

Audit Report for Immutable on June 9th, 2020.

Summary
Audit Report prepared by Solidified for Immutable covering the Gods Unchained Season 1
smart contracts (and their associated components).

Process and Delivery
Three (3) independent Solidified experts performed an unbiased and isolated audit of the code
below. The debrief took place on June 9th, 2020, and the final results are presented here.

Audited Files
Files contained in folder
https://github.com/immutable/platform-contracts/tree/develop/contracts/gods-u

nchained/contracts/s1

Notes:
The audit was initially performed on commit 280d7702c02e74915c432f5fc7ed56fbf84c52c0
of the repository listed in the section above, using Solidity compiler version 0.5.11.

Intended Behavior
The smart contracts implement Gods Unchained Season 1 Packs, Chests, Referrals, Sale and
Vendors.

https://github.com/immutable/platform-contracts/tree/develop/contracts/gods-unchained/contracts/s1
https://github.com/immutable/platform-contracts/tree/develop/contracts/gods-unchained/contracts/s1

Audit Report for Immutable on June 9th, 2020.

Issues Found

Critical

Major

1. S1Sale.sol and S1Vendor.sol: Multiple Issues

A. It's possible for anyone to get the funds currently in the S1Sale
If, for some reason, there're funds left on the sale contract, anyone can claim it by simply calling
the PurchaseFor function with a destination address as vendor.

B. If it wasn't for issue A, the sale contract would roll over any funds from a previous purchase
to the next one.
The contract makes no control of the initial and end balance inside a single transaction, making
it possible to have leftovers from previous transactions, which wouldn't be possible to retrieve.

C. Both contracts implement a payable fallback with no logic, meaning they will accept any
incoming ether with no data or with data that packs an erroneous call.

If funds are sent directly to the contracts, they will be used for the next purchase (either paying
for the purchase or being reimbursed to the purchaser).

Recommendation
The idea of this contract is to make it simpler to perform multiple purchases to different vendors
in a row, but it could be useful to add some more restrictions, instead of sending the whole
balance back and forth. If there're any wrong address in the requests[] array, it might cause
funds to be lost.

A better approach is to maintain a registry of known and valid Vendors, and disallow calls for
other addresses. Another option is to implement a view function in S1Vendor that returns the
amount of ETH necessary to the purchase and forward only that defined amount.

Lastly, remove the payable fallbacks, accepting funds only on direct calls to functions.

Audit Report for Immutable on June 9th, 2020.

Amended [10.06.2020]
The issue was fixed and is no longer present in commit
c4e14af232d2d861a7000094f4cf931857d901ec. The payable fallback functions mentioned in
the issue are still present.

Minor

2. S1Vendor.sol: Return values of external calls is not checked

Function purchaseFor performs two low level calls with no data, to send ether to the referrer,
and the change back to the buyer. The result of both calls is not checked. If the first call fails,
the buyer will be reimbursed the value that was supposed to be sent to the referrer. If the
second call fails, the change will remain in the contract, and be used (deliberately or not) for the
next purchase performed (same effect as #1).

Recommendation
Check if external calls succeeded. Since the contract uses its own balance only while purchases
are performed, implementing a require(address(this).balance == 0) before execution
ends will prevent purchase values from remaining in the contract (and being used in the
subsequent purchase).

Amended [10.06.2020]
The issue was fixed and is no longer present in commit
c4e14af232d2d861a7000094f4cf931857d901ec.

Notes

3. Referral.sol: line 68: _haflDenom() is only ever called on 100

_haflDenom() is only ever called on 100, so will always return 50.

Recommendation
Consider removing it to improve readability and reduce unnecessary complexity.

Audit Report for Immutable on June 9th, 2020.

Amended [10.06.2020]
The issue was fixed and is no longer present in commit
c4e14af232d2d861a7000094f4cf931857d901ec.

4. S1Vendor: Users can get a discount by self-referring

There's no restriction on valid addresses for referrals, which basically allows for users
self-referring and getting back some of the purchase.

Recommendation
There isn't a mitigation possible to make it sybil resistant.

Immutable's response [10.06.2020]
"This is known, we are comfortable with this."

5. RarityProvider: Mythic rarity isn't present anywhere in the code

The Rarity enum defines a Mythic rarity, but it isn't present anywhere else in the code on
scope.

Amended [10.06.2020]
The issue was fixed and is no longer present in commit
c4e14af232d2d861a7000094f4cf931857d901ec.

6. Consider updating compiler version

Contracts are using Solidity 0.5.11, consider updating to a later version, as it will contain the
latest bug fixes, known bugs that were active in 0.5.11:

 "0.5.11": {
 "bugs": [
 "ImplicitConstructorCallvalueCheck",
 "TupleAssignmentMultiStackSlotComponents",
 "MemoryArrayCreationOverflow",

Audit Report for Immutable on June 9th, 2020.

 "privateCanBeOverridden",
 "YulOptimizerRedundantAssignmentBreakContinue0.5"
],

 "released": "2019-08-12"
 }

None of these bugs directly affect the in scope smart contracts.

Immutable's response [10.06.2020]
"We've tried - unfortunately there are dependency issues blocking this for now. There are some
behaviours in 0.5.11 that we require for old contracts, and we haven't yet set up a system

capable of compiling some contracts with one compiler, and others with another."

Audit Report for Immutable on June 9th, 2020.

Closing Summary

Immutable's Gods Unchained Season 1 contracts contain two issues, with two one them
being manor, and one of minor severity, along with several areas of note.

We recommend all issues are amended, while the notes are up to Immutable's
discretion, as they mainly refer to improving the operation of the smart contract and best
practices.

Amended [10.06.2020]
All issues were fixed and are no longer present in commit
c4e14af232d2d861a7000094f4cf931857d901ec.

Disclaimer

Solidified audit is not a security warranty, investment advice, or an endorsement of the

Immutable platform or its products. This audit does not provide a security or correctness

guarantee of the audited smart contract. Securing smart contracts is a multistep

process, therefore running a bug bounty program as a complement to this audit is

strongly recommended.

The individual audit reports are anonymized and combined during a debrief process, in

order to provide an unbiased delivery and protect the auditors of Solidified platform from

legal and financial liability.

Solidified Technologies Inc.

