

Audit Report for Origin Protocol - December 17, 2020

Summary
Audit Report prepared by Solidified covering the Origin protocol staking and compensation claim
contracts.

Process and Delivery
Three (3) independent Solidified experts performed an unbiased and isolated audit of the code
below. The final debrief took place on December 16, 2020, and the results are presented here.

Audited Files
The following contracts were covered during the audit:

contracts
├──compensation

│ └── CompensationClaims.sol

└──staking

 └── SingleAssetStaking.sol

Supplied in the following source code repositories:

https://github.com/OriginProtocol/origin-dollar

commit number 0936691ee0d81f53be9f50a080a0a8f5ead2ed26

Intended Behavior
The staking smart contract implements a staking functionality with the following properties

- Users can stake a single asset multiple times
- Each individual stake can be of a certain pre-defined duration
- Each duration has a specific earning rate.
- A privileged address can pre-sign stakes for a user (for example for airdrop vouchers)

The compensation contract implements functionality to compensate users affected by a
previous security incident suffered by the project.

https://github.com/OriginProtocol/origin-dollar

Audit Report for Origin Protocol - December 17, 2020

Executive Summary
Smart contract audits are an important step to improve the security of smart contracts
and can find many issues. However, auditing complex codebases has its limits and a
remaining risk is present (see disclaimer).

Users of a smart contract system should exercise caution. In order to help with the
evaluation of the remaining risk, we provide a measure of the following key indicators:
code complexity, code readability, level of documentation, and test coverage.

Note, that high complexity or lower test coverage does not necessarily equate to a
higher risk, although certain bugs are more easily detected in unit testing than a security
audit and vice versa.

Criteria Status Comment

Code complexity Medium -

Code readability and clarity High -

Level of Documentation High -

Test Coverage High -

Audit Report for Origin Protocol - December 17, 2020

Issues Found

Solidified found that the audited contracts contain no critical issue, 1 major issue, and 2
minor issues, in addition to 2 informational notes.

We recommend all issues are amended, while the notes are up to the team’s discretion,
as it refers to best practices.

Issue # Description Severity Status

1 Pre-approved stake to 0x0 Address can allow an
attacker to claim invalid stake

Major Resolved

2 Inefficient loop logic might lead to block gas
issues and/or excessive gas usage in some
long-lived use cases

Minor Resolved

3 Pre-approved stake process does not implement
full signature replay protection

Minor Resolved

4 Malleable signatures accepted Note Resolved

5 Staking contract may run out of funds Note -

Audit Report for Origin Protocol - December 17, 2020

Critical Issues

No critical issues have been found.

Major Issues

1. Pre-approved stake to 0x0 Address can allow an attacker to
claim invalid stake

The _setPreApprover() function allows setting 0x0 address for preApprover under an
assumption that 0x00 address disables the preApprovedStake() functionality.
However, this is not true - when preApprover is set to 0x0 address, an attacker could claim a
stake without having a valid signature.
If one supplies an invalid value uint8 v parameter when calling the preApprovedStake()
function, the ecrecover(messageDigest, v, r, s) function would evaluate to 0x0 address,
thus making the check below pass:

require(

 preApprover == ecrecover(messageDigest, v, r, s),

 "Stake not approved"

);

See:
https://docs.kaleido.io/faqs/why-ecrecover-fails/

Recommendation
Consider checking for the 0x0 address.

Update
Fixed by replacing off-chain signature vouchers with a Merkle proof approach.

https://docs.kaleido.io/faqs/why-ecrecover-fails/

Audit Report for Origin Protocol - December 17, 2020

Minor Issues

2. Inefficient loop logic might lead to block gas issues and/or
excessive gas usage in some long-lived use cases

User stakes are kept in a growing array per user. The _stake() function always increases the
array size. Staking and exiting involve iterating over these arrays. This means that for long-lived
use cases with many stakes per user, the operations will become expensive and may fail due to
the block gas limit. In particular preApprovedStake() iterates over the entire array.
The severity of this issue might be higher in long-lived use cases with a large number of stakes
per user.

Recommendation
There are several ways to mitigate this issue depending on the use case, including removing
elements from the array on exit and/or implement a limit for the maximum number of stakes
allowed per user at any given time. Keep in mind that if elements are removed, there’ll be a
need to add additional checks to ensure that a new stake is not the same type as a previously
exited one.

Update
Fixed.

3. Pre-approved stake process does not implement full signature
replay protection

Signatures provided for pre-approved stakes for a user can be used multiple times since there is
nothing in the signed message that prevents a signature replay attack. Whilst a pre-approved
stake cannot be submitted again because of the stakeType parameter being allowed only once,
signature replays are theoretically possible between different deployments, for example, a
testnet deployment.

Important Note: The severity of this issue could increase depending on the implemented
solution for issue 5 (see above). In some cases, pre-approved stakes could be re-used
indefinitely.

https://docs.google.com/document/d/1YN2uschSe7o6Mo7bo3AvvzTljFSvESBf_4bD5dfaau8/edit#heading=h.dy0arlgtkz3e

Audit Report for Origin Protocol - December 17, 2020

Recommendation
Consider using a nonce per user to make sure signatures cannot be replayed. It is also good
practice to include the contract address and chain id on the signed message to avoid replaying
between contract instances or from a testnet deployment.

Update
Fixed.

Notes

4. Malleable signatures accepted

The preApprovedStake() function uses the built-in ecrecover(). This function still allows
malleable signatures for backward compatibility reasons. Signatures that have an s value larger
than 0x7FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF5D576E7357A4501DDFE92F46681B20A0 are
usually rejected for Ethereum address post EIP-2.

Recommendation
Consider rejecting signatures with s values in the upper ranges, even though it may not be a
security issue in this case.
For an example solution see
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/master/contracts/cryptography/E
CDSA.sol

Update
Fixed by replacing signature procedure with Merkle proof.

5. Staking contract may run out of funds

There is no way to control the amount USER_STAKE_TYPE staked.
The existing SingleAssetStaking.sol contract’s token balance can be “consumed” by
rewards for USER_STAKE_TYPE stakes.
It could interfere with the intended preApprovedStake() functionality because both operations
(the user stake and pre-approved stake) use the same token’s pool (the balance of the
SingleAssetStaking.sol contract).

https://github.com/OpenZeppelin/openzeppelin-contracts/blob/master/contracts/cryptography/ECDSA.sol
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/master/contracts/cryptography/ECDSA.sol

Audit Report for Origin Protocol - December 17, 2020

Recommendation
Consider adding a governor-configurable maximum total of staked amount of USER_STAKE_TYPE
type stakes.

Audit Report for Origin Protocol - December 17, 2020

Disclaimer

Solidified audit is not a security warranty, investment advice, or an endorsement of

Origin Protocol or its products. This audit does not provide a security or correctness

guarantee of the audited smart contract. Securing smart contracts is a multistep

process, therefore running a bug bounty program as a complement to this audit is

strongly recommended.

The individual audit reports are anonymized and combined during a debrief process, in

order to provide an unbiased delivery and protect the auditors of Solidified platform from

legal and financial liability.

Solidified Technologies Inc.

