

Audit Report for Loopring on May 21st, 2020.

Summary
Audit Report prepared by Solidified for Loopring covering the Hebao V1 Wallet smart contracts
(and their associated components).

Process and Delivery
Three (3) independent Solidified experts performed an unbiased and isolated audit of the code
below. The debrief took place on May 21st, 2020, and the final results are presented here.

Audited Files
Files contained in folder Hebao_V1, from the repository/commit listed in the next section. All
smart contracts in the contracts folder are in scope with the exception of the third_pary folder.

Additionally, in the /lib directory, only the following files were in-scope: AddressSet.sol,
EIP712.sol, Managable.sol, Mathint.sol, OwnerManagable.sol and SignatureUtil.sol, though
other contracts imported by in-scope contracts were considered.

Notes​:
The audit was initially performed on commit ​db7bf88f84a77270d7e6b67c3534d0d1eaedaacf
of repository ​https://github.com/Loopring/protocols​, using Solidity compiler version ​0.6.6​.

Intended Behavior
Hebao is a smart contract wallet that allows users to store their funds and interact with
Loopring´s exchange and other DeFi Dapps through modules.

https://github.com/Loopring/protocols

Audit Report for Loopring on May 21st, 2020.

Issues Found

Critical

1. BaseVault.execute(..) transactions can be replayed.

BaseVault.execute(..)​ function does not implement any signed transaction replay protection.
For example, if the vault owners sign a value or token transfer transaction, the transaction could
be repeated many times by anyone successfully as long as the vault has funds.

Recommendation
Implement a nonce or another form of replay protection, as implemented on the MetaTxModule.

Amended [02-06-2020]
The issue was fixed and is no longer present in commit
2f139bfd27ec69732e33767cc39842629fa19e82​.

2. Reentrancy vulnerability in MetaTxModule.sol, function
executeTransactions()

All signing rules can be bypassed by a single guardian or owner.
To call executeTransactions on executeMetaTx, a single signature is required, the calls passed
as a parameter could be used to reenter the executeTransactions function (passing through the
onlyMetaTx modifier because the call is from the contract itself, and most importantly bypassing
the signature checks on executeMetaTx) and send any transaction on behalf of the wallet,
bypassing controls such as majority requirements, only owner adding modules or whitelist.

 ​function​ ​executeMetaTx​(...)

 ​address​[] ​memory​ ​signers​ = ​getSigners​(wallet, data);
 ​require​(areMetaTxSignersAuthorized(wallet, data, signers),
"​METATX_UNAUTHORIZED​");
function​ ​getSigners​(..)

 ​bytes4​ ​method​ = ​extractMethod​(data);

Audit Report for Loopring on May 21st, 2020.

 ​if​ (method == this.executeTransactions.selector) {
 ​return​ extractAddressesFromCallData(data, ​1​);

Though there is a check in the executeTransactions() that signers addresses match the required
ones, it is possible to specify an arbitrary signers array parameter when doing a recursive call to
executeTransactions().

Recommendation
Couple signature verification and transaction execution tightly, in order to prevent owners and
controllers from bypassing wallet restrictions.

Amended [02-06-2020]
The issue was fixed and is no longer present in commit
2f139bfd27ec69732e33767cc39842629fa19e82​.

3. Mathint.sol does not prevent underflow/overflow.

The checks which are supposed to check overflow/underflow conditions do not work because
they also overflow/underflow:

 int MAX_INT = ​2​ ​̂255​ - ​1
 int MIN_INT = - ​2​ ​̂255
 add(MAX_INT, ​1​) =
-57896044618658097711785492504343953926634992332820282019728792003956564819

968

 add(MAX_INT​-1​, ​2​) =
-57896044618658097711785492504343953926634992332820282019728792003956564819

968

 sub(MIN_INT, ​1​) =
578960446186580977117854925043439539266349923328202820197287920039565648199

67

 sub(MIN_INT+​1​, ​2​) =
578960446186580977117854925043439539266349923328202820197287920039565648199

67

Additionally, the `mul (int, int)` does not handle a single special case:

Audit Report for Loopring on May 21st, 2020.

 mul(​-1​, MIN_INT) =
-57896044618658097711785492504343953926634992332820282019728792003956564819

968

Recommendation
 Use OpenZeppelin implementation:
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/master/contracts/math/SignedSaf
eMath.sol​.

