formula.

SafeMath

🔍add()
🔍sub()
🔍mul()
🔍div()

Utils

__constructor__()

BancorFormula

IBancorFormula
Utils

📚SafeMath for uint256

string version
uint256 ONE
uint32 MAX_WEIGHT
uint8 MIN_PRECISION
uint8 MAX_PRECISION
uint256 FIXED_1
uint256 FIXED_2
uint256 MAX_NUM
uint256 LN2_NUMERATOR
uint256 LN2_DENOMINATOR
uint256 OPT_LOG_MAX_VAL
uint256 OPT_EXP_MAX_VAL
uint256 maxExpArray

__constructor__()
🔍calculatePurchaseReturn()
🔍calculateSaleReturn()
🔍calculateCrossConnectorReturn()
🔍power()
🔍generalLog()
🔍floorLog2()
🔍findPositionInMaxExpArray()
🔍generalExp()
🔍optimalLog()
🔍optimalExp()

IBancorFormula

for uint256

BancorFormula

Tap

Limits the amount of collaterals the Board can withdraw from the Reserve .

https://consensys.net/diligence/audits/2019/11/aragonblack-fundraising/images/bancor-formula.svg

29.03.2021 AragonBlack Fundraising | ConsenSys Diligence

https://consensys.net/diligence/audits/2019/11/aragonblack-fundraising/ 14/73

Call graph of the AragonBlack Tap Contract (dot)

https://consensys.net/diligence/audits/2019/11/aragonblack-fundraising/surya/surya_graph_apps_tap.dot.png
https://consensys.net/diligence/audits/2019/11/aragonblack-fundraising/surya/surya_graph_apps_tap.dot

29.03.2021 AragonBlack Fundraising | ConsenSys Diligence

https://consensys.net/diligence/audits/2019/11/aragonblack-fundraising/ 15/73

beneficiary

Tap

TimeHelpers
EtherTokenConstant
IsContract
AragonApp

📚SafeERC20 for ERC20
📚SafeMath for uint256

bytes32 UPDATE_CONTROLLER_ROLE
bytes32 UPDATE_RESERVE_ROLE
bytes32 UPDATE_BENEFICIARY_ROLE
bytes32 UPDATE_MAXIMUM_TAP_RATE_INCREASE_PCT_ROLE
bytes32 UPDATE_MAXIMUM_TAP_FLOOR_DECREASE_PCT_ROLE
bytes32 ADD_TAPPED_TOKEN_ROLE
bytes32 REMOVE_TAPPED_TOKEN_ROLE
bytes32 UPDATE_TAPPED_TOKEN_ROLE
bytes32 RESET_TAPPED_TOKEN_ROLE
bytes32 WITHDRAW_ROLE
uint256 PCT_BASE
string ERROR_CONTRACT_IS_EOA
string ERROR_INVALID_BENEFICIARY
string ERROR_INVALID_BATCH_BLOCKS
string ERROR_INVALID_FLOOR_DECREASE_PCT
string ERROR_INVALID_TOKEN
string ERROR_INVALID_TAP_RATE
string ERROR_INVALID_TAP_UPDATE
string ERROR_TOKEN_ALREADY_TAPPED
string ERROR_TOKEN_NOT_TAPPED
string ERROR_WITHDRAWAL_AMOUNT_ZERO
IAragonFundraisingController controller
Vault reserve
address beneficiary
uint256 batchBlocks
uint256 maximumTapRateIncreasePct
uint256 maximumTapFloorDecreasePct
address=>uint256 rates
address=>uint256 floors
address=>uint256 lastWithdrawals
address=>uint256 lastTapUpdates

initialize()
updateController()
updateReserve()
updateBeneficiary()
updateMaximumTapRateIncreasePct()
updateMaximumTapFloorDecreasePct()
addTappedToken()
removeTappedToken()
updateTappedToken()
resetTappedToken()
withdraw()
🔍getMaximumWithdrawal()
🔍_currentBatchId()
🔍_maximumWithdrawal()
🔍_beneficiaryIsValid()
🔍_maximumTapFloorDecreasePctIsValid()
🔍_tokenIsContractOrETH()
🔍_tokenIsTapped()
🔍_tapRateIsValid()
🔍_tapUpdateIsValid()
🔍_tapRateUpdateIsValid()
🔍_tapFloorUpdateIsValid()
_updateController()
_updateReserve()
_updateBeneficiary()
_updateMaximumTapRateIncreasePct()
_updateMaximumTapFloorDecreasePct()
_addTappedToken()
_removeTappedToken()
_updateTappedToken()
_resetTappedToken()
_withdraw()

TimeHelpers EtherTokenConstant IsContract AragonApp SafeERC20 SafeMath

for ERC20 for uint256

Tap

Reserve (Agent)

Sometimes referred to as Pool , is an Aragon Agent application that acts as a
value store for raised collateral and can be used to interact with other
entities. The Agent application inherits the Aragon Vault application and was
recently updated with SAFE_EXECUTE and the possibility to add/remove tokens
that are protected by this method. SAFE_EXECUTE allows to call other contracts

https://consensys.net/diligence/audits/2019/11/aragonblack-fundraising/images/tap.svg
https://github.com/aragon/aragon-apps/commit/e66c06f426dc49bf150ec132434cccd797ce8d52

29.03.2021 AragonBlack Fundraising | ConsenSys Diligence

https://consensys.net/diligence/audits/2019/11/aragonblack-fundraising/ 16/73

on behalf of the reserve and ensures that protected token balances cannot
change during safe_execute calls. Neither Board nor Shareholders have direct
access to the funds stored in the Reserve .

designatedSigner

Agent

IERC165
ERC1271Bytes
IForwarder
IsContract
Vault

bytes32 EXECUTE_ROLE
bytes32 SAFE_EXECUTE_ROLE
bytes32 ADD_PROTECTED_TOKEN_ROLE
bytes32 REMOVE_PROTECTED_TOKEN_ROLE
bytes32 ADD_PRESIGNED_HASH_ROLE
bytes32 DESIGNATE_SIGNER_ROLE
bytes32 RUN_SCRIPT_ROLE
uint256 PROTECTED_TOKENS_CAP
bytes4 ERC165_INTERFACE_ID
string ERROR_TARGET_PROTECTED
string ERROR_PROTECTED_TOKENS_MODIFIED
string ERROR_PROTECTED_BALANCE_LOWERED
string ERROR_TOKENS_CAP_REACHED
string ERROR_TOKEN_NOT_ERC20
string ERROR_TOKEN_ALREADY_PROTECTED
string ERROR_TOKEN_NOT_PROTECTED
string ERROR_DESIGNATED_TO_SELF
string ERROR_CAN_NOT_FORWARD
bytes32=>bool isPresigned
address designatedSigner
address protectedTokens

execute()
safeExecute()
addProtectedToken()
removeProtectedToken()
presignHash()
setDesignatedSigner()
🔍isForwarder()
forward()
🔍canForward()
🔍supportsInterface()
🔍isValidSignature()
🔍getProtectedTokensLength()
_addProtectedToken()
_removeProtectedToken()
🔍_isERC20()
🔍_protectedTokenIndex()
🔍_tokenIsProtected()
🔍_getScriptACLParam()
🔍_getSig()

IERC165 ERC1271Bytes IForwarder IsContract Vault

Pool / Agent

Actors

There are three main groups of actors in the AragonBlack Fundraising
system:

FundraisingMultisigTemplate - A DAO deployer can interact with the
template to deploy a new fundraising DAO. The template initially has

https://consensys.net/diligence/audits/2019/11/aragonblack-fundraising/images/agent.svg

29.03.2021 AragonBlack Fundraising | ConsenSys Diligence

https://consensys.net/diligence/audits/2019/11/aragonblack-fundraising/ 17/73

permissions to con�igure the DAO but transfers all ownership in the �inal
step of the deployment. The template contract should not remain in
control of the DAO after its deployment. Initial con�iguration of the
template contract must be veri�ied before interacting with it.

The DAO deployer - A user that interacts with the template contract to
deploy a new DAO. This user should not directly remain in control of any
of the deployed DAO components.

Board members - Also known as the fundraising Project Managers. The
board controls the DAO but can only propose changes to the
Stakeholders. Stakeholders have to approve the changes. The board may
have its Vault that is managed by a Finance application. Funds can only
be withdrawn from this Vault via Board vote. Board members can also tap
into the fundraising campaigns Reserve but this access and the allowed
withdrawal amount for collateral is restricted by the fundraising Tap
contract.

Bene�iciary - Usually a Vault managed by the Board. Receives initial
tokens from the presale, trading fees from the MarketMaker and funds
withdrawn from the reserve.

Shareholders - Are the investors in the fundraising DAO. They are a
control instance that approves changes or actions proposed by Board
members.

Any Ethereum Account - With the current permission setup deployed
with the provided DAO template anyone can participate in the token
presale to receive vested tokens or buy tokens from the bonding curve
based batched market maker. Buying tokens gives voting power in the
DAO and turns the Account into a Shareholder. However, the permissions
can also be assigned to a KYC provider that whitelists investors in the
future.

Security focussed information about actors in this system can be found in
section 5 - Security Speci�ication/Actors.

3.2 FundraisingMultisigTemplate

The fundraising DAO template is based on the Company-Board default DAO-
Template. We have also audited this default DAO-Template as part of the
Aragon DAO-Templates Audit, please refer to this report for general security

https://github.com/aragon/dao-templates/tree/bb0f2b1f508e1354559a7e1034e97d871e48e364/templates/company-board
https://github.com/ConsenSys/aragon-daotemplates-audit-report-2019-08/blob/master/README.md

29.03.2021 AragonBlack Fundraising | ConsenSys Diligence

https://consensys.net/diligence/audits/2019/11/aragonblack-fundraising/ 18/73

information. A security analysis of the template is provided as part of section
5 - Security Speci�ication.

The template is well structured and aligned with the coding style of the
Aragon default DAO-Templates. Wherever possible it makes use of
functionality provided by the Aragon BaseTemplate which is part of the Aragon
default DAO-Templates repository. New fundraising enabled DAOs can be
deployed in four steps:

�. prepareInstance

creates a new DAO

creates the BOARD token

installs Board apps (TokenManager, Voting, Vault (bene�iciary),
Finance)

mints one BOARD token per member for the initial group of board
members

cache the DAO and apps for the multi-step deployment approach

�. installShareApps

creates the SHARE token

installs Share apps (TokenManager, Voting)

sets up board permissions (TokenManager, Voting, Vault, Finance)

caches newly installed apps

�. installFundraisingApps

installs fundraising applications (Presale, MarketMaker, Tap,
Controller)

sets up share permissions (TokenManager, Voting)

sets up fundraising permissions (Reserve, Presale, MarketMaker, Tap,
Controller)

�. finalizeInstance

sets up initial collaterals (DAI as protected and tapped token, ANT as
protected collateral but not as a tapped token, ETH is not whitelisted
by default)

sets up EvmScriptRegistryPermission

transfers root permissions from template to Voting_Share

registers application id

clears the cache

29.03.2021 AragonBlack Fundraising | ConsenSys Diligence

https://consensys.net/diligence/audits/2019/11/aragonblack-fundraising/ 19/73

The DAOFactory , ENS Registry , MiniMeTokenFactory , aragonID , and the DAI and ANT

token contract addresses are speci�ied when deploying the template
contract. Users should make sure the initial con�iguration of the template is
safe (no malicious factory or collateral token contracts) when using a 3rd
party template contract to deploy a new DAO.

A visual representation of the permission setup deployed with the DAO can
be found in section 5 - Security Speci�ication.

