
Audit Report for Neon - May 13, 2021

Summary
Audit Report prepared by Solidified covering the Neon NFT and auction smart contracts.

Process and Delivery
Two (2) independent Solidified experts performed an unbiased and isolated audit of the code in
several rounds. The debrief took place on 13 May 2021.

Audited Files

The source code has been supplied in the form of a GitHub repository:

https://github.com/kdzapp/neon-contracts

Commit number: 006018583e4a6a65536081399098d0a994794842

The scope of the audit was limited to the following files:

contracts
├── Auction.sol
├── EscrowPayment.sol
└── NeonERC1155.sol

Intended Behavior
The smart contracts implement an ERC-1155 token with a related auction and escrow contract.

https://github.com/kdzapp/neon-contracts


Audit Report for Neon - May 13, 2021

Code Complexity and Test Coverage
Smart contract audits are an important step to improve the security of smart contracts
and can find many issues. However, auditing complex codebases has its limits and a
remaining risk is present (see disclaimer).

Users of a smart contract system should exercise caution. In order to help with the
evaluation of the remaining risk, we provide a measure of the following key indicators:
code complexity, code readability, level of documentation, and test coverage.

Note, that high complexity or lower test coverage does equate to a higher risk.
Certain bugs are more easily detected in unit testing than a security audit and
vice versa. It is, therefore, more likely that undetected issues remain if the test
coverage is low or non-existent.

Criteria Status Comment

Code complexity Low -

Code readability and clarity High -

Level of Documentation Medium -

Test Coverage High -



Audit Report for Neon - May 13, 2021

Issues Found

Solidified found that the Neon contracts contain 3 critical issues, 2 major issues, 1 minor
issue, in addition to 2 informational notes.

We recommend all issues are amended, while the notes are up to the team’s discretion,
as they refer to best practices.

Issue # Description Severity Status

1 Auction.sol: Anyone can steal Neon tokens held
by the contract.

Critical Pending

2 A bidder can block all subsequent bids and win
the auction by default

Critical Pending

3 Auction.sol: Reentrancy with calls to payout()
and refund() can cause contract to be drained

Critical Pending

4 Funds are lost if an auction is not ended by the
seller or the contract owner

Major Pending

5 Auction.sol: Tokens transferred to the contract
using ERC1155 safeBatchTransferFrom()
function will be lost/locked

Major Pending

6 A bidder can block auctions to be canceled or
his bid to be expired

Minor Pending

7 NeonERC1155.sol: IPFS URL could be stored in
OpenZeppelin base

Note -

8 NeonERC1155.sol: function mintTokens(): the
recipient becomes token creator, not the
msg.sender.

Note -



Audit Report for Neon - May 13, 2021

Critical Issues

1. Auction.sol: Anyone can steal Neon tokens held by the
contract.

By calling the function onERC1155Received() anyone can create a new auction and become a
seller for any token which is already owned by the contract (has another auction going on).
The malicious actor can then cancelAuction() and get the token sent to him.

Recommendation
Consider adding a check to the function onERC1155Received() which requires that the
msg.sender is the Neon token contract.

2. A bidder can block all subsequent bids and win the auction by
default

The auction relies on the execution of a refund operation to the previous lead bidder whenever a
higher bid is received. However, it’s quite easy for a bidder to block all subsequent bids from
being accepted in a Denial of Service attack. If the bid leader wallet is a smart contract, it can be
implemented in a way to revert instead of accepting the refund payment. This will make the
whole transaction revert, and never accept the new big.
The same is true to a lesser extent for function payout(), since, for example, a creator could
block the whole operation by not accepting the funds. However, in this case, there would
probably be no incentive to do so.

Recommendation
Let the previous auction leader pull the refund payment from the contract in a separate
transaction instead of pushing the refund out.



Audit Report for Neon - May 13, 2021

3. Auction.sol: Reentrancy with calls to payout() and refund() can
cause contract to be drained

Throughout the auction contract, calls to payout() and refund() result in external calls, after
which state changes occur. This may lead to reentrancy vulnerabilities, which could be exploited
by a smart contract calling back into the auction code.
Two exploitation scenarios have been identified related to the function cancelAuction(). This
can be used by a malicious seller to steal Ethereum held in Auction.sol contract.