Amended [02-06-2020]
The issue was fixed and is no longer present in commit
2f139bfd27ec69732e33767cc39842629fa19e82​.

Major

4. Deployer key holds a vast amount of power.

The deployer key has the ability to add managers to all contracts that inherit from

DataStore.sol​, which controls vital information from wallets, like locks, guardians, whitelist,
etc. If this key gets compromised, an attacker might take ownership of all wallets, by adding
himself as guardian, or inheritor, etc.

Having only one address in charge of ownership can have consequences to the process if the
key is lost or worse, misappropriated.

Recommendation
Delegate the ownership to a multisig wallet controlled by several different Loopring stakeholders
or to a governance structure, as this will prevent one key from being misused and enables
recovery if any of the parties lose their keys.

Though not in-scope, during the audit we also noted the ​ENSRegistry​ is also controlled by a
single address.

Loopring's Comment [02-06-2020]
"We will manage the admin account using a two-layer solution. The first layer is a third-party
multisig wallet, and the controlling keys are cold. This multisig wallet will NOT directly manage
our contracts but will maintain a list of _managers_ who will directly manage the contracts.

https://github.com/OpenZeppelin/openzeppelin-contracts/blob/master/contracts/math/SignedSafeMath.sol
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/master/contracts/math/SignedSafeMath.sol

Audit Report for Loopring on May 21st, 2020.

The multisig wallet thus is not considered to be part of the Hebao smart contract codebase."

5. MetaTxModule.sol: Transactions without nonce are allowed

The contract implements a nonce for meta transactions, but it also allows transactions without
one to be sent out.

The contract does prevent replays of transactions (by storing the tx hash and verifying it for new
transactions), but the absence of a nonce will still enable a relayer to sort the user´s
transactions deliberately, possibly allowing him to cause the transactions to fail by sending them
on the wrong order, or censoring part of them.

Additionally, the absence of a nonce will prevent users from “burning” a lost transaction by
sending another one with the same nonce, as those are valid indefinitely and can be relayed at
any point in the future by the relayers.

Recommendation
Enforce the nonce for all externally signed transactions.

Amended [02-06-2020]
The issue was fixed and is no longer present in commit
2f139bfd27ec69732e33767cc39842629fa19e82​.

6. MathUint.decodeFloat() does not revert on overflow

If the exponent is higher than​ 0xFF​, the ​10 **​ exponent expression will return ​0​.
If a supplied parameter is bigger than ​0x7FFFFFFF​ the function ​decodeFloat()​ will return ​0​.

We classified this issue as major because it does not follow the convention of the ​MathUint
library to revert on overflow and it is also not documented.

Recommendation
Ensure ​decodeFloat​ reverts on overflows.

Amended [02-06-2020]

Audit Report for Loopring on May 21st, 2020.

The issue was fixed and is no longer present in commit
2f139bfd27ec69732e33767cc39842629fa19e82​.

7. Guardian and owner could be the same address

If a guardian either inherits a wallet or gets ownership by the recovery mechanism, the implicit
assumption that the guardians are different then the owner will break. This might cause wrong
permissions in calling functions, for example, lock wallet, as well cause miscalculations, or even
prevent the wallet from certain actions in the ​requireMajority​ function.

Recommendation
Inheritor and Recovery modules should remove the new Owner from the Guardians list.

Amended [02-06-2020]
The issue was fixed and is no longer present in commit
2f139bfd27ec69732e33767cc39842629fa19e82​.

Minor

8. MetaTxModule.sol: Relayer can cause transactions to fail
by sending just above the limit the user provided.

Due to the way the VM provides gas to external calls since EIP 150 ws implemented, if the
external call is executed with less gas than the ​gasSettings.limit​, only 63/64 of the available
gas will be provided, allowing for the relayer to force transactions with a limit lower than the one
set by the user.

A discussion around this issue is available at
https://github.com/gnosis/safe-contracts/issues/100

Recommendation
Require that the gas available after the call is greater than than 65/64 of the user provided
gasSettings.limit.

https://github.com/gnosis/safe-contracts/issues/100

Audit Report for Loopring on May 21st, 2020.

For reference: Implementation of the fix by the Gnosis Safe team:
https://github.com/gnosis/safe-contracts/commit/62d4bd39925db65083b035115d6987772b2d2d
ca

Amended [02-06-2020]
The issue was fixed and is no longer present in commit
2f139bfd27ec69732e33767cc39842629fa19e82​.