Inheritance Structure

Inheritance graph of the AragonBlack Fundraising Contracts (dot)

Call Graph

Call graph of the AragonBlack Fundraising Contracts (dot)

https://consensys.net/diligence/audits/2019/11/aragonblack-fundraising/surya/surya_inheritance_template.dot.png
https://consensys.net/diligence/audits/2019/11/aragonblack-fundraising/surya/surya_inheritance_template.dot
https://consensys.net/diligence/audits/2019/11/aragonblack-fundraising/surya/surya_graph_template.dot.png
https://consensys.net/diligence/audits/2019/11/aragonblack-fundraising/surya/surya_graph_template.dot

29.03.2021 AragonBlack Fundraising | ConsenSys Diligence

https://consensys.net/diligence/audits/2019/11/aragonblack-fundraising/ 20/73

FundraisingMultisigTemplate

EtherTokenConstant
BaseTemplate

string ERROR_BAD_SETTINGS
string ERROR_MISSING_CACHE
bool BOARD_TRANSFERABLE
uint8 BOARD_TOKEN_DECIMALS
uint256 BOARD_MAX_PER_ACCOUNT
bool SHARE_TRANSFERABLE
uint8 SHARE_TOKEN_DECIMALS
uint256 SHARE_MAX_PER_ACCOUNT
uint64 DEFAULT_FINANCE_PERIOD
uint256 BUY_FEE_PCT
uint256 SELL_FEE_PCT
uint32 DAI_RESERVE_RATIO
uint32 ANT_RESERVE_RATIO
bytes32 BANCOR_FORMULA_ID
bytes32 PRESALE_ID
bytes32 MARKET_MAKER_ID
bytes32 ARAGON_FUNDRAISING_ID
bytes32 TAP_ID
address collaterals
address=>Cache cache

__constructor__()
prepareInstance()
installShareApps()
installFundraisingApps()
finalizeInstance()
_installBoardApps()
_installShareApps()
_installFundraisingApps()
_proxifyFundraisingApps()
_initializePresale()
_initializeMarketMaker()
_initializeTap()
_initializeController()
_setupCollaterals()
_setupBoardPermissions()
_setupSharePermissions()
_setupFundraisingPermissions()
_cacheDao()
_cacheBoardApps()
_cacheShareApps()
_cacheFundraisingApps()
_daoCache()
_boardAppsCache()
_shareAppsCache()
_fundraisingAppsCache()
_clearCache()
_vaultCache()
_shareTMCache()
_reserveCache()
_presaleCache()
_controllerCache()
🔍_ensureTokenIsContractOrETH()
_ensureBoardAppsCache()
_ensureShareAppsCache()
_ensureFundraisingAppsCache()
_registerApp()

EtherTokenConstant BaseTemplate

FundraisingMultisigTemplate

https://consensys.net/diligence/audits/2019/11/aragonblack-fundraising/images/template.svg

29.03.2021 AragonBlack Fundraising | ConsenSys Diligence

https://consensys.net/diligence/audits/2019/11/aragonblack-fundraising/ 21/73

4 Key
Observations/Recommendations

The Aragon Applications and the Template are well structured, following
Aragon design speci�ications and coding style. This greatly improves
code readability, maintainability, security and is effectively reducing
effort to review the application and template. The template relies on
functionality to set up a new DAO provided with the DAO-Templates
repository instead of inventing new mechanisms. Both the template and
the application code itself are good examples of a coding style that
supports maintainability and security.

The project team provided system documentation and auditable
speci�ication documents. It is typically suggested to make
documentation available that clearly outlines at least the following
information:

Application Name, Version and Outline - is available

Roles & Capabilities ideally grouped into logical actors (e.g.
Investors, Project Managers, …) - is available

Set-Up and initialization details - is available

Caveats & Limitations - can be improved

Security Considerations, Common Pitfalls or Secure Setup
information - can be improved

A description of an example Application Lifecycle - can be improved

A reference to an example kit to deploy the Aragon Black
Fundraising application with a DAO - template is available

Scripts to bootstrap the repository and compile & run test suites are
provided with the project.

Security best practices are followed where they make sense.

Common design patterns are used where required instead of inventing
new interfaces and designs.

3rd party modules (BancorFormula and its components) have not been
logically modi�ied.

29.03.2021 AragonBlack Fundraising | ConsenSys Diligence

https://consensys.net/diligence/audits/2019/11/aragonblack-fundraising/ 22/73

Arithmetic operations are performed using SafeMath in most cases
where it makes sense.

Staticcalls are enforced for ERC20.balance calls.

Smart contracts are following the Unix design philosophy as
recommended by Aragon. Contracts are split into logical building-
blocks.

Inline documentation for contracts and exposed methods are available
and outline the functionality and expected input parameters.

The application relies on AragonOS framework functionality and is
following the Aragon application development guide.

Exposed functionality is protected with the AragonOS framework ACL
system creating a �ine-grained role system that can be customized by
DAO’s.

Critical functionality of MarketMaker and Presale is protected from
reentrancy.

The application is set to compile with an outdated solidity version
lacking the latest security improvements. The solidity version cannot
easily be changed as it is dictated by the underlying AragonOS
framework.

The AragonFundraisingController ’s purpose is to forward and keep in sync
other contracts. This forces it to be in sync with all of the other contracts
it interacts with, effectively writing a lot of boilerplate to serve as the
interface for the whole application. This is a problem because if some
functionality is added or removed in any of the market maker, reserve or
tap contracts, the controller needs to be updated. Another different way
is to remove the controller altogether and have the web interface call the
right contract for each functionality. For the methods that keep the
collateral tokens (addCollateralToken) and the bene�iciary (updateBeneficiary)
in sync, a different contract can be used as a ledger having the collateral
token list and the bene�iciary available (or even split in 2 contracts: one
ledger for collateral tokens and the other for the bene�iciary); each of the
contracts (market maker, reserve and tap) will be able to retrieve the list

https://hack.aragon.org/docs/aragonos-intro.html

29.03.2021 AragonBlack Fundraising | ConsenSys Diligence

https://consensys.net/diligence/audits/2019/11/aragonblack-fundraising/ 23/73

of collateral tokens or the bene�iciary. Managing the collateral tokens or
the bene�iciary will be done directly in these contracts.

The authentication system could be changed from auth() to authP()

allowing to set rules on the method parameters. Please note that this
might increase complexity and must be complemented with unit-tests
accordingly.

The price of the Shareholder tokens gets lower with every second
because of the Tap withdrawal allowance increasing with the same rate,
which decreases the pool balance that is used for the Share token price
calculation.

The project does not yield any security-relevant compiler warnings in
scope for this audit.

The test-suite passes without failing test-cases.

Test coverage is not complete and failed to generate coverage statistics
for the Presale contract. The GitHub/AragonBlack: CI Integration does
not collect coverage statistics for Presale. Any contract system that is
used on the Mainnet should have as a minimum requirement a 100% test
coverage. In particular, it’s useful to include negative test cases ensuring
that undesirable changes are detected early and kept in-line with the
speci�ication. Security-focused test cases verifying that permissions are
set-up according to the security-speci�ication and trust-model should be
consistently implemented. Methods that require special permissions
must be tightly covered. None of the contracts that comprise the
contract system should be exempt from testing/coverage. For details see
section Test Coverage Measurement.

5 Security Specification
This section describes the behavior of the system under audit from a security
perspective. It is best combined with the overview given in section 3 -
Components. Please note that this document is not a substitute for
documentation. The purpose of this section is to identify speci�ic security
properties that were validated by the audit team. Furthermore, the
information contained in this section can be used for internal security

https://github.com/AragonBlack/fundraising/blob/a2a8ea843c86ed221f5f267cbbbd78e912be9f92/.travis.yml#L41

29.03.2021 AragonBlack Fundraising | ConsenSys Diligence

https://consensys.net/diligence/audits/2019/11/aragonblack-fundraising/ 24/73

activities and we recommend documenting and building-upon the trust
model that has been established.

DAOBase

Deployer

Token_SHARE

Token_BOARD

beneficiary

«BoardVault»

ACL

CREATE_PERMISSIONS

Kernel

APP_MANAGER

EVMScriptRegistry

REGISTRY_ADD_EXECUTOR
REGISTRY_MANAGER

deployer

«msg.sender»

daoTemplateContract

«contract»

MiniMeTokenShare transferable yes
decimals 18
max_per_account unlimited

MiniMeTokenBoard transferable no
decimals 0
max_per_account 1

AragonFundraisingController

EtherTokenConstant
IsContract
IAragonFundraisingController
AragonApp

📚SafeERC20 for ERC20
📚SafeMath for uint256

bytes32 UPDATE_BENEFICIARY_ROLE
bytes32 UPDATE_FEES_ROLE
bytes32 ADD_COLLATERAL_TOKEN_ROLE
bytes32 REMOVE_COLLATERAL_TOKEN_ROLE
bytes32 UPDATE_COLLATERAL_TOKEN_ROLE
bytes32 UPDATE_MAXIMUM_TAP_RATE_INCREASE_PCT_ROLE
bytes32 UPDATE_MAXIMUM_TAP_FLOOR_DECREASE_PCT_ROLE
bytes32 ADD_TOKEN_TAP_ROLE
bytes32 UPDATE_TOKEN_TAP_ROLE
bytes32 OPEN_PRESALE_ROLE
bytes32 OPEN_TRADING_ROLE
bytes32 CONTRIBUTE_ROLE
bytes32 OPEN_BUY_ORDER_ROLE
bytes32 OPEN_SELL_ORDER_ROLE
bytes32 WITHDRAW_ROLE

BatchedBancorMarketMaker

EtherTokenConstant
IsContract
AragonApp

📚SafeERC20 for ERC20
📚SafeMath for uint256

bytes32 OPEN_ROLE
bytes32 UPDATE_FORMULA_ROLE
bytes32 UPDATE_BENEFICIARY_ROLE
bytes32 UPDATE_FEES_ROLE
bytes32 ADD_COLLATERAL_TOKEN_ROLE
bytes32 REMOVE_COLLATERAL_TOKEN_ROLE
bytes32 UPDATE_COLLATERAL_TOKEN_ROLE
bytes32 OPEN_BUY_ORDER_ROLE
bytes32 OPEN_SELL_ORDER_ROLE

Presale

EtherTokenConstant
IsContract
AragonApp

📚SafeERC20 for ERC20
📚SafeMath for uint256
📚SafeMath64 for uint64

bytes32 OPEN_ROLE
bytes32 CONTRIBUTE_ROLE

Tap

TimeHelpers
EtherTokenConstant
IsContract
AragonApp

📚SafeERC20 for ERC20
📚SafeMath for uint256

bytes32 UPDATE_CONTROLLER_ROLE
bytes32 UPDATE_RESERVE_ROLE
bytes32 UPDATE_BENEFICIARY_ROLE
bytes32 UPDATE_MAXIMUM_TAP_RATE_INCREASE_PCT_ROLE
bytes32 UPDATE_MAXIMUM_TAP_FLOOR_DECREASE_PCT_ROLE
bytes32 ADD_TAPPED_TOKEN_ROLE
bytes32 REMOVE_TAPPED_TOKEN_ROLE
bytes32 UPDATE_TAPPED_TOKEN_ROLE
bytes32 RESET_TAPPED_TOKEN_ROLE
bytes32 WITHDRAW_ROLE

BoardVault

is beneficiary

Agent

EXECUTE
SAFE_EXECUTE_ROLE
ADD_PROTECTED_TOKEN_ROLE
REMOVE_PROTECTED_TOKEN_ROLE
RUN_SCRIPT
ADD_PRESIGNED_HASH
DESIGNATE_SIGNER

Finance

CREATE_PAYMENTS
CHANGE_PERIOD
CHANGE_BUDGETS
EXECUTE_PAYMENTS
MANAGE_PAYMENTS

DEFAULT_FINANCE_PERIOD: 30 days

Voting_SHARE

CREATE_VOTES
MODIFY_SUPPORT
MODIFY_QUORUM

Voting_BOARD

CREATE_VOTES
MODIFY_SUPPORT
MODIFY_QUORUM

TokenManager_SHARE

MINT
ISSUE
ASSIGN
REVOKE_VESTINGS
BURN

TokenManager_BOARD

MINT
ISSUE
ASSIGN
REVOKE_VESTINGS
BURN

Vault

TRANSFER
Setup can either use own Vault or use Agent as Vault

does not remain in control of DAO

TokenHolder

«DAO_Stakeholder»

TokenHolderN

«Other DAO_Stakeholder»

BoardMember

«DAO_BoardMember»

BoardMemberN

«DAO_BoardMember»

Any

«ETH Account»

allows tokenholder to call
arbitrary addresses
via forward(evmscript)

allows board-member to call
arbitrary addresses
via forward(evmscript)

can call arbitrary addresses
via forward(evmscript) (RUN_SCRIPT) w/o eth txfer
via execute(target, value, data) w eth txfer

can also be Shareholder
cannot transfer tokens to other member

Pool

DAO_Stakeholder

votes

votes

votes create vote via TokenManager_BOARD
vote with stake

controlled by (hooks)

stake in DAO
interact (transfer, transferFrom, balance, ...)

