
Audit Report for Immutable - April 13, 2021

Summary
Audit Report prepared by Solidified covering the Guild Of Guardian token and presale smart
contracts.

Process and Delivery
Three (3) independent Solidified experts performed an unbiased and isolated audit of the code
below. The final debrief took place on 31 March 2021, and the results are presented here.

Audited Files

The source code has been supplied in the form of an archive file:

hardhat-final.tar.gz

SHA256: a7cb88a5a1d4ad261a7f313da9aad47083dbe5a74ea3febe478470b229af5ab5

UPDATE: Fixes have been provided in the file:

hardhat-final-post-audit-changes.tar.gz

SHA256: 2991d4b8c4022464f555580c1c38341bc26ae92afd97be7ce716782cf76395f7

The scope of the audit was limited to the following files:

contracts
├── Constants.sol
├── Dice.sol
├── ExchangeRate.sol
├── GuardiansToken.sol
├── GuildOfGuardiansPreSale.sol
├── GuildOfGuardiansPreSaleTestable.sol
├── Inventory.sol
├── Referral.sol
├── Treasury.sol
├── UniswapV2PairTestable.sol
└── interfaces

└── IUniswapV2Pair.sol

Audit Report for Immutable - April 13, 2021

Intended Behavior
The smart contracts implement a presale for the Guild Of Guardian project.

Note, that code only implements the purchase functionality and emits events. The actual
asset issuance is performed by Immutable in a trusted setup separately.

Audit Report for Immutable - April 13, 2021

Code Complexity and Test Coverage
Smart contract audits are an important step to improve the security of smart contracts
and can find many issues. However, auditing complex codebases has its limits and a
remaining risk is present (see disclaimer).

Users of a smart contract system should exercise caution. In order to help with the
evaluation of the remaining risk, we provide a measure of the following key indicators:
code complexity, code readability, level of documentation, and test coverage.

Note, that high complexity or lower test coverage does equate to a higher risk.
Certain bugs are more easily detected in unit testing than a security audit and
vice versa. It is, therefore, more likely that undetected issues remain if the test
coverage is low or non-existent.

Criteria Status Comment

Code complexity Medium-Low -

Code readability and clarity Medium-High -

Level of Documentation Medium -

Test Coverage High -

Test coverage report:
--------------------------------------|----------|----------|----------|----------|----------------|
File	% Stmts	% Branch	% Funcs	% Lines	Uncovered Lines
contracts/ | 85.62 | 92.11 | 62.96 | 85.94 | |
Constants.sol | 100 | 100 | 100 | 100 | |
Dice.sol | 84.62 | 83.33 | 75 | 84.62 | 63,75 |
ExchangeRate.sol | 100 | 100 | 100 | 100 | |
GuardiansToken.sol | 0 | 100 | 0 | 0 | 8 |
GuildOfGuardiansPreSale.sol | 100 | 100 | 100 | 100 | |
GuildOfGuardiansPreSaleTestable.sol | 25 | 100 | 87.5 | 28 |... 58,59,60,61 |
Inventory.sol | 98.84 | 92.19 | 100 | 98.88 | 585,591 |
Referral.sol | 100 | 100 | 100 | 100 | |
Treasury.sol | 100 | 100 | 100 | 100 | |
UniswapV2PairTestable.sol | 12.5 | 100 | 7.14 | 12.5 |... 127,131,139 |
contracts/interfaces/ | 100 | 100 | 100 | 100 | |
IUniswapV2Pair.sol | 100 | 100 | 100 | 100 | |

--------------------------------------|----------|----------|----------|----------|----------------|
All files	85.62	92.11	62.96	85.94	

Audit Report for Immutable - April 13, 2021

Issues Found

Solidified found that the Guild of Guardian sales contracts contain no critical issues, 2
major issues, 2 minor issues, in addition to 5 informational notes.

We recommend all issues are amended, while the notes are up to the team’s discretion,
as they refer to best practices.

Issue # Description Severity Status

1 Dice.sol: Insecure Random Number Generation Major Acknowledged

2 User can use any address as referrer to get
discount

Major Acknowledged

3 Treasury.sol, Inventory.sol and Referral.sol: Use
call() instead of transfer()

Minor Resolved

4 Dice.sol: Function _getSecondDiceRoll() is not
bound by maxDiceRoll

Minor Resolved

5 GuardiansToken.sol: Unimplemented initial
token distribution

Note -

6 Use constants instead of magic numbers Note -

7 Inventory.sol: Length of arrays as function
parameters is not enforced

Note -

Audit Report for Immutable - April 13, 2021

Critical Issues

No critical issues have been found.