9. CompoundModule.sol and Inheritance: Deposits and
withdraws to Compound and change of Inheritance settings
are allowed with a locked wallet.

Functions in the Compound and Inheritance modules are missing the modifier
onlyWalletUnlocked​, effectively allowing for Compound use from locked wallets.

Recommendation
Include the aforementioned modifier in the functions.

Amended [02-06-2020]
Compound module was removed from commit
2f139bfd27ec69732e33767cc39842629fa19e82​.

10. BaseSubAccount.sol: Function canDepositToken currently
returning withdrawable amount.

Function ​canDepositToken​ is currently returning ​tokenWithdrawable​, as is can
WithdrawToken​. Before any deposits are made, the function will always return 0.

Recommendation
Call ​tokenDepositable​ within the function instead.

Amended [02-06-2020]
BaseSubAccount.sol​ was removed from commit
2f139bfd27ec69732e33767cc39842629fa19e82​.

https://github.com/gnosis/safe-contracts/commit/62d4bd39925db65083b035115d6987772b2d2dca
https://github.com/gnosis/safe-contracts/commit/62d4bd39925db65083b035115d6987772b2d2dca

Audit Report for Loopring on May 21st, 2020.

11. BaseSubAccount.sol: Functions TokenReturnAmount and
tokenWithdrawable do not implement functionality for ETH.

Functions ​TokenReturnAmount​ and ​tokenWithdrawable​ do not implement functionality for
ETH. The implementation of ​tokenDepositable​ implies that ETH is accepted by passing
Address(0x0) as the token address. Currently deposited Ether will not be withdrawable and will
remain effectively frozen after deposit.

Recommendation
Ensure all deposit, withdraw and return functions implement ETH deposit/withdraw functionality.

Amended [02-06-2020]
BaseSubAccount.sol​ was removed from commit
2f139bfd27ec69732e33767cc39842629fa19e82​.

12. ModuleRegistry.sol: Contract is owned by only one address.

ModuleRegistry, where new modules are registered to become available to users, Is controlled
by only one owner. The owner account will be controlled by Loopring.

Having only one address in charge of ownership can have consequences to the process if the
key is lost or worse, misappropriated.

Recommendation
Delegate the ownership to a multisig wallet controlled by several different Loopring
stakeholders, as this will prevent one key from being misused and enables recovery if any of the
parties lose their keys.

Amended [02-06-2020]
The issue was fixed and is no longer present in commit
2f139bfd27ec69732e33767cc39842629fa19e82​.

Audit Report for Loopring on May 21st, 2020.

13. Consider using Uniswap V2 price oracle

It is possible to manipulate the token price on pooled-exchanges such as Uniswap and Kyber.
Buying and selling tokens from/to such pools introduce a price slippage. It is dangerous to rely
on a price from pulled exchanges especially when the token exchange pool is small - it takes
smaller funds to manipulate the price. There have been such attacks carried out in the past -
once the pay-off is larger than the funds needed to manipulate a pool.

The updateTokenPrice() function call could be front-run to manipulate the cached token price.
The issue is classified as minor because currently only QuotaTransfers are using this
functionality.

Recommendation
Use Uniswap V2, as well as increasing the number and nature of oracles.

Amended [15-06-2020]
The issue was fixed and is no longer present in commit
258048116073ef132f2f9c889a1d45fa3721de02​.

14. Attacks by malicious guardians

If a wallet has only one guardian, he/she can take ownership of the wallet by itself.

A malicious guardian could also make the wallet hostage by constantly locking it. Similarly, a
single guardian could also force the wallet to be unlocked while some kind of attack is
performed.

Recommendation
There aren't many actions that can prevent this type of behaviour that also don't have side
effects. Therefore, the best approach is to educate users of the pitfalls of guardians.

Amended [15-06-2020]
The issue was fixed and is no longer present in commit
258048116073ef132f2f9c889a1d45fa3721de02​.

Audit Report for Loopring on May 21st, 2020.

15. Dapp Modules can bypass quotas and whitelists

Most implemented Dapp modules have a deposit function, which doesn't take into account the
defined spending quotas. The generic module could also be used to bypass token transfer
quotas.