controlled by TokenManager

interact

token transferable

forward(bytes _evmScript)
e.g. voting.create_vote

controlled by (hooks)

stake in DAO
interact (transfer, transferFrom, balance, ...)

controlled by TokenManager

forward(bytes _evmScript)
e.g. voting.create_vote

votes

is

is

is

Kernel.APP_MANAGER (mgt by Voting_SHARE) ACL.CREATE_PERMISSIONS (mgt by Voting_SHARE)EVMScriptRegistry.REGISTRY_MANAGER (mgt by Voting_SHARE)
EVMScriptRegistry.REGISTRY_ADD_EXECUTOR (mgt by Voting_SHARE)

TokenManager_BOARD.MINT (mgt by Voting_SHARE)
TokenManager_BOARD.BURN (mgt by Voting_SHARE) Voting_BOARD.CREATE_VOTES (mgt by Voting_SHARE)

Voting_BOARD.MODIFY_QUORUM (mgt by Voting_SHARE)
Voting_BOARD.MODIFY_SUPPORT (mgt by Voting_SHARE)

Vault.TRANSFER (mgt by Voting_SHARE)

Finance.CREATE_PAYMENTS (mgt by Voting_SHARE)
Finance.EXECUTE_PAYMENTS (mgt by Voting_SHARE)
Finance.MANAGE_PAYMENTS (mgt by Voting_SHARE)

TokenManager_SHARE.MINT (mgt by Voting_SHARE)
TokenManager_SHARE.BURN (mgt by Voting_SHARE)

TokenManager_SHARE.BURN (mgt by Voting_SHARE)
TokenManager_SHARE.ISSUE (mgt by Voting_SHARE)
TokenManager_SHARE.ASSIGN (mgt by Voting_SHARE)

TokenManager_SHARE.REVOKE_VESTINGS (mgt by Voting_SHARE)

Voting_SHARE.CREATE_VOTES (mgt by Voting_SHARE)

Voting_SHARE.MODIFY_QUORUM (mgt by Voting_SHARE)
Voting_SHARE.MODIFY_SUPPORT (mgt by Voting_SHARE)

Pool.SAFE_EXECUTE (mgt by Voting_SHARE)

Pool.ADD_PROTECTED_TOKEN (mgt by Voting_SHARE)

Pool.TRANSFER (mgt by Voting_SHARE) Pool.TRANSFER (mgt by Voting_SHARE)

Presale.OPEN (mgt by Voting_SHARE)
Presale.CONTRIBUTE (mgt by Voting_SHARE)AragonFundraisingController.OPEN_TRADING (mgt by Voting_SHARE)

BatchedBancorMarketMaker.OPEN (mgt by Voting_SHARE)
BatchedBancorMarketMaker.UPDATE_BENEFICIARY (mgt by Voting_SHARE)

BatchedBancorMarketMaker.UPDATE_FEES (mgt by Voting_SHARE)
BatchedBancorMarketMaker.ADD_COLLATERAL_TOKEN (mgt by Voting_SHARE)

BatchedBancorMarketMaker.REMOVE_COLLATERAL_TOKEN (mgt by Voting_SHARE)
BatchedBancorMarketMaker.UPDATE_COLLATERAL_TOKEN (mgt by Voting_SHARE)

BatchedBancorMarketMaker.OPEN_BUY_ORDER (mgt by Voting_SHARE)
BatchedBancorMarketMaker.OPEN_SELL_ORDER (mgt by Voting_SHARE)

Tap.UPDATE_BENEFICIARY (mgt by Voting_SHARE)
Tap.UPDATE_MAXIMUM_TAP_RATE_INCREASE_PCT (mgt by Voting_SHARE)
Tap.UPDATE_MAXIMUM_TAP_FLOOR_DECREASE_PCT (mgt by Voting_SHARE)

Tap.ADD_TAPPED_TOKEN (mgt by Voting_SHARE)
Tap.UPDATE_TAPPED_TOKEN (mgt by Voting_SHARE)
Tap.RESET_TAPPED_TOKEN (mgt by Voting_SHARE)

Tap.WITHDRAW (mgt by Voting_SHARE)

AragonFundraisingController.UPDATE_BENEFICIARY (mgt by Voting_SHARE)
AragonFundraisingController.UPDATE_FEES (mgt by Voting_SHARE)

AragonFundraisingController.ADD_COLLATERAL_TOKEN (mgt by Voting_SHARE)
AragonFundraisingController.REMOVE_COLLATERAL_TOKEN (mgt by Voting_SHARE)
AragonFundraisingController.UPDATE_COLLATERAL_TOKEN (mgt by Voting_SHARE)

AragonFundraisingController.UPDATE_MAXIMUM_TAP_RATE_INCREASE_PCT (mgt by Voting_SHARE)
AragonFundraisingController.UPDATE_MAXIMUM_TAP_FLOOR_DECREASE_PCT (mgt by Voting_SHARE)

AragonFundraisingController.ADD_TOKEN_TAP (mgt by Voting_SHARE)
AragonFundraisingController.UPDATE_TOKEN_TAP (mgt by Voting_SHARE)

AragonFundraisingController.OPEN_PRESALE (mgt by Voting_SHARE)

AragonFundraisingController.CONTRIBUTE (mgt by Voting_SHARE)
AragonFundraisingController.OPEN_BUY_ORDER (mgt by Voting_SHARE)
AragonFundraisingController.OPEN_SELL_ORDER (mgt by Voting_SHARE)

AragonFundraisingController.WITHDRAW (mgt by Voting_SHARE)

feestapped amount

buy/sell/...

Template Permission Overview

5.1 Actors

The relevant actors are as follows:

FundraisingMultisigTemplate

The DAO deployer

Board members

Bene�iciary

Shareholders

Any Ethereum Account

5.2 Components

Voting Board - Any Board member can create votings on the
Shareholder voting application. Board consensus but no Shareholder
approval is required to open the presale or spend funds from the Board
Vault.

Voting Shareholder - Critical permissions are assigned to the
Shareholder voting application. An entity that controls the Shareholder
voting application (e.g. whales with enough stake to control the vote
quorum/support) and colludes with one Board member may be able to
con�igure critical parameters of the fundraising application (whitelisted

https://consensys.net/diligence/audits/2019/11/aragonblack-fundraising/images/fundraising.svg

29.03.2021 AragonBlack Fundraising | ConsenSys Diligence

https://consensys.net/diligence/audits/2019/11/aragonblack-fundraising/ 25/73

tokens, tap amount, tap increase rate, granting and revoking
permissions, managing applications for the DAO). The Shareholders
cannot initiate a votings themselves.

DAO Kernel - Board members rely on Shareholder approval to manage
the DAO applications and permissions.

FundraisingController - Main point of interaction that owns critical roles
with the fundraising applications components.

Reserve - Fundraising value store (ETH and whitelisted collateral tokens).

Tap - Controls funds stored in Reserve.

Presale - Initial value store for contributions in the presale phase. Value
gets transferred to bene�iciary/reserve when presale goal is reached and
presale is closed. Mints Shareholder token.

MarketMaker and BancorFormula - De�ine exchange rates, prices, and
fees. Mints Shareholder token.

Bene�iciary - Board/Project Team value store. Usually, an Aragon Vault
application but can be any account.

5.3 Trust Model

The trust model and security observations aim to bring transparency about
security-relevant characteristics of the system, help to understand trust
assumptions and describe potential high-level threats to the system. The goal
is to spark security discussions, document them as part of a continuous
process and use them as input for internal SDL security practices.

It is based on the permission setup provided with the
FundraisingMultisigTemplate . The audit team would like to note that the system

can be deployed with various con�igurations. Other templates (DAO
scenarios) than the one audited as part of this work might not enforce secure
defaults or a safe permission setup.

Deployment

Before the Fundraising DAO can be used it has to be deployed using a
template contract. This template contract can be provided by Aragon or third
parties. We would like to emphasize that both the template contract code
and its initial con�iguration as well as its dependencies (especially Factory
Contracts) must be veri�ied and should be audited. The template contract

29.03.2021 AragonBlack Fundraising | ConsenSys Diligence

https://consensys.net/diligence/audits/2019/11/aragonblack-fundraising/ 26/73

nor factory contracts or a third party should remain in control of any of the
newly deployed DAOs components.

The FundraisingMultisigTemplate can be deployed by anyone. The
template deployer does not remain in direct control of the template but
it can be indirectly controlled via the templates default con�iguration and
factories being used (e.g. DAOFactory, MiniMeFactory, TokenContracts).

The DAO deployer is an account that interacts with the
FundraisingMultisigTemplate to deploy a new DAO. It is initiating the
four DAO deployment steps outlined in section 3 - System Overview.

In the course of the deployment of a DAO, permissions are assigned to
the FundraisingMultisigTemplate. For example, _createDAO initially
assigns Kernell.APP_MANAGER_ROLE and Acl.CREATE_PERMISSIONS_ROLE to the
template. When minting tokens BaseTemplate._mintTokens() temporarily
assigns the TokenManager.MINT_ROLE to itself and removes the permission
after the tokens have been minted. The FundraisingMultisigTemplate
temporarily assigns Controller.ADD_COLLATERAL_TOKEN_ROLE to itself and
transfers this permission to Voting_Share after whitelisting DAI and ANT

as collateral. When �inalizing the new DAO the
FundraisingMultisigTemplate transfers Kernell.APP_MANAGER_ROLE and
Acl.CREATE_PERMISSIONS_ROLE to Voting_Share effectively revoking its access

from the newly deployed DAO.

The DAO deployer is not granted any permissions during the
deployment of the new DAO but it is in control of con�iguration options
and the initial set of Board members. DAO users must verify the
con�iguration settings of the newly deployed DAO before participating in
it.

An initial group of Board members is assigned to the DAO by the DAO
deployer.

The Board Vault is initially set as the Bene�iciary for fees, presale tokens
and tap withdrawal by the FundraisingMultisigTemplate.

Presale

The fundraising campaign is preceded by a presale phase. With the scenario
deployed by the FundraisingMultisigTemplate this step is mandatory and

29.03.2021 AragonBlack Fundraising | ConsenSys Diligence

https://consensys.net/diligence/audits/2019/11/aragonblack-fundraising/ 27/73

reaching the presale goal ultimately enables investors to buy or sell tokens
from the MarketMaker contract. If the presale fails the fundraising DAO can
only be abandoned, contributors are requested to withdraw their
contributions directly from the presale contract. The presale contract is a
value store and keeps funds until the goal is reached. Reaching the goal
splits contributions to an amount initially assigned to the bene�iciary with the
rest being transferred to the fundraising reserve.

The following two images depict the presale stages and the timing
con�iguration including the token vesting.

Presale Stages

Open End
Pending Funding Vesting

(Presale)
Period

vestingCliff
Period

vestingComplete
Period

Vesting
Complete

Refunding

Vesting
ClosedGoal

Reached

Presale Successful

Presale Failed

Presale Timing

https://consensys.net/diligence/audits/2019/11/aragonblack-fundraising/images/aragon_fundraising_presale_stages.svg
https://consensys.net/diligence/audits/2019/11/aragonblack-fundraising/images/aragon_fundraising_presale_timeline.svg

29.03.2021 AragonBlack Fundraising | ConsenSys Diligence

https://consensys.net/diligence/audits/2019/11/aragonblack-fundraising/ 28/73

The presale proceeds in the following stages:

PENDING - The presale is not yet open. Contributions are not yet accepted.

FUNDING - The presale is open. Contributions are accepted.

REFUNDING - The presale duration ended but the goal has not been
reached. Contributors can claim a refund.

GOAL REACHED - The presale duration ended and the goal has been reached.
Waiting for someone to close the presale.

CLOSED - The presale has reached its goal and it has been closed by
someone, transferring a number of tokens to the bene�iciary (Board
Vault) and the rest to the Fundraising reserve. Shareholder tokens are
minted and assigned vested to contributors. Trading with the
MarketMaker is �inally opened.

The following properties have been identi�ied:

The initial presale con�iguration is critical, set by the DAO deployer and
must be veri�ied by participants before contributing to a presale. For
example, the DAO deployer may initially con�igure the presale to transfer
100% of contributed token to the Bene�iciary account instead of
providing it as collateral to the reserve. This will give the Board direct
control over the funds instead of withdrawals being restricted by the Tap

contract.

