
Audit Report for ICHI oneToken - May 24, 2021

Summary
Audit Report prepared by Solidified covering the ICHI oneToken smart contracts.

Process and Delivery
Three (3) independent Solidified experts performed an unbiased and isolated audit of the code
below. The debrief took place on May 3, 2021, and the results are presented here.

Fixes have been supplied and were reviewed, with a final debrief on 24 May.

Audited Files

The source code has been supplied in a private source code repository:

https://github.com/ichifarm/ichi-oneToken/

Latest Commit: 5bc41b3d6995cd0fe29f1c771f7e92928701e61d

Intended Behavior

ICHI is a DAO (Decentralized Autonomous Organization) governed by the community of ICHI
token holders. ICHI provides a stablecoin service to other crypto communities through its
oneToken Factory.

The oneToken Factory enables the creation of oneTokens (ERC20 tokens collateralized by a
blend of stablecoins and member coins, designed to always maintain a peg to one USD). It is a
generalized contract designed to produce upgradeable oneToken instances each with distinct
governance and internal logic within boundaries defined by ICHI.

Audit Report for ICHI oneToken - May 24, 2021

Findings
Smart contract audits are an important step to improve the security of smart contracts
and can find many issues. However, auditing complex codebases has its limits and a
remaining risk is present (see disclaimer).

Users of a smart contract system should exercise caution. In order to help with the
evaluation of the remaining risk, we provide a measure of the following key indicators:
code complexity, code readability, level of documentation, and test coverage.

Note, that high complexity or lower test coverage does not necessarily equate to a
higher risk, although certain bugs are more easily detected in unit testing than a security
audit and vice versa.

Criteria Status Comment

Code complexity Low -

Code readability and clarity High -

Level of Documentation High -

Test Coverage High -

Audit Report for ICHI oneToken - May 24, 2021

Issues Found

Solidified found that the ICHI oneToken contracts contain no critical issues, 1 major
issue, 6 minor issues, and 5 informational notes.

We recommend issues are amended, while informational notes are up to the team’s
discretion, as they refer to best practices.

Description Severity Status

1 ICHICompositeOracle.sol: Incorrect implementation
for oracle function amountRequired()

Major Resolved

2 StrategyCommon.sol: Function closeAllPositions() will
always fail after a large enough number of assets
have been added

Minor Resolved

3 Arbitrary.sol: Function executeTransaction() does not
refund extra ETH sent

Minor Resolved

4 UniswapOracleSimple.sol: Oracle does not enforce
that indexToken is a USD stablecoin

Minor Acknowledged

5 OneTokenV1Base.sol: Function removeStrategy()
does not close the strategy

Minor Resolved

6 Incremental.sol: Zero value logic mismatch for
stepSize

Minor Resolved

7 OneTokenV1.sol: Function redeem() does not check if
the liabilities of the collateral token exceed the
contrat’s balance, which could prevent the user from
withdrawing the collateral token afterwards

Minor Acknowledged

8 OneTokenV1.sol: Two-step withdrawal process is
redundant

Note Resolved

9 OneTokenV1Base.sol: Redundant call to
_transferOwnership() in init()

Note Resolved

10 OneTokenV1.sol: Function redeem() assumes one to
one ratio between collateral token and oneToken

Note Acknowledged

Audit Report for ICHI oneToken - May 24, 2021

11 OneTokenV1.sol: Collateral tokens which charge
transfer fees are not compatible with the accounting
of collateral balances

Note Acknowledged

12 OneTokenV1Base.sol: setStrategyAllowance()
amount parameter documentation is incorrect

Note Resolved

Audit Report for ICHI oneToken - May 24, 2021

Critical Issues

No critical issues have been found.

Major Issues

1. ICHICompositeOracle.sol: Incorrect implementation for oracle
function amountRequired()

Function amountRequired() incorrectly returns a value that is 1:1 pegged to the given
amountUsd. This results in ICHICompositeOracle always returning the wrong result for any
given amountUsd.

Recommendation
Have the function fetch all the pairs from the oracleContracts oracle chain (in their respective
order), then use these values to correctly compute amountUsd.

Status
Resolved

Minor Issues

2. StrategyCommon.sol: Function closeAllPositions() will always
fail after a large enough number of assets have been added

Since function closeAllPositions() iterates over all OneTokenV1Base assets, its gas
consumption will exceed the block gas limit after a large enough number of assets have been
added. This will cause the function to always fail when called.

Audit Report for ICHI oneToken - May 24, 2021

Recommendation
Implement a cap on the number of assets that can be added to OneTokenV1Base that won’t
exceed the block gas limit.

Status
Resolved

3. Arbitrary.sol: Function executeTransaction() does not refund
extra ETH sent

Function executeTransaction() does not refund any extra ETH sent that exceeds the value

parameter.