Recommendation
Dapps should also be subject to the limits imposed by transfer, whitelist and quota modules.

Amended [02-06-2020]
The issue was fixed and is no longer present in commit
2f139bfd27ec69732e33767cc39842629fa19e82​.

16. Vault can have more than MAX_OWNER owners

The vault only checks the size of the owners array in the constructor, but new owners could be
added later, breaking the implied invariant of max owners.

Recommendation
The function ​addOwner​ should check for the ​MAX_OWENRS​ constant.

Amended [02-06-2020]
The issue was fixed and is no longer present in commit
2f139bfd27ec69732e33767cc39842629fa19e82​.

Notes

17. MetaTxModule.sol, ApprovedTransfers.sol: Return value of
operations in collectTokens and reimburseGasFee is not being
verified

In ​collectTokens​, the return value of ​sendEth​ and of the ​ERC20​ transfers are not verified. The
function will succeed if any of the transfer fails. This is also the case with ​reimburseGasFee
(ERC20 tokens only).

Audit Report for Loopring on May 21st, 2020.

On​ TransferModule.sol​, The transferInternal function (used by several other contracts) also
does not check the return value of ERC20 transfers.

Amended [02-06-2020]
The issue was fixed and is no longer present in commit
2f139bfd27ec69732e33767cc39842629fa19e82​.

18. The initialization method initManager() could be front-run,
unless it is called within the same transaction as the creation of
the contract.

The initialization method ​initManager()​ could be front-run, unless it is called within the same
transaction as the creation of the contract.

Recommendation
Ideally the library API should be designed to prevent such mistakes.

Amended [02-06-2020]
The issue was fixed and is no longer present in commit
2f139bfd27ec69732e33767cc39842629fa19e82​.

19. AddressSet.sol

In ​addAddressToSet(...)​, when ​maintainList=True​, it does not check if there was an
address already added with​ maintainList=False​ (when in ​maintainList=False​ a similar
check is done). This will assign ​index =1​ to multiple addresses.

Amended [02-06-2020]
The issue was fixed and is no longer present in commit
2f139bfd27ec69732e33767cc39842629fa19e82​.

Audit Report for Loopring on May 21st, 2020.

20. Possible misleading comment in Module.sol

In ​Module.sol​, the following note is present:

/// Each module must implement the `init` method. It will be called when

/// the module is added to the given wallet.

There is, however, no abstract method ​init()​ defined and the only module implementing
init()​ is the ​LRCStakingModule.sol​ module.

Amended [02-06-2020]
The issue was fixed and is no longer present in commit
2f139bfd27ec69732e33767cc39842629fa19e82​.

21. Consider removing the option to make delegateCalls from
wallet and vault

Delegate calls allow for third party contracts to change the wallet storage variables, which
include the owner, controller and the module's methods. They are not used by any of the
modules.

Loopring's Comment [02-06-2020]
"This method is not used and is internal only. We'll keep it there just in case there are use cases
in the future."

22. Consider implementing a receive() function for no-data calls.

The wallet implements a fallback function that checks if the ​msg.data​ is different from "0x0".
Solidity 0.6 onwards allows contracts to declare a ​receive​ function that is called only when no
data is present, otherwise it goes through the ​fallback​.

Amended [02-06-2020]
The issue was fixed and is no longer present in commit
2f139bfd27ec69732e33767cc39842629fa19e82​.

Audit Report for Loopring on May 21st, 2020.

Audit Report for Loopring on May 21st, 2020.

Closing Summary

Loopring´s Hebao contracts contain sixteen issues, with three of them being critical, and
five of major severity, along with several areas of note.

We recommend all issues are amended, while the notes are up to Loopring´s discretion,
as they mainly refer to improving the operation of the smart contract and best practices.

Update [15-06-2020]
All relevant issues were fixed and are no longer present in commit
258048116073ef132f2f9c889a1d45fa3721de02​.

Disclaimer

Solidified audit is not a security warranty, investment advice, or an endorsement of the

Loopring platform or its products. This audit does not provide a security or correctness

guarantee of the audited smart contract. Securing smart contracts is a multistep

process, therefore running a bug bounty program as a complement to this audit is

strongly recommended.

The individual audit reports are anonymized and combined during a debrief process, in

order to provide an unbiased delivery and protect the auditors of Solidified platform from

legal and financial liability.

Solidified Technologies Inc.