The presale phase can be set to open at a speci�ic date or when opening
it manually. Reaching the presale goal opens trading with the Fundraising
MarketMaker.

When the presale is in GOAL_REACHED state it can be closed by anyone
making sure funds cannot be stuck waiting for an administrator to close
it.

Anyone can contribute to the presale via Controller (CONTRIBUTE_ROLE).

Refunds must be claimed directly from the presale contract.

Shareholder tokens are minted when processing the contribution.
Tokens are not immediately available to contributors but vesting based
on vestingCliffPeriod and vestingCompletePeriod con�igured for the contract.
vestingCliffPeriod can only start after the presale period ends. Since the

29.03.2021 AragonBlack Fundraising | ConsenSys Diligence

https://consensys.net/diligence/audits/2019/11/aragonblack-fundraising/ 29/73

presale goal can be reached before the end of the presale period tokens
will not start vesting immediately after the presale succeeded.

Depending on the initial con�iguration of the presale contract,
Shareholder tokens may start vesting right after the presale period, even
though the presale failed, giving contributors stake in the DAO.

Investors should claim a refund and abandon the DAO in case the presale
fails. Trading with the MarketMaker opens only of it he presale succeeds.
Tokens should not vest to an extent that would allow majority voting
power in the Shareholder application before investors had enough time
to refund their tokens (Board and Shareholder might vote on presale
contract update).

Contract upgraded must be performed via the DAO/ AragonApp update
mechanisms. Upgrades must be proposed by BOARD and approved by
SHARE , therefore, the presale contract cannot be upgraded through the

DAO/ AragonApp upgrade mechanisms as this requires Shareholder
approval and Shareholder tokens are not vested yet.

Settings cannot be updated after initialization, Bene�iciary cannot be
updated.

Unauthenticated functionality is protected by a reentrancy guard.

There is an incentive to front-run transactions or act based on the fact
that a presale appears to be successful soon (e.g. 40% goal is achieved -
a Board member then decides to buy majority stake to gain control of
the fundraising DAO)

Board members can participate in the presale.

Depending on the amount of Shareholder token available, single
individuals might become a majority Stakeholder at a �ixed rate from the
presale as there is no limit for individual buyers. Investors might want to
consider that before or even after they invest someone might be able to
buy close to all available tokens at minimal risk of losing funds.

Fundraising

Following the successful presale phase, the actual
BondingCurveMarketMaker based fundraising starts. It allows new investors

29.03.2021 AragonBlack Fundraising | ConsenSys Diligence

https://consensys.net/diligence/audits/2019/11/aragonblack-fundraising/ 30/73

to buy Shareholder token and therefore stake in the DAO for whitelisted
collateral. The price is regulated by a BancorFormula. Buy or sell orders must
be placed and claimed after a batch of orders has been executed.
Shareholder token can be sold for collateral at any point in time. They are
transferable and there is no limit on how many tokens one account can hold.

Any Ethereum Account can interact with the AragonFundraisingController to
invest in the fundraising campaign (CREATE_BUY_ORDER , CREATE_SELL_ORDER).
Investors get Shareholder tokens in return that give them a stake in the
Voting application for Shareholders.

Investors turn into Shareholders. They can use their stake of Shareholder
token to participate in Shareholder Votes.

Shareholders can transfer their Shareholder token. The amount of
tokens per Shareholder is not limited.

Shareholder tokens are minted/burned and assigned/revoked from
Presale (contribute/refund) and the BatchedBancorMarkedMaker (buy/sell).

Shareholders can not create votes themselves. They rely on at least one
Board member to create a vote on the Shareholder voting application.

The Shareholder voting application owns the management role of all
permissions in the system. This means that any permission change
requires a Board member to propose this change to Shareholders which
in turn have to approve the change by casting their vote. The permission
manager for a speci�ic role can revoke or grant permissions to entities in
the system.

The Shareholder voting application owns critical DAO kernel roles like
APP_MANAGER_ROLE or CREATE_PERMISSION_ROLE . This means that any assignment

of new permissions or DAO application management (e.g. contract
upgrades) requires a Board member to propose this change to
Shareholders which in turn have to approve the change by casting their
vote.

Quorum and Support settings for the Board and Shareholder voting
applications are critical to the security of the system.

29.03.2021 AragonBlack Fundraising | ConsenSys Diligence

https://consensys.net/diligence/audits/2019/11/aragonblack-fundraising/ 31/73

A Board member can also be a Shareholder in the DAO. Members of
both user groups might also collude to create votings in the Shareholder
voting application that are subsequently passed by majority vote.

The FundraisingMultisigTemplate speci�ies the initial list of whitelisted
collateral (ANT , DAI). Additional collateral can be added by Board
members creating a vote on the Shareholder voting application to
approve the addition of a collateral token.

Actions or changes to the system proposed by Board members might be
blocked by passive or inactive Shareholders.

Adjusting quorum and support to address failing Shareholder
participation in votings might not be possible when the majority of
Shareholders are passive or inactive.

Shareholders can execute EVMScript (depending on the executor e.g.
call out to other contracts w/o value transfer) on behalf of their
TokenManager.

Board members require Shareholder approval to update the tap amount
for speci�ic collateral.

Board members can propose to call other contracts via
Agents.safeExecute() pending Shareholder approval.

Every Board member can create a new voting on the board voting
application.

Board members can vote on changing their voting applications quorum
and support.

Board members can vote on adding and removing new Board members.

Board members are bound to a membership token. Every Board member
has the same voting power.

Board members can vote on spending funds from the board vault
(bene�iciary in the system) via the board �inance app.

Board members can vote on opening the presale. This can even be done
before the actual open date that was speci�ied when deploying the DAO

29.03.2021 AragonBlack Fundraising | ConsenSys Diligence

https://consensys.net/diligence/audits/2019/11/aragonblack-fundraising/ 32/73

was hit.

Any Ethereum Account can initiate the withdrawal of an amount limited
by the Tap contract from the reserve to the bene�iciary. In most cases,
this will be an account acting in control or favor of Board members.

Board members can propose an update to fees, the bene�iciary account,
collateral tokens, tap rate, the token tap to Shareholders for approval.

Collaterals stored in and taken from the applications reserve are not
recorded in a �inance application. Only Tap can directly interact with the
reserves Vault functionality.

Board members can execute EVMScript (depending on the executor e.g.
call out to other contracts w/o value transfer) on behalf of their
TokenManager.

Board members can withdraw collateral tokens from the Board vault and
invest in getting more stake in the Shareholder voting application to
change system settings in their favor.

General

Compromise of individual accounts (Bene�iciary, Board members, major
Stakeholders) or contracts can put the system at risk.

The early stages of fundraising may be susceptible to manipulations as it
is easier to get majority voting rights.

Setup and permission of the fundraising application with the DAO is
critical. Miscon�iguration can easily expose critical functionality to
potential attackers.

The Bene�iciary can potentially block presale funds or funds from sell
orders if it reverts when receiving ETH or tokens (e.g. fees). This is
possible if the collateral is either ETH or an ERC-20 compatible token with
callbacks (e.g. ERC-777 or ERC-223).

MarketMaking - is susceptible to price manipulations (Pump & Dump).

A general issue with creating votings that perform actions if they pass is
that the executed actions need to be reviewed by all the voters to make

29.03.2021 AragonBlack Fundraising | ConsenSys Diligence

https://consensys.net/diligence/audits/2019/11/aragonblack-fundraising/ 33/73

sure that e.g. a vote asking to execute a benign action actually executes
that benign action and not a critical one instead (requires means to
review evmscript provided with the vote action).

Implications of using a democracy based system on the fundraising
application should be researched further. E.g. the majority can decide
critical aspects of the system: steal collaterals and Board tokens; destroy
the system; blocked decisions; parties may abstain from voting or
generally not interested in voting.

Using multiple bonding curves for a single token can be problematic.
Currently, the Shareholder token is issued using multiple different
bonding curves (one per each collateral token). It is yet to be veri�ied
whether this is safe and working correctly. The �irst assumption is that if
someone buys Shareholder tokens for some collateral token (say, DAI),
price in DAI will go up. It looks like price in any other collateral (e.g. ETH)
will go down (because in other tokens total supply will still grow, but the
reserve balance will remain the same) which might be problematic. We
suggest to further investigate the potential security implications of that
design.

The idea behind implementing Bonding Curves in a batched way is
mostly based on �ighting against front-running. While getting rid of front-
running in its pure way, the batching algorithm introduces multiple price
manipulation techniques that are very similar to front-running and
sometimes even more dangerous.

If some whale buys a huge amount of tokens, it’s pro�itable for
anyone to buy tokens also in this batch because there is a very high
chance that the price will go up after this batch and the next batch
will be with a much higher price. Because of doing so, the price will
go even higher. It’s bad for the whale because they’ll buy for a
slightly higher price than they intended to. The thing is that a whale
will not immediately sell the tokens back (because of high costs). But
all other traders can sell everything back and make a pro�it.

6 Issues
Each issue has an assigned severity:

29.03.2021 AragonBlack Fundraising | ConsenSys Diligence

https://consensys.net/diligence/audits/2019/11/aragonblack-fundraising/ 34/73

Minor issues are subjective in nature. They are typically suggestions
around best practices or readability. Code maintainers should use their
own judgment as to whether to address such issues.

Medium issues are objective in nature but are not security vulnerabilities.
These should be addressed unless there is a clear reason not to.

Major issues are security vulnerabilities that may not be directly
exploitable or may require certain conditions in order to be exploited. All
major issues should be addressed.

Critical issues are directly exploitable security vulnerabilities that need to
be �ixed.

6.1 Collaterals are not guaranteed to be returned after a
batch is cancelled Major ✓ Fixed

Resolution

Fixed with AragonBlack/fundraising#162

Description

When traders open buy orders, they also transfer collateral tokens to the
market maker contract. If the current batch is going to be cancelled, there is
a chance that these collateral tokens will not be returned to the traders.

Examples

If a current collateralsToBeClaimed value is zero on a batch initialization and in
this new batch only buy orders are submitted, collateralsToBeClaimed value will
still stay zero.

At the same time if in Tap contract tapped amount was bigger than
_maximumWithdrawal() on batch initialisation, _maximumWithdrawal() will most likely

increase when the traders transfer new collateral tokens with the buy orders.
And a bene�iciary will be able to withdraw part of these tokens. Because of
that, there might be not enough tokens to withdraw by the traders if the
batch is cancelled.

https://github.com/AragonBlack/fundraising/pull/162

29.03.2021 AragonBlack Fundraising | ConsenSys Diligence

https://consensys.net/diligence/audits/2019/11/aragonblack-fundraising/ 35/73

It’s partially mitigated by having floor value in Tap contract, but if there are
more collateral tokens in the batch than floor , the issue is still valid.

Recommendation

Ensure that tapped is not bigger than _maximumWithdrawal()

6.2 Fees can be changed during the batch Major ✓ Fixed

Resolution

Fixed with AragonBlack/fundraising@ 0941f53 by storing current fee in
meta batch.

Description

Shareholders can vote to change the fees. For buy orders, fees are withdrawn
immediately when order is submitted and the only risk is frontrunning by the
shareholder’s voting contract.

For sell orders, fees are withdrawn when a trader claims an order and
withdraws funds in _claimSellOrder function:

code/apps/batched-bancor-market-
maker/contracts/BatchedBancorMarketMaker.sol:L790-L792

if (fee > 0) {
 reserve.transfer(_collateral, beneficiary, fee);
}

Fees can be changed between opening order and claiming this order which
makes the fees unpredictable.

Recommendation

Fees for an order should not be updated during its lifetime.

6.3 Bancor formula should not be updated during the
batch Major ✓ Fixed

https://github.com/AragonBlack/fundraising/pull/155/commits/0941f532de3073ad70da9b513fd7dfd0376e6bca

29.03.2021 AragonBlack Fundraising | ConsenSys Diligence

https://consensys.net/diligence/audits/2019/11/aragonblack-fundraising/ 36/73

Resolution

Fixed with AragonBlack/fundraising@ a8c2e21 by storing a ref to the
Formula with the meta batch.

Description

Shareholders can vote to change the bancor formula contract. That can
make a price in the current batch unpredictable.

code/apps/batched-bancor-market-
maker/contracts/BatchedBancorMarketMaker.sol:L212-L216

Recommendation

Bancor formula update should be executed in the next batch or with a
timelock that is greater than batch duration.