Recommendation
Either refund ETH that exceeds value or eliminate value altogether and use msg.value

instead.

Status
Resolved

4. UniswapOracleSimple.sol: Oracle does not enforce that
indexToken is a USD stablecoin

The documentation states that indexToken must be a USD token, however, the contract’s
constructor implementation does not enforce that.

Recommendation
Create a whitelist of ICHI supported USD tokens and have the constructor verify that the given
indexToken address is in the whitelist.

Note
Same issue is also present in ICHICompositeOracle.

Status
Acknowledged. ICHI oneToken team response:
“UniswapOracleSimple is compatible with non-USD stable coins. It can, for example, function as
an interim Oracle for an ICHICompositeOracle. Only collateral-indexed oracles should be

Audit Report for ICHI oneToken - May 24, 2021

admitted into the factory. Verifying that Oracles are indexed by USD stable coins on admission
is problematic. It is therefore a Governance responsibility to admit only Oracles that return
values that are proxies for US Dollars”.

5. OneTokenV1Base.sol: Function removeStrategy() does not
close the strategy

The documentation of function removeStrategy() states that it should close the strategy,
however this is not implemented.

Recommendation
Have the function call closeStrategy().

Status
Resolved

6. Incremental.sol: Zero value logic mismatch for stepSize

The value of stepSize can be assigned to zero in setParams(), but is not allowed to be so in
setStepSize().

Recommendation
Resolve mismatch between the two functions.

Status
Resolved

7. OneTokenV1.sol: Function redeem() does not check if the
liabilities of the collateral token exceed the contrat’s balance,
which could prevent the user from withdrawing the collateral
token afterwards

Audit Report for ICHI oneToken - May 24, 2021

Function redeem() does not check if the liabilities of the collateral tokens exceed contrat’s
balance. For instance, in case several collateral tokens are used, the user calling redeem() for
certain collateral will not be informed if the collateral is not available to withdraw.

Status
Acknowledged. ICHI oneToken team response:
“Available funds might limit the user's ability to withdraw collateral in the desired form.
Pre-checking availability of the requested type of collateral will be implemented as a
user-interface concern”.

Informational Notes

8. OneTokenV1.sol: Two-step withdrawal process is redundant

Although the current two-step withdrawal process does indeed protect from flash loan attacks,
there is virtually very little that can be done with a flash loan that cannot be done with an
attacker that has a large amount of liquidity (e.g. a whale). In that case, the two-step withdrawal
process will be of little help.

Furthermore, the current implementation of UniswapOracleSimple should not suffer from these
kinds of attacks. ICHICompositeOracle should be safe as well, provided that all
oracleContracts are either UniswapOracleSimple or ICHIPeggedOracle contracts.

Recommendation
Eliminate two-step withdrawal to improve user experience.

Status
Resolved

Audit Report for ICHI oneToken - May 24, 2021

9. OneTokenV1Base.sol: Redundant call to _transferOwnership()
in init()

Function init() calls both initOwnable() and _transferOwnership(), which is redundant.

Recommendation
Remove the call to _transferOwnership().

Status
Resolved

10. OneTokenV1.sol: Function redeem() assumes one to one ratio
between collateral token and oneToken

Arbitrage opportunities might exist when oneToken is not on an exact 1:1 peg with its collateral.

Status
Acknowledged. ICHI oneToken team response:
“We are NOT checking the oneToken or collateral pegs, by design. Mint/Redemption fees can
repel possible arbitrage”.

11. OneTokenV1.sol: Collateral tokens which charge transfer fee
are not compatible with the accounting of collateral balances

The actual collateral balances in contract will be lower than accounted for in case a collateral
token charges a transfer fee.

Status
Acknowledged. ICHI oneToken team response:
“Collateral tokens that charge a transfer fee should not be accepted. ICHI Governance can
prevent OneToken governance of any oneToken instance from using such tokens”.

Audit Report for ICHI oneToken - May 24, 2021

12. OneTokenV1Base.sol: setStrategyAllowance() amount
parameter documentation is incorrect

The amount parameter is incorrectly documented.

Status
Resolved

Audit Report for ICHI oneToken - May 24, 2021

Disclaimer

Solidified audit is not a security warranty, investment advice, or an endorsement of ICHI

oneToken or its products. This audit does not provide a security or correctness

guarantee of the audited smart contract. Securing smart contracts is a multistep

process, therefore running a bug bounty program as a complement to this audit is

strongly recommended.

The individual audit reports are anonymized and combined during a debrief process, in

order to provide an unbiased delivery and protect the auditors of Solidified platform from

legal and financial liability.

Solidified Technologies Inc.