Major Issues

1. Dice.sol: Insecure Random Number Generation

The Dice contract implements an optimized commit / reveal RNG scheme. However,
implementation fails to enforce a commitment to the future block number in the commit phase.
The caller can arbitrarily choose and pre-calculate a suitable _commitBlock argument when
calling getSecondDiceRoll() since there is nothing in the code that enforces _commitBlock to
equal the block number of the call to getFirstDiceRoll() (or any other specific block
number).

Recommendation
Enforce a specific commit block in the commit phase.

Team Response
“Immutable has made a business decision to build this in a way that is publically transparent,
verifiable, auditable, but not fully decentralised. The company can be a trusted party, as long as
it would be possible for a third party to verify its actions. This is done for a few reasons:

● High gas costs of fully decentralised solutions likely to be a barrier in the context of
playing games / buying in game items

● Immutable has built up significant trust with existing products, and would have a lot to
lose by acting inappropriately

So in this case, the company will be trusted to specify the correct block when calling
getSecondDiceRoll. While the company could enter an older block, anyone can verify this was
incorrect by looking at which block that particular order / first dice roll occurred in.“

2. Inventory.sol: User can use any address as referrer to get
discount

Users can use any (or their own address) as the referrer while calling the method purchase to
get a referrer bonus and discount.

Audit Report for Immutable - April 13, 2021

Recommendation
It is recommended to track the referrer address or use some whitelisting method to efficiently
distribute referrals or give discounts.

Team Response
“This is intentional to minimise gas usage. Immutable is fine with people entering any address in
order to get a 5% discount.”

Minor Issues

3. Treasury.sol, Inventory.sol and Referral.sol: Use call() instead
of transfer()

The functions withdraw(), purchase() and withdrawBonus() use the transfer() function to
transfer ETH to msg.sender. However, gas prices were changed in the Istanbul hard fork,
meaning that the gas stipend forwarded to msg.sender may not be enough for smart contract
receivers to do basic bookkeeping.

For a more in depth discussion of issues with transfer() and smart contracts, please refer to:
https://diligence.consensys.net/blog/2019/09/stop-using-soliditys-transfer-no

w/

Recommendation

Use the following pattern for transferring ETH:

(bool success,) = recipient.call{value:amount}("");

require(success, "Transfer failed.");

4. Dice.sol: Function _getSecondDiceRoll() is not bound by
maxDiceRoll

Values returned by _getSecondDiceRoll() can be greater than maxDiceRoll.

https://diligence.consensys.net/blog/2019/09/stop-using-soliditys-transfer-now/
https://diligence.consensys.net/blog/2019/09/stop-using-soliditys-transfer-now/

Audit Report for Immutable - April 13, 2021

Recommendation
Mod the function’s calculation by maxDiceRoll in order to stay within the maximum range.

Informative Notes

5. GuardiansToken.sol: Unimplemented initial token distribution

The contract’s constructor mints all tokens to the deployer and is marked with the following
comment:

// TODO Set initial token distribution

Recommendation

Complete the implementation.

6. Use constants instead of magic numbers

The code uses hardcoded values in several places. For example, for (uint256 i = 0; i <
9; i++) is using the hardcoded length instead of using the constants defined already. It is
commonly considered best practice to use constant instead of hardcoded numbers.

Recommendation

Remove the magic number and replace it with constants.

7. Inventory.sol: Length of arrays as function parameters is not
enforced

Audit Report for Immutable - April 13, 2021

The methods _enforceOrderLimits and addStock are using a constant to loop over the array
parameter and access its elements. Since the array parameter length can be anything, this
approach will throw unexpected errors if the array length is smaller than the constant used to
iterate.

Recommendation

Add require statements enforcing the correct length.

Disclaimer

Solidified audit is not a security warranty, investment advice, or an endorsement of

Immutable or its products. This audit does not provide a security or correctness

guarantee of the audited smart contract. Securing smart contracts is a multistep

process, therefore running a bug bounty program as a complement to this audit is

strongly recommended.

The individual audit reports are anonymized and combined during a debrief process, in

order to provide an unbiased delivery and protect the auditors of Solidified platform from

legal and financial liability.

Solidified Technologies Inc.