6.4 Maximum slippage shouldn’t be updated for the
current batch Major ✓ Fixed

Resolution

Fixed with AragonBlack/fundraising@ aa4f03e by storing slippage with
the batch.

Description

When anyone submits a new order, the batch price is updated and it’s
checked whether the price slippage is acceptable. The problem is that the

function updateFormula(IBancorFormula _formula) external auth(UPDATE_FORMULA
 require(isContract(_formula), ERROR_CONTRACT_IS_EOA);

 _updateFormula(_formula);
}

https://github.com/AragonBlack/fundraising/pull/155/commits/a8c2e21b52a90b0f167cfcd67ecd1c6b1c664416
https://github.com/AragonBlack/fundraising/pull/155/commits/aa4f03ef86c0f60ed2e82a87845d638738b8cdba

29.03.2021 AragonBlack Fundraising | ConsenSys Diligence

https://consensys.net/diligence/audits/2019/11/aragonblack-fundraising/ 37/73

maximum slippage can be updated during the batch and traders cannot be
sure that price is limited as they initially expected.

code/apps/batched-bancor-market-
maker/contracts/BatchedBancorMarketMaker.sol:L487-L489

Additionally, if a maximum slippage is updated to a lower value, some of the
orders that should lower the current slippage will also revert.

Recommendation

Save a slippage value on batch initialization and use it during the current
batch.

6.5 AragonFundraisingController - an untapped address in
toReset can block attempts of opening Trading after
presale Major ✓ Fixed

Resolution

Fixed with AragonBlack/fundraising@ 9451147 by checking if token is
tapped. Gas consumption is increased due to external call to Tap to
check if token is actually tapped. The number of tokens to be reset is
capped.

Description

AragonFundraisingController can be initialized with a list of token addresses
_toReset that are to be reset when trading opens after the presale. These

addresses are supposed to be addresses of tapped tokens. However, the list
needs to be known when initializing the contract but the tapped tokens are
added after initialization when calling addCollateralToken (and tapped with
_rate>0). This can lead to an inconsistency that blocks openTrading .

function _slippageIsValid(Batch storage _batch, address _collateral) interna
 uint256 staticPricePPM = _staticPricePPM(_batch.supply, _batch.balance,
 uint256 maximumSlippage = collaterals[_collateral].slippage;

https://github.com/AragonBlack/fundraising/pull/157/commits/945114789434172e84b8449f75d5bca7cfa51812

29.03.2021 AragonBlack Fundraising | ConsenSys Diligence

https://consensys.net/diligence/audits/2019/11/aragonblack-fundraising/ 38/73

code/apps/aragon-
fundraising/contracts/AragonFundraisingController.sol:L99-L102

for (uint256 i = 0; i < _toReset.length; i++) {
 require(_tokenIsContractOrETH(_toReset[i]), ERROR_INVALID_TOKENS);
 toReset.push(_toReset[i]);
}

In case a token address makes it into the list of toReset tokens that is not
tapped it will be impossible to openTrading as tap.resetTappedToken(toReset[i]);

throws for untapped tokens. According to the permission setup in
FundraisingMultisigTemplate only Controller can call Marketmaker.open

code/apps/aragon-
fundraising/contracts/AragonFundraisingController.sol:L163-L169

function openTrading() external auth(OPEN_TRADING_ROLE) {
 for (uint256 i = 0; i < toReset.length; i++) {
 tap.resetTappedToken(toReset[i]);
 }

 marketMaker.open();
}

Recommendation

Instead of initializing the Controller with a list of tapped tokens to be reset
when trading opens, add a �lag to addCollateralToken to indicate that the token
should be reset when calling openTrading , making sure only tapped tokens are
added to this list. This also allows adding tapped tokens that are to be reset
at a later point in time.

6.6 Tap payments inconsistency Major ✓ Fixed

Resolution

Fixed with AragonBlack/fundraising#162

Description

https://github.com/AragonBlack/fundraising/pull/162

29.03.2021 AragonBlack Fundraising | ConsenSys Diligence

https://consensys.net/diligence/audits/2019/11/aragonblack-fundraising/ 39/73

Every time project managers want to withdraw tapped funds, the maximum
amount of withdrawable funds is calculated in tap._maximumWithdrawal function.
The method ensures that project managers can only withdraw unlocked
funds (balance exceeding the collaterals minimum comprised of the collaterals
con�igured floor including the minimum tokens to hold) even though their
allowance might be higher.

�. if there are no unlocked funds available, the maximum withdrawal is zero
(balance <= minimum).

�. if there are unlocked funds available (balance > minimum) and the allowance
(tapped) would result in a balance >= minimum , the maximum withdrawal
amount is the calculated allowance tapped .

�. if there are unlocked funds available (balance > minimum) and the allowance
(tapped) would result in a balance < minimum , the maximum withdrawal
amount tapped is capped to balance - minimum to ensure that the remaining
collateral balance is at least at the minimum and not below.

This means that in the case of (3) if there are not enough funds to withdraw
tapped (time*tap_rate) amount of tokens, it gets truncated and only a part of

tapped tokens gets withdrawn.

code/apps/tap/contracts/Tap.sol:L239-L255

function _maximumWithdrawal(address _token) internal view returns (uint256)
 uint256 toBeClaimed = controller.collateralsToBeClaimed(_token);
 uint256 floor = floors[_token];
 uint256 minimum = toBeClaimed.add(floor);
 uint256 balance = _token == ETH ? address(reserve).balance : ERC20(_toke
 uint256 tapped = (_currentBatchId().sub(lastWithdrawals[_token])).mul(ra

 if (minimum >= balance) {
 return 0;
 }

 if (balance >= tapped.add(minimum)) {
 return tapped;
 }

 return balance.sub(minimum);
}

https://github.com/AragonBlack/fundraising/blob/master/apps/tap/contracts/Tap.sol

29.03.2021 AragonBlack Fundraising | ConsenSys Diligence

https://consensys.net/diligence/audits/2019/11/aragonblack-fundraising/ 40/73

The problem is that the remaining tokens (tapped - capped_tapped) cannot be
claimed afterward and tapped value is reset to zero.

Remediation

In case the maximum withdrawal amount gets capped, the information about
the remaining tokens that the project team should have been able to
withdraw should be kept to allow them to withdraw the tokens at a later point
in time when there are enough funds for it.

6.7 [New] Tapped collaterals can be bought by traders
Medium Won't Fix

Resolution

This behaviour is intentional and if there is not a lot of funds in the pool,
shareholders have a priority to buy tokens even if these tokens can
already be withdrawn by the bene�iciary. It is done in order to protect
shareholders in case if the project is dying and running out of funds. The
downside of this behaviour is that it creates an additional incentive for
the bene�iciary to withdraw tapped tokens as soon and as often as
possible which creates a race condition.

Description

When a trader submits a sell order, _openSellOrder() function checks that there
are enough tokens in reserve by calling _poolBalanceIsSufficient function

code/apps/batched-bancor-market-
maker/contracts/BatchedBancorMarketMaker.sol:L483-L485

the problem is that because collateralsToBeClaimed[_collateral] has increased,
controller.balanceOf(address(reserve), _collateral) could also increase. It happens

function _poolBalanceIsSufficient(address _collateral) internal view returns
 return controller.balanceOf(address(reserve), _collateral) >= collateral
}

29.03.2021 AragonBlack Fundraising | ConsenSys Diligence

https://consensys.net/diligence/audits/2019/11/aragonblack-fundraising/ 41/73

so because controller.balanceOf() function subtracts tapped amount from the
reserve’s balance.

code/apps/aragon-
fundraising/contracts/AragonFundraisingController.sol:L358-L366

And tap.getMaximumWithdrawal(_token) could decrease because it depends on
collateralsToBeClaimed[_collateral]

apps/tap/contracts/Tap.sol:L231-L264

function balanceOf(address _who, address _token) public view isInitialized r
 uint256 balance = _token == ETH ? _who.balance : ERC20(_token).staticBal

 if (_who == address(reserve)) {
 return balance.sub(tap.getMaximumWithdrawal(_token));
 } else {
 return balance;
 }
}

29.03.2021 AragonBlack Fundraising | ConsenSys Diligence

https://consensys.net/diligence/audits/2019/11/aragonblack-fundraising/ 42/73

That means that the amount that bene�iciary can withdraw has just
decreased, which should not be possible.

Recommendation

Ensure that tappedAmount cannot be decreased once updated.

6.8 Presale - contributionToken double cast and invalid
comparison Medium ✓ Fixed

function _tappedAmount(address _token) internal view returns (uint256) {
 uint256 toBeKept = controller.collateralsToBeClaimed(_token).add(floors[
 uint256 balance = _token == ETH ? address(reserve).balance : ERC20(_toke
 uint256 flow = (_currentBatchId().sub(lastTappedAmountUpdates[_token])).
 uint256 tappedAmount = tappedAmounts[_token].add(flow);
 /**
 * whatever happens enough collateral should be
 * kept in the reserve pool to guarantee that
 * its balance is kept above the floor once
 * all pending sell orders are claimed
 */

 /**
 * the reserve's balance is already below the balance to be kept
 * the tapped amount should be reset to zero
 */
 if (balance <= toBeKept) {
 return 0;
 }

 /**
 * the reserve's balance minus the upcoming tap flow would be below the ba
 * the flow should be reduced to balance - toBeKept
 */
 if (balance <= toBeKept.add(tappedAmount)) {
 return balance.sub(toBeKept);
 }

 /**
 * the reserve's balance minus the upcoming flow is above the balance to b
 * the flow can be added to the tapped amount
 */
 return tappedAmount;
}

29.03.2021 AragonBlack Fundraising | ConsenSys Diligence

https://consensys.net/diligence/audits/2019/11/aragonblack-fundraising/ 43/73

Resolution

Fixed with AragonBlack/fundraising@ 61f5803 .

Description

The Presale can be con�igured to accept ETH or a valid ERC20 token. This
token is stored as an ERC20 contract type in the state variable contributionToken

. It is then directly compared to constant ETH which is address(0x0) in various
locations. Additionally, the _transfer function double casts the token to ERC20

if the contributionToken is passed as an argument.

Examples

contribute - invalid comparison of contract type against address(0x00) .
Even though this is accepted in solidity <0.5.0 it is going to raise a
compiler error with newer versions (>=0.5.0).

code/apps/presale/contracts/Presale.sol:L163-L170

_transfer - double cast token to ERC20 if it is the contribution token.

code/apps/presale/contracts/Presale.sol:L344-L344

Recommendation

function contribute(address _contributor, uint256 _value) external payable n
 require(state() == State.Funding, ERROR_INVALID_STATE);

 if (contributionToken == ETH) {
 require(msg.value == _value, ERROR_INVALID_CONTRIBUTE_VALUE);
 } else {
 require(msg.value == 0, ERROR_INVALID_CONTRIBUTE_VALUE);
 }

require(ERC20(_token).safeTransfer(_to, _amount), ERROR_TOKEN_TRANSFER_REVER

https://github.com/AragonBlack/fundraising/commit/61f58035f3ab4a33161260f90ea9318d78426078

29.03.2021 AragonBlack Fundraising | ConsenSys Diligence

https://consensys.net/diligence/audits/2019/11/aragonblack-fundraising/ 44/73

contributionToken can either be ETH or a valid ERC20 contract address. It is
therefore recommended to store the token as an address type instead of the
more precise contract type to resolve the double cast and the invalid
contract type to address comparison or cast the ERC20 type to address()

before comparison.

6.9 Fees are not returned for buy orders if a batch is
canceled Medium Won't Fix

Resolution

This issue has been addressed with the following statement:

The only situation where a batch can be cancelled is when a
collateral is un-whitelisted. This is obviously a very critical
operation that we introduced just in case the collateral
happened to be malicious token. Handling the ability to return
fees in case a batch order is cancelled would thus add a lot of
computation overhead for: a. a very unlikely situation b. where
the fees would anyhow be returned in a malicious token. c.
given a small amount [it’s a fee and not the main amount]. We
�igured out that it was a bad decision to add gas overhead to all
orders just to prevent this situation.