Scenario 1:
1. The seller is s smart contract which creates an auction for a Neon token;
2. The seller makes a bid on the auction;
3. The seller calls cancelAuction(). The EscrowPayment.sol contract tries to refund
previously bid Ethereum to the seller. During this refund call, the seller recursively calls
cancelAuction() multiple times until a desired amount of Ethereum is extracted from the
Auction.sol contract.

Scenario 2:
1. The seller is s smart contract which creates an auction for a Neon token;
2. The seller makes a bid on the auction;
3. When someone else makes a bid, the EscrowPayment.sol contract would refund
previously bid Ethereum to the seller. During this refund call, the seller calls cancelAuction() -
this would result in the seller getting twice as much Ethereum as previously bid. The new bidder
would lose his funds.

Recommendation
Consider using a reentrancy guard and/or not performing state changes after an external call.



Audit Report for Neon - May 13, 2021

Major Issues

4. Auction.sol: Funds are lost if an auction is not ended by the
seller or the contract owner

Funds are only paid out or refunded if an auction holder decides to cancel the auction or accept
a bid. Alternatively, the contract owner can call expireBid(). Bidders have to rely on this and
have no way to recover their funds by other means.

Recommendation
Consider placing a time limit on bids to be accepted and allowing users to cancel a bit after this
limit has been reached.

5. Auction.sol: Tokens transferred to the contract using ERC1155
safeBatchTransferFrom() function will be lost/locked

The Auction.sol contract silently accepts batch transfers but does not register new auctions
for them. Thus, the tokens received by batch transfers will be locked in the contract with no way
to retrieve them back.

Recommendation
Override the base ERC1155Holder.onERC1155BatchReceived() function and either revert or
implement correct accounting of received tokens.



Audit Report for Neon - May 13, 2021

Minor Issues

6. Auction.sol: A bidder can block auctions to be canceled or his
bid to be expired

A bidder can prevent an auction from being canceled by calling cancelAuction() or the
contract owner from expiring a bid with expireBid(). This is due to the same DoS scenario
described in the previous issue. The bidder can just revert the refund transaction. This will lead
the auctioned tokens to be trapped in the contract. This issue is aggravated by the fact that a bit
of 1 Wei is enough to perform such an attack.
This issue also applies to creators being able to block auctions by making royalty payments fail.

Recommendation
Let the ETH receiver pull the payment from the contract in a separate transaction instead of
pushing it out.



Audit Report for Neon - May 13, 2021

Informational Notes

7. NeonERC1155.sol: IPFS URL could be stored in OpenZeppelin
base

The contract provides a mapping to store URLs. However, the ERC-1155 OpenZepplein
contracts used as a base for this contract already support this.

Recommendation
Consider using the OZ Metadata extension
(https://github.com/OpenZeppelin/openzeppelin-contracts/blob/master/contracts/token/ERC1155
/extensions/IERC1155MetadataURI.sol)

8. NeonERC1155.sol: function mintTokens(): the recipient
becomes token creator, not the msg.sender.

The contract keeps track of creators but automatically assigns this to the recipient parameter
when minting. This seems unintentional since a creator might mint the token for someone else.

Recommendation
Consider assigning the caller of the mint() function the creator role.

https://github.com/OpenZeppelin/openzeppelin-contracts/blob/master/contracts/token/ERC1155/extensions/IERC1155MetadataURI.sol
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/master/contracts/token/ERC1155/extensions/IERC1155MetadataURI.sol


Audit Report for Neon - May 13, 2021

Disclaimer

Solidified audit is not a security warranty, investment advice, or an endorsement of

Neon or its products. This audit does not provide a security or correctness guarantee of

the audited smart contract. Securing smart contracts is a multistep process, therefore

running a bug bounty program as a complement to this audit is strongly recommended.

The individual audit reports are anonymized and combined during a debrief process, in

order to provide an unbiased delivery and protect the auditors of Solidified platform from

legal and financial liability.

Solidified Technologies Inc.