Description

Every trader pays fees on each buy order and transfers it directly to the
beneficiary .

code/apps/batched-bancor-market-
maker/contracts/BatchedBancorMarketMaker.sol:L706-L713

29.03.2021 AragonBlack Fundraising | ConsenSys Diligence

https://consensys.net/diligence/audits/2019/11/aragonblack-fundraising/ 45/73

uint256 fee = _value.mul(buyFeePct).div(PCT_BASE);
uint256 value = _value.sub(fee);

// collect fee and collateral
if (fee > 0) {
 _transfer(_buyer, beneficiary, _collateral, fee);
}
_transfer(_buyer, address(reserve), _collateral, value);

If the batch is canceled, fees are not returned to the traders because there is
no access to the bene�iciary account.

Additionally, fees are returned to traders for all the sell orders if the batch is
canceled.

Recommendation

Consider transferring fees to a bene�iciary only after the batch is over.

6.10 Tap - Controller should not be updateable Medium ✓ Fixed

Resolution

Fixed with AragonBlack/fundraising@ f6054443 by removing update
functionality.

Description

Similar to the issue 6.11, Tap allows updating the Controller contract it is
using. The permission is currently not assigned in the
FundraisingMultisigTemplate but might be used in custom deployments.

code/apps/tap/contracts/Tap.sol:L117-L125

https://github.com/AragonBlack/fundraising/pull/162/commits/f6054443ecd9f380f99f6609c8463b46a815e61c

29.03.2021 AragonBlack Fundraising | ConsenSys Diligence

https://consensys.net/diligence/audits/2019/11/aragonblack-fundraising/ 46/73

Recommendation

To avoid inconsistencies, we suggest to remove this functionality and provide
a guideline on how to safely upgrade components of the system.

6.11 Tap - reserve can be updated in Tap but not in
MarketMaker or Controller Medium ✓ Fixed

Resolution

Fixed with AragonBlack/fundraising@ 987720b1 by removing update
functionality.

Description

The address of the pool/reserve contract can be updated in Tap if someone
owns the UPDATE_RESERVE_ROLE permission. The permission is currently not
assigned in the template.

The reserve is being referenced by multiple Contracts. Tap interacts with it to
transfer funds to the bene�iciary, Controller adds new protected tokens, and
MarketMaker transfers funds when someone sells their Shareholder token.

Updating reserve only in Tap is inconsistent with the system as the other
contracts are still referencing the old reserve unless they are updated via the
Aragon Application update mechanisms.

code/apps/tap/contracts/Tap.sol:L127-L135

/**
 * @notice Update controller to `_controller`
 * @param _controller The address of the new controller contract
*/
function updateController(IAragonFundraisingController _controller) external
 require(isContract(_controller), ERROR_CONTRACT_IS_EOA);

 _updateController(_controller);
}

https://github.com/AragonBlack/fundraising/pull/162/commits/987720b1e46c210b5b08e1df663125500c013576

29.03.2021 AragonBlack Fundraising | ConsenSys Diligence

https://consensys.net/diligence/audits/2019/11/aragonblack-fundraising/ 47/73

Recommendation

Remove the possibility to update reserve in Tap to keep the system
consistent. Provide information about update mechanisms in case the
reserve needs to be updated for all components.

6.12 Presale can be opened earlier than initially assigned
date Medium ✓ Fixed

Resolution

Fixed with AragonBlack/fundraising@ 0726e29 .

Description

There are 2 ways how presale opening date can be assigned. Either it’s
de�ined on initialization or the presale will start when open() function is
executed.

code/apps/presale/contracts/Presale.sol:L144-L146

if (_openDate != 0) {
 _setOpenDate(_openDate);
}

The problem is that even if openDate is assigned to some non-zero date, it can
still be opened earlier by calling open() function.

code/apps/presale/contracts/Presale.sol:L152-L156

/**
 * @notice Update reserve to `_reserve`
 * @param _reserve The address of the new reserve [pool] contract
*/
function updateReserve(Vault _reserve) external auth(UPDATE_RESERVE_ROLE) {
 require(isContract(_reserve), ERROR_CONTRACT_IS_EOA);

 _updateReserve(_reserve);
}

https://github.com/AragonBlack/fundraising/pull/159/commits/0726e29daae2bad953f9a8a9a82b3611a46098cf

29.03.2021 AragonBlack Fundraising | ConsenSys Diligence

https://consensys.net/diligence/audits/2019/11/aragonblack-fundraising/ 48/73

function open() external auth(OPEN_ROLE) {
 require(state() == State.Pending, ERROR_INVALID_STATE);

 _open();
}

Recommendation

Require that openDate is not set (0) when someone manually calls the open()

function.

6.13 Presale - should not allow zero value contributions Minor

✓ Fixed

Resolution

Fixed with AragonBlack/fundraising@ 6a6e222 .

Description

The Presale accepts zero value contributions emitting a contribution event if
none of the Aragon components (TokenManager, MinimeToken) raises an
exception.

code/apps/presale/contracts/Presale.sol:L163-L173

Recommendation

function contribute(address _contributor, uint256 _value) external payable n
 require(state() == State.Funding, ERROR_INVALID_STATE);

 if (contributionToken == ETH) {
 require(msg.value == _value, ERROR_INVALID_CONTRIBUTE_VALUE);
 } else {
 require(msg.value == 0, ERROR_INVALID_CONTRIBUTE_VALUE);
 }

 _contribute(_contributor, _value);
}

https://github.com/AragonBlack/fundraising/commit/6a6e222de5e2b074e18944e5300539edf96db724

29.03.2021 AragonBlack Fundraising | ConsenSys Diligence

https://consensys.net/diligence/audits/2019/11/aragonblack-fundraising/ 49/73

Reject zero value ETH or ERC20 contributions.

6.14 Compiler Warnings - Function state mutability can be
restricted to view Minor ✓ Fixed

Resolution

Fixed with AragonBlack/fundraising@ cfd677a .

Description

The following methods are not state-changing and can, therefore, be
restricted to view .

https://github.com/AragonBlack/fundraising/pull/158/commits/cfd677a9976f101f6d582ffc56f940275df14863

29.03.2021 AragonBlack Fundraising | ConsenSys Diligence

https://consensys.net/diligence/audits/2019/11/aragonblack-fundraising/ 50/73

Recommendation

Restrict function state mutability of the listed methods to view .

6.15 FundraisingMultisigTemplate - should use
BaseTemplate._createPermissionForTemplate() to

assign permissions to itself Minor ✓ Fixed

Resolution

Fixed with AragonBlack/fundraising@ dd153e0 .

,/templates/multisig/contracts/FundraisingMultisigTemplate.sol:485:5: Warning: Function st
 function _daoCache() internal returns (Kernel dao) {
 ^ (Relevant source part starts here and spans across multiple lines).
,/templates/multisig/contracts/FundraisingMultisigTemplate.sol:491:5: Warning: Function st
 function _boardAppsCache() internal returns (TokenManager boardTM, Voting boardVoting,
 ^ (Relevant source part starts here and spans across multiple lines).
,/templates/multisig/contracts/FundraisingMultisigTemplate.sol:500:5: Warning: Function st
 function _shareAppsCache() internal returns (TokenManager shareTM, Voting shareVoting)
 ^ (Relevant source part starts here and spans across multiple lines).
,/templates/multisig/contracts/FundraisingMultisigTemplate.sol:507:5: Warning: Function st
 function _fundraisingAppsCache() internal returns (Agent reserve, Presale presale, Mar
 ^ (Relevant source part starts here and spans across multiple lines).
,/templates/multisig/contracts/FundraisingMultisigTemplate.sol:541:5: Warning: Function st
 function _vaultCache() internal returns (Vault vault) {
 ^ (Relevant source part starts here and spans across multiple lines).
,/templates/multisig/contracts/FundraisingMultisigTemplate.sol:547:5: Warning: Function st
 function _shareTMCache() internal returns (TokenManager shareTM) {
 ^ (Relevant source part starts here and spans across multiple lines).
,/templates/multisig/contracts/FundraisingMultisigTemplate.sol:553:5: Warning: Function st
 function _reserveCache() internal returns (Agent reserve) {
 ^ (Relevant source part starts here and spans across multiple lines).
,/templates/multisig/contracts/FundraisingMultisigTemplate.sol:559:5: Warning: Function st
 function _presaleCache() internal returns (Presale presale) {
 ^ (Relevant source part starts here and spans across multiple lines).
,/templates/multisig/contracts/FundraisingMultisigTemplate.sol:565:5: Warning: Function st
 function _controllerCache() internal returns (Controller controller) {
 ^ (Relevant source part starts here and spans across multiple lines).
,/templates/multisig/contracts/FundraisingMultisigTemplate.sol:577:5: Warning: Function st
 function _ensureBoardAppsCache() internal {
 ^ (Relevant source part starts here and spans across multiple lines).
,/templates/multisig/contracts/FundraisingMultisigTemplate.sol:588:5: Warning: Function st
 function _ensureShareAppsCache() internal {
 ^ (Relevant source part starts here and spans across multiple lines).
,/templates/multisig/contracts/FundraisingMultisigTemplate.sol:597:5: Warning: Function st
 function _ensureFundraisingAppsCache() internal {
 ^ (Relevant source part starts here and spans across multiple lines).

https://github.com/AragonBlack/fundraising/pull/158/commits/dd153e0ee9e9a163e4680302a54e357844b21601

29.03.2021 AragonBlack Fundraising | ConsenSys Diligence

https://consensys.net/diligence/audits/2019/11/aragonblack-fundraising/ 51/73

Description

The template temporarily assigns permissions to itself to be able to con�igure
parts of the system. This can either be done by calling
acl.createPermission(address(this), app, role, manager) or by using a distinct

method provided with the DAO-Templates BaseTemplate
_createPermissionForTemplate .

We suggest that in order to make it clear that permissions are assigned to the
template and make it easier to audit that permissions are either revoked or
transferred before the DAO is transferred to the new user, the method
provided and used with the default Aragon DAO-Templates should be used.

use createPermission if permissions are assigned to an entity other than
the template contract.

use _createPermissionForTemplate when creating permissions for the
template contract.

code/templates/multisig/contracts/FundraisingMultisigTemplate.sol:L333-
L334

Sidenote: pass address(this) instead of the contract instance to
createPermission .

Recommendation

Use BaseTemplate._createPermissionForTemplate to assign permissions to the
template.

6.16 FundraisingMultisigTemplate - misleading comments
Minor ✓ Fixed

Resolution

// create and grant ADD_PROTECTED_TOKEN_ROLE to this template
acl.createPermission(this, controller, controller.ADD_COLLATERAL_TOKEN_ROLE(

29.03.2021 AragonBlack Fundraising | ConsenSys Diligence

https://consensys.net/diligence/audits/2019/11/aragonblack-fundraising/ 52/73

Fixed with AragonBlack/fundraising@ 3b4700a and
AragonBlack/fundraising@ 40c465fc .

Description

The comment mentions ADD_PROTECTED_TOKEN_ROLE but permissions for
ADD_COLLATERAL_TOKEN_ROLE are created.

code/templates/multisig/contracts/FundraisingMultisigTemplate.sol:L333-
L334

code/templates/multisig/contracts/FundraisingMultisigTemplate.sol:L355-
L356

Recommendation

ADD_PROTECTED_TOKEN_ROLE in the comment should be ADD_COLLATERAL_TOKEN_ROLE .

6.17 FundraisingMultisigTemplate - unnecessary cast to
address Minor ✓ Fixed

Resolution

Fixed with AragonBlack/fundraising@ 0e00269 .

Description

The addresses of DAI (argument address _dai) and AND (argument address _ant

) are unnecessarily cast to address .

// create and grant ADD_PROTECTED_TOKEN_ROLE to this template
acl.createPermission(this, controller, controller.ADD_COLLATERAL_TOKEN_ROLE(

// transfer ADD_PROTECTED_TOKEN_ROLE
_transferPermissionFromTemplate(acl, controller, shareVoting, controller.ADD

https://github.com/AragonBlack/fundraising/pull/158/commits/3b4700acc9f5d5ac960ed294535e260179c005fb
https://github.com/AragonBlack/fundraising/pull/158/commits/40c465fc4a0e9ab0e88ce7125eb8d2ab79600630
https://github.com/AragonBlack/fundraising/pull/158/commits/0e00269aad5ac4f1dbd5d81c9a03c849a325e570

29.03.2021 AragonBlack Fundraising | ConsenSys Diligence

https://consensys.net/diligence/audits/2019/11/aragonblack-fundraising/ 53/73

code/templates/multisig/contracts/FundraisingMultisigTemplate.sol:L58-
L76

constructor(
 DAOFactory _daoFactory,
 ENS _ens,
 MiniMeTokenFactory _miniMeFactory,
 IFIFSResolvingRegistrar _aragonID,
 address _dai,
 address _ant
)
 BaseTemplate(_daoFactory, _ens, _miniMeFactory, _aragonID)
 public
{
 _ensureAragonIdIsValid(_aragonID);
 _ensureMiniMeFactoryIsValid(_miniMeFactory);
 _ensureTokenIsContractOrETH(_dai);
 _ensureTokenIsContractOrETH(_ant);

 collaterals.push(address(_dai));
 collaterals.push(address(_ant));
}

Recommendation

Both arguments are already of type address , therefore remove the explicit
cast to address() when pushing to the collaterals array.

6.18 FundraisingMultisigTemplate - unused import ERC20
Minor ✓ Fixed

Resolution

Fixed with AragonBlack/fundraising@ 73481d1 .

Description

The interface ERC20 is imported but never used.

code/templates/multisig/contracts/FundraisingMultisigTemplate.sol:L4-L4

https://github.com/AragonBlack/fundraising/pull/158/commits/73481d18db317d0c6a00d36b1c0ecc6b576a619e

29.03.2021 AragonBlack Fundraising | ConsenSys Diligence

https://consensys.net/diligence/audits/2019/11/aragonblack-fundraising/ 54/73

import "@aragon/os/contracts/lib/token/ERC20.sol";

Recommendation

Remove the unused import.

6.19 FundraisingMultisigTemplate - DAI/ANT token address
cannot be zero Minor ✓ Fixed

Resolution

Fixed with AragonBlack/fundraising@ da561ce .

Description

The fundraising template is con�igured with the DAI and ANT token address
upon deployment and checks if the provided addresses are valid. The check
performed is _ensureTokenIsContractOrETH() which allows the address(0) (constant
for ETH) for the token contracts. However, address(0) is not a valid option for
either DAI or ANT and the contract expects a valid token address to be
provided as the deployment of a new DAO will have unexpected results
(collateral ETH is added instead of an ERC20 token) or fail (DAI == ANT == 0x0

).

code/templates/multisig/contracts/FundraisingMultisigTemplate.sol:L71-
L72

_ensureTokenIsContractOrETH(_dai);
_ensureTokenIsContractOrETH(_ant);

code/templates/multisig/contracts/FundraisingMultisigTemplate.sol:L572-
L575

 function _ensureTokenIsContractOrETH(address _token) internal view returns
 require(isContract(_token) || _token == ETH, ERROR_BAD_SETTINGS);
}

https://github.com/AragonBlack/fundraising/pull/158/commits/da561ced02b14f49ddefaa07b6b905233b41c498

29.03.2021 AragonBlack Fundraising | ConsenSys Diligence

https://consensys.net/diligence/audits/2019/11/aragonblack-fundraising/ 55/73

Recommendation

Use isContract() instead of _ensureTokenIsContractOrETH() and optionally require
that collateral[0] != collateral[1] as an additional check to prevent that the
fundraising template is being deployed with an invalid con�iguration.

7 Tool-Based Analysis
Several tools were used to perform an automated analysis of the reviewed
contracts. These issues were reviewed by the audit team, and relevant issues
are listed in the Issue Details section.

7.1 MythX

MythX is a security analysis API for Ethereum smart
contracts. It performs multiple types of analysis, including
fuzzing and symbolic execution, to detect many common
vulnerability types. The tool was used for automated
vulnerability discovery for all audited contracts and
libraries. More details on MythX can be found at mythx.io.

7.2 Ethlint

Ethlint is an open-source project for linting Solidity
code. Only security-related issues were reviewed by
the audit team.

Below is the raw output of the Ethlint vulnerability
scan:

$ solium --version
Solium version 1.2.5

$ solium -d
apps/aragon-fundraising/contracts/AragonFundraisingController.sol
 370:5 error Only use indent of 4 spaces. indentation

templates/multisig/contracts/FundraisingMultisigTemplate.sol
 573:5 error Only use indent of 4 spaces. indentation

7.3 Surya

https://mythx.io/

29.03.2021 AragonBlack Fundraising | ConsenSys Diligence

https://consensys.net/diligence/audits/2019/11/aragonblack-fundraising/ 56/73

Surya is a utility tool for smart contract systems. It provides a number of
visual outputs and information about the structure of smart contracts. It also
supports querying the function call graph in multiple ways to aid in the
manual inspection and control �low analysis of contracts.

Below is a complete list of functions with their visibility and modi�iers (please
use horizontal scroll to view all columns):

Contracts Description Table

Contract Type Bases

└
Function

Name
Visibility Mutability Modi�iers

AragonFu
ndraising
Controller

Implement
ation

EtherTokenCons
tant, IsContract,
IAragonFundrai
singController,

AragonApp

└ initialize External ❗ 🛑 onlyInit

└
updateBen

e�iciary
External ❗ 🛑 auth

└ updateFees External ❗ 🛑 auth

└
openPresal

e
External ❗ 🛑 auth

└
closePresal

e
External ❗ 🛑

isInitialize
d

└ contribute External ❗ 💵 auth

└ refund External ❗ 🛑
isInitialize

d

└
openTradin

g
External ❗ 🛑 auth

└
openBuyOr

der
External ❗ 💵 auth

29.03.2021 AragonBlack Fundraising | ConsenSys Diligence

https://consensys.net/diligence/audits/2019/11/aragonblack-fundraising/ 57/73

Contract Type Bases

└
openSellOr

der
External ❗ 🛑 auth

└
claimBuyOr

der
External ❗ 🛑

isInitialize
d

└
claimSellOr

der
External ❗ 🛑

isInitialize
d

└
addCollater

alToken
External ❗ 🛑 auth

└
reAddColla
teralToken

External ❗ 🛑 auth

└
removeColl
ateralToken

External ❗ 🛑 auth

└
updateColl
ateralToken

External ❗ 🛑 auth

└

updateMaxi
mumTapRa
teIncreaseP

ct

External ❗ 🛑 auth

└

updateMaxi
mumTapFlo
orDecrease

Pct

External ❗ 🛑 auth

└
addTokenT

ap
External ❗ 🛑 auth

└
updateToke

nTap
External ❗ 🛑 auth

└ withdraw External ❗ 🛑 auth

└ token Public ❗
isInitialize

d

29.03.2021 AragonBlack Fundraising | ConsenSys Diligence

https://consensys.net/diligence/audits/2019/11/aragonblack-fundraising/ 58/73

Contract Type Bases

└
contributio

nToken
Public ❗

isInitialize
d

└
getMaximu
mWithdraw

al
Public ❗

isInitialize
d

└
collateralsT
oBeClaime

d
Public ❗

isInitialize
d

└ balanceOf Public ❗
isInitialize

d

└
_tokenIsCo
ntractOrET

H
Internal 🔒

BancorFor
mula

Implement
ation

IBancorFormula,
Utils

└
<Construct

or>
Public ❗ 🛑

└
calculatePu
rchaseRetu

rn
Public ❗ NO❗

└
calculateSa

leReturn
Public ❗ NO❗

└
calculateCr
ossConnec
torReturn

Public ❗ NO❗

└ power Internal 🔒

└ generalLog Internal 🔒

└ �loorLog2 Internal 🔒

29.03.2021 AragonBlack Fundraising | ConsenSys Diligence

https://consensys.net/diligence/audits/2019/11/aragonblack-fundraising/ 59/73

Contract Type Bases

└
�indPosition
InMaxExpA

rray
Internal 🔒

└ generalExp Internal 🔒

└ optimalLog Internal 🔒

└ optimalExp Internal 🔒

BatchedB
ancorMar
ketMaker

Implement
ation

EtherTokenCons
tant, IsContract,

AragonApp

└ initialize External ❗ 🛑 onlyInit

└ open External ❗ 🛑 auth

└
updateFor

mula
External ❗ 🛑 auth

└
updateBen

e�iciary
External ❗ 🛑 auth

└ updateFees External ❗ 🛑 auth

└
addCollater

alToken
External ❗ 🛑 auth

└
removeColl
ateralToken

External ❗ 🛑 auth

└
updateColl
ateralToken

External ❗ 🛑 auth

└
openBuyOr

der
External ❗ 💵 auth

└
openSellOr

der
External ❗ 🛑 auth

29.03.2021 AragonBlack Fundraising | ConsenSys Diligence

https://consensys.net/diligence/audits/2019/11/aragonblack-fundraising/ 60/73

Contract Type Bases

└
claimBuyOr

der
External ❗ 🛑

nonReentr
ant

isInitialize
d

└
claimSellOr

der
External ❗ 🛑

nonReentr
ant

isInitialize
d

└
claimCance
lledBuyOrd

er
External ❗ 🛑

nonReentr
ant

isInitialize
d

└
claimCance
lledSellOrd

er
External ❗ 🛑

nonReentr
ant

isInitialize
d

└
getCurrent

BatchId
Public ❗

isInitialize
d

└
getCollater

alToken
Public ❗

isInitialize
d

└ getBatch Public ❗
isInitialize

d

└
getStaticPri

cePPM
Public ❗

isInitialize
d

└
_staticPrice

PPM
Internal 🔒

└
_currentBat

chId
Internal 🔒

└
_bene�iciar

yIsValid
Internal 🔒

└ _feeIsValid Internal 🔒

29.03.2021 AragonBlack Fundraising | ConsenSys Diligence

https://consensys.net/diligence/audits/2019/11/aragonblack-fundraising/ 61/73

Contract Type Bases

└
_reserveRat

ioIsValid
Internal 🔒

└
_tokenMana
gerSettingI

sValid
Internal 🔒

└
_collateralV
alueIsValid

Internal 🔒

└
_bondAmo
untIsValid

Internal 🔒

└
_collateralIs
Whitelisted

Internal 🔒

└
_batchIsOv

er
Internal 🔒

└
_batchIsCa

ncelled
Internal 🔒

└
_userIsBuye

r
Internal 🔒

└
_userIsSelle

r
Internal 🔒

└
_poolBalan
ceIsSu�icie

nt
Internal 🔒

└
_slippageIs

Valid
Internal 🔒

└
_buySlippa
geIsValid

Internal 🔒

└
_sellSlippag

eIsValid
Internal 🔒

└
_currentBat

ch
Internal 🔒 🛑

29.03.2021 AragonBlack Fundraising | ConsenSys Diligence

https://consensys.net/diligence/audits/2019/11/aragonblack-fundraising/ 62/73

Contract Type Bases

└ _open Internal 🔒 🛑

└
_updateBen

e�iciary
Internal 🔒 🛑

└
_updateFor

mula
Internal 🔒 🛑

└
_updateFee

s
Internal 🔒 🛑

└
_cancelCur
rentBatch

Internal 🔒 🛑

└
_addCollate

ralToken
Internal 🔒 🛑

└
_removeCol
lateralToke

n
Internal 🔒 🛑

└
_updateColl
ateralToken

Internal 🔒 🛑

└
_openBuyO

rder
Internal 🔒 🛑

└
_openSellO

rder
Internal 🔒 🛑

└
_claimBuyO

rder
Internal 🔒 🛑

└
_claimSellO

rder
Internal 🔒 🛑

└
_claimCanc
elledBuyOr

der
Internal 🔒 🛑

└
_claimCanc
elledSellOr

der
Internal 🔒 🛑

29.03.2021 AragonBlack Fundraising | ConsenSys Diligence

https://consensys.net/diligence/audits/2019/11/aragonblack-fundraising/ 63/73

Contract Type Bases

└
_updatePric

ing
Internal 🔒 🛑

└ _transfer Internal 🔒 🛑

Presale
Implement

ation

EtherTokenCons
tant, IsContract,

AragonApp

└ initialize External ❗ 🛑 onlyInit

└ open External ❗ 🛑 auth

└ contribute External ❗ 💵
nonReentr
ant auth

└ refund External ❗ 🛑

nonReentr
ant

isInitialize
d

└ close External ❗ 🛑

nonReentr
ant

isInitialize
d

└
contributio
nToTokens

Public ❗
isInitialize

d

└ state Public ❗
isInitialize

d

└
_timeSince

Open
Internal 🔒

└
_setOpenD

ate
Internal 🔒 🛑

└

_setVesting
DatesWhen
OpenDateIs

Known

Internal 🔒 🛑

29.03.2021 AragonBlack Fundraising | ConsenSys Diligence

https://consensys.net/diligence/audits/2019/11/aragonblack-fundraising/ 64/73

Contract Type Bases

└ _open Internal 🔒 🛑

└ _contribute Internal 🔒 🛑

└ _refund Internal 🔒 🛑

└ _close Internal 🔒 🛑

└ _transfer Internal 🔒 🛑

Tap
Implement

ation

TimeHelpers,
EtherTokenCons
tant, IsContract,

AragonApp

└ initialize External ❗ 🛑 onlyInit

└
updateCon

troller
External ❗ 🛑 auth

└
updateRese

rve
External ❗ 🛑 auth

└
updateBen

e�iciary
External ❗ 🛑 auth

└

updateMaxi
mumTapRa
teIncreaseP

ct

External ❗ 🛑 auth

└

updateMaxi
mumTapFlo
orDecrease

Pct

External ❗ 🛑 auth

└
addTapped

Token
External ❗ 🛑 auth

└
removeTap
pedToken

External ❗ 🛑 auth

29.03.2021 AragonBlack Fundraising | ConsenSys Diligence

https://consensys.net/diligence/audits/2019/11/aragonblack-fundraising/ 65/73

Contract Type Bases

└
updateTap
pedToken

External ❗ 🛑 auth

└
resetTappe

dToken
External ❗ 🛑 auth

└ withdraw External ❗ 🛑 auth

└
getMaximu
mWithdraw

al
Public ❗

isInitialize
d

└
_currentBat

chId
Internal 🔒

└
_maximum
Withdrawal

Internal 🔒

└
_bene�iciar

yIsValid
Internal 🔒

└

_maximumT
apFloorDec
reasePctIsV

alid

Internal 🔒

└
_tokenIsCo
ntractOrET

H
Internal 🔒

└
_tokenIsTap

ped
Internal 🔒

└
_tapRateIsV

alid
Internal 🔒

└
_tapUpdate

IsValid
Internal 🔒

└
_tapRateUp
dateIsValid

Internal 🔒

29.03.2021 AragonBlack Fundraising | ConsenSys Diligence

https://consensys.net/diligence/audits/2019/11/aragonblack-fundraising/ 66/73

Contract Type Bases

└
_tapFloorU
pdateIsVali

d
Internal 🔒

└
_updateCo

ntroller
Internal 🔒 🛑

└
_updateRes

erve
Internal 🔒 🛑

└
_updateBen

e�iciary
Internal 🔒 🛑

└

_updateMa
ximumTapR
ateIncrease

Pct

Internal 🔒 🛑

└

_updateMa
ximumTapF
loorDecrea

sePct

Internal 🔒 🛑

└
_addTappe

dToken
Internal 🔒 🛑

└
_removeTa
ppedToken

Internal 🔒 🛑

└
_updateTap
pedToken

Internal 🔒 🛑

└
_resetTapp
edToken

Internal 🔒 🛑

└ _withdraw Internal 🔒 🛑

Fundraisin
gMultisigT

emplate

Implement
ation

EtherTokenCons
tant,

BaseTemplate

29.03.2021 AragonBlack Fundraising | ConsenSys Diligence

https://consensys.net/diligence/audits/2019/11/aragonblack-fundraising/ 67/73

Contract Type Bases

└
<Construct

or>
Public ❗ 🛑

BaseTempl
ate

└
prepareInst

ance
External ❗ 🛑 NO❗

└
installShare

Apps
External ❗ 🛑 NO❗

└
installFundr
aisingApps

External ❗ 🛑 NO❗

└
�inalizeInsta

nce
External ❗ 🛑 NO❗

└
_installBoar

dApps
Internal 🔒 🛑

└
_installShar

eApps
Internal 🔒 🛑

└
_installFund
raisingApps

Internal 🔒 🛑

└
_proxifyFun
draisingAp

ps
Internal 🔒 🛑

└
_initializePr

esale
Internal 🔒 🛑

└
_initializeM
arketMaker

Internal 🔒 🛑

└
_initializeTa

p
Internal 🔒 🛑

└
_initializeCo

ntroller
Internal 🔒 🛑

└
_setupColla

terals
Internal 🔒 🛑

29.03.2021 AragonBlack Fundraising | ConsenSys Diligence

https://consensys.net/diligence/audits/2019/11/aragonblack-fundraising/ 68/73

Contract Type Bases

└
_setupBoar
dPermissio

ns
Internal 🔒 🛑

└
_setupShar
ePermissio

ns
Internal 🔒 🛑

└
_setupFund
raisingPerm

issions
Internal 🔒 🛑

└ _cacheDao Internal 🔒 🛑

└
_cacheBoar

dApps
Internal 🔒 🛑

└
_cacheShar

eApps
Internal 🔒 🛑

└
_cacheFun
draisingAp

ps
Internal 🔒 🛑

└ _daoCache Internal 🔒 🛑

└
_boardApp

sCache
Internal 🔒 🛑

└
_shareApps

Cache
Internal 🔒 🛑

└
_fundraisin
gAppsCach

e
Internal 🔒 🛑

└
_clearCach

e
Internal 🔒 🛑

└
_vaultCach

e
Internal 🔒 🛑

29.03.2021 AragonBlack Fundraising | ConsenSys Diligence

https://consensys.net/diligence/audits/2019/11/aragonblack-fundraising/ 69/73

Contract Type Bases

└
_shareTMC

ache
Internal 🔒 🛑

└
_reserveCa

che
Internal 🔒 🛑

└
_presaleCa

che
Internal 🔒 🛑

└
_controller

Cache
Internal 🔒 🛑

└
_ensureTok
enIsContra

ctOrETH
Internal 🔒

└
_ensureBoa
rdAppsCac

he
Internal 🔒 🛑

└
_ensureSha
reAppsCac

he
Internal 🔒 🛑

└
_ensureFun
draisingAp
psCache

Internal 🔒 🛑

└
_registerAp

p
Internal 🔒 🛑

Legend

Symbol Meaning

🛑 Function can modify state

💵 Function is payable

7.4 Test Coverage Measurement

29.03.2021 AragonBlack Fundraising | ConsenSys Diligence

https://consensys.net/diligence/audits/2019/11/aragonblack-fundraising/ 70/73

Testing is implemented using Tru�le an all provided test cases pass.
However, the Presale contract fails to generate coverage statistics.

MarketMaker

Controller

Tap

Presale

@ablack/fundraising-batched-bancor-market-maker: 161 passing (14m)
@ablack/fundraising-batched-bancor-market-maker: -------------------------------|---------
@ablack/fundraising-batched-bancor-market-maker: File | % Stmts
@ablack/fundraising-batched-bancor-market-maker: -------------------------------|---------
@ablack/fundraising-batched-bancor-market-maker: contracts/ | 99.54
@ablack/fundraising-batched-bancor-market-maker: BatchedBancorMarketMaker.sol | 99.54
@ablack/fundraising-batched-bancor-market-maker: -------------------------------|---------
@ablack/fundraising-batched-bancor-market-maker: All files | 99.54
@ablack/fundraising-batched-bancor-market-maker: -------------------------------|---------

@ablack/fundraising-aragon-fundraising: 62 passing (9m)
@ablack/fundraising-aragon-fundraising: ----------------------------------|----------|----
@ablack/fundraising-aragon-fundraising: File | % Stmts | % B
@ablack/fundraising-aragon-fundraising: ----------------------------------|----------|----
@ablack/fundraising-aragon-fundraising: contracts/ | 97.96 |
@ablack/fundraising-aragon-fundraising: AragonFundraisingController.sol | 97.96 |
@ablack/fundraising-aragon-fundraising: ----------------------------------|----------|----
@ablack/fundraising-aragon-fundraising: All files | 97.96 |
@ablack/fundraising-aragon-fundraising: ----------------------------------|----------|----

@ablack/fundraising-tap: 49 passing (3m)
@ablack/fundraising-tap: ------------|----------|----------|----------|----------|--------
@ablack/fundraising-tap: File | % Stmts | % Branch | % Funcs | % Lines |Uncovere
@ablack/fundraising-tap: ------------|----------|----------|----------|----------|--------
@ablack/fundraising-tap: contracts/ | 99.02 | 94.83 | 100 | 99.06 |
@ablack/fundraising-tap: Tap.sol | 99.02 | 94.83 | 100 | 99.06 |
@ablack/fundraising-tap: ------------|----------|----------|----------|----------|--------
@ablack/fundraising-tap: All files | 99.02 | 94.83 | 100 | 99.06 |

lerna ERR! npm run test:coverage exited 1 in '@ablack/fundraising-presale'
npm ERR! code ELIFECYCLE
npm ERR! errno 1
npm ERR! @ablack/fundraising@1.0.0 coverage:presale: `lerna run --scope=@ablack/fundraisin
npm ERR! Exit status 1
npm ERR!
npm ERR! Failed at the @ablack/fundraising@1.0.0 coverage:presale script.
npm ERR! This is probably not a problem with npm. There is likely additional logging outpu

29.03.2021 AragonBlack Fundraising | ConsenSys Diligence

https://consensys.net/diligence/audits/2019/11/aragonblack-fundraising/ 71/73

Appendix 1 - Disclosure
ConsenSys Diligence (“CD”) typically receives compensation from one or
more clients (the “Clients”) for performing the analysis contained in these
reports (the “Reports”). The Reports may be distributed through other means,
including via ConsenSys publications and other distributions.

The Reports are not an endorsement or indictment of any particular project
or team, and the Reports do not guarantee the security of any particular
project. This Report does not consider, and should not be interpreted as
considering or having any bearing on, the potential economics of a token,
token sale or any other product, service or other asset. Cryptographic tokens
are emergent technologies and carry with them high levels of technical risk
and uncertainty. No Report provides any warranty or representation to any
Third-Party in any respect, including regarding the bugfree nature of code,
the business model or proprietors of any such business model, and the legal
compliance of any such business. No third party should rely on the Reports in
any way, including for the purpose of making any decisions to buy or sell any
token, product, service or other asset. Speci�ically, for the avoidance of
doubt, this Report does not constitute investment advice, is not intended to
be relied upon as investment advice, is not an endorsement of this project or
team, and it is not a guarantee as to the absolute security of the project. CD
owes no duty to any Third-Party by virtue of publishing these Reports.

PURPOSE OF REPORTS The Reports and the analysis described therein are
created solely for Clients and published with their consent. The scope of our
review is limited to a review of Solidity code and only the Solidity code we
note as being within the scope of our review within this report. The Solidity
language itself remains under development and is subject to unknown risks
and �laws. The review does not extend to the compiler layer, or any other
areas beyond Solidity that could present security risks. Cryptographic tokens
are emergent technologies and carry with them high levels of technical risk
and uncertainty.

CD makes the Reports available to parties other than the Clients (i.e., “third
parties”) – on its website. CD hopes that by making these analyses publicly
available, it can help the blockchain ecosystem develop technical best
practices in this rapidly evolving area of innovation.

29.03.2021 AragonBlack Fundraising | ConsenSys Diligence

https://consensys.net/diligence/audits/2019/11/aragonblack-fundraising/ 72/73

LINKS TO OTHER WEB SITES FROM THIS WEB SITE You may, through
hypertext or other computer links, gain access to web sites operated by
persons other than ConsenSys and CD. Such hyperlinks are provided for your
reference and convenience only, and are the exclusive responsibility of such
web sites’ owners. You agree that ConsenSys and CD are not responsible for
the content or operation of such Web sites, and that ConsenSys and CD shall
have no liability to you or any other person or entity for the use of third party
Web sites. Except as described below, a hyperlink from this web Site to
another web site does not imply or mean that ConsenSys and CD endorses
the content on that Web site or the operator or operations of that site. You
are solely responsible for determining the extent to which you may use any
content at any other web sites to which you link from the Reports. ConsenSys
and CD assumes no responsibility for the use of third party software on the
Web Site and shall have no liability whatsoever to any person or entity for the
accuracy or completeness of any outcome generated by such software.

TIMELINESS OF CONTENT The content contained in the Reports is current as
of the date appearing on the Report and is subject to change without notice.
Unless indicated otherwise, by ConsenSys and CD.

https://consensys.net/diligence/audits/
https://consensys.net/diligence/blog/
https://consensys.net/diligence/tools/
https://consensys.net/diligence/contact/

