
Audit Report for Pandora - May 19, 2022

Summary
Audit Report prepared by Solidified covering the Pandora smart contracts.

Process and Delivery
Three (3) independent Solidified experts performed an unbiased and isolated audit of the code
below. The final debrief took place on May 9, 2022, and the results are presented here.

Audited Files

The source code has been supplied in a private source code repository:

https://github.com/advancedblockchain/pandora-protocol

Commit number: 3ed61810ccd86b37ac6967b03a775fd35c904d5f

Update: Fixes where provided on May 12, 2022
Updated commit number: 0bcbd3159d36b8de28c04d546489246c371bd4c7

Intended Behavior

Pandora is a lending protocol where the collateral can be freely swapped and invested into
different whitelisted protocols and tokens.

Audit Report for Pandora - May 19, 2022

Findings
Smart contract audits are an important step to improve the security of smart contracts
and can find many issues. However, auditing complex codebases has its limits and a
remaining risk is present (see disclaimer).

Users of a smart contract system should exercise caution. In order to help with the
evaluation of the remaining risk, we provide a measure of the following key indicators:
code complexity, code readability, level of documentation, and test coverage.

Note, that high complexity or lower test coverage does not necessarily equate to a
higher risk, although certain bugs are more easily detected in unit testing than a security
audit and vice versa.

Criteria Status Comment

Code complexity Medium -

Code readability and clarity High -

Level of Documentation High -

Test Coverage High -

Audit Report for Pandora - May 19, 2022

Issues Found

Solidified found that the Pandora contracts contain no critical issues, 8 major issues, 9
minor issues, and 11 informational notes.

We recommend issues are amended, while informational notes are up to the team’s
discretion, as they refer to best practices.

Issue # Description Severity Status

1 StablesManager.sol: Replacing the current
pandoraUSD token can lead to loss of funds for
all existing borrowers

Major Resolved

2 SharesRegistry.sol: Contract owner can liquidate
all Pandora borrowers by assigning a malicious
oracle

Major Resolved

3 AaveStablecoin.sol: Contract owner can
potentially drain deposited funds

Major Resolved

4 StrategyManager.sol: Pandora users could
potentially lose funds when a strategy is
removed

Major Resolved

5 SharesRegistry.sol: Anyone can call accrue()
and manipulate earned fees by protocol

Major Resolved

6 SharesRegistry.sol: Unable to accrue interest as
INTEREST_PER_SECOND is not set and can
not be updated

Major Resolved

7 YearnStablecoin.sol: Fees for accumulated
rewards will always be 0

Major Resolved

8 OperationsLib.sol: safeApprove() is missing
approve(0)

Major Resolved

9 HoldingManager.sol: Function
createHoldingForMyself() does not enforce the
firstDepositAmount requirement

Minor Acknowledged

Audit Report for Pandora - May 19, 2022

10 HoldingManager.sol: The pause functionality is
ineffective

Minor Resolved

11 SharesRegistry.sol: Function acceptOwnership()
does not reset the value of temporaryOwner

Minor Resolved

12 Holding.sol: Unchecked low-level call() result Minor Resolved

13 ChainlinkOracle.sol: Chainlink's
latestRoundData might return stale or incorrect
results

Minor Resolved

14 ModChainlinkOracle.sol: Use of deprecated
Chainlink oracle aggregator function
latestAnswer in _get()

Minor Resolved

15 PandoraUSD.sol: Owner can mint and burn
unlimited tokens

Minor Resolved

16 Staker.sol: _performanceFee is not validated in
the constructor

Minor Resolved

17 SimpleUniswapV2Oracle.sol: Exchange rate is
vulnerable to flash loan attacks

Minor Resolved

18 HoldingManager.sol: The _isContract() check in
function _assignHolding() could be bypassed

Note Resolved

19 TwapUniswapV2Oracle.sol: Function update()
can save on gas if it only fetches the current
prices after checking the period

Note Resolved

20 AaveStablecoin.sol: Function deposit() is
missing an AAVE referral code

Note Resolved

21 lpVault is redundant across all Curve contracts Note Resolved

22 SigningManager.sol: Function
getDomainSeparator() unnecessarily uses
assembly to fetch the current chain id

Note Resolved

23 SharesRegistry.sol: Oracle might return 0 Note Resolved

24 PandoraUSD.sol: Use ERC20.totalSupply
instead of totalMinted

Note Resolved

Audit Report for Pandora - May 19, 2022

25 Contracts inheriting Ownable have
renounceOwnership() functionality

Note Resolved

26 OperationsLib.sol: Use .selector instead of a
hexadecimal number

Note Resolved

27 Gas Optimizations Note -

28 Miscellaneous Notes Note -

Audit Report for Pandora - May 19, 2022

Critical Issues

No critical issues have been found.

Major Issues

1. StablesManager.sol: Replacing the current pandoraUSD token

can lead to loss of funds for all existing borrowers

Function setPandoraUSD() allows the contract owner to arbitrarily replace the current
pandoraUSD token at any point in time. This action will prevent all existing borrowers from
settling their debts, since all of them will be still holding the old pandoraUSD token, causing the
repay() function to always revert.

Recommendation
Only allow setting pandoraUSD in the contract's constructor.

Status
Resolved

2. SharesRegistry.sol: Contract owner can liquidate all Pandora

borrowers by assigning a malicious oracle

Function setOracleData() allows the contract owner to potentially assign a malicious (or a
buggy) oracle that would allow them (or an attacker) to liquidate all the current protocol
borrowers.

Audit Report for Pandora - May 19, 2022

Recommendation
setOracleData() should not be able to immediately reassign the oracle data, but rather give
market participants adequate time to close their positions (in case they wish to) before a new
oracle is assigned.

Status
Resolved

3. AaveStablecoin.sol: Contract owner can potentially drain

deposited funds

Function setLendingPool() allows the contract owner to potentially assign a malicious
lendingPool contract at any arbitrary point in time, thus potentially allowing them to drain all
newly deposited funds.

Recommendation
Only allow setting lendingPool in the contract’s constructor.

Note
The same vulnerability exists in the following contracts: CurveBase, Curve3Pool,
CurveDaiUsdcUsdtPool, and CurveTricrypto.

Status
Resolved

Audit Report for Pandora - May 19, 2022

4. StrategyManager.sol: Pandora users could potentially lose

funds when a strategy is removed

Function removeStrategy() allows the contract owner to remove any strategy regardless of its
current usage state. Removing a strategy that’s in use will prevent its respective users from
calling function claimInvestment(), and thus lead to potential loss of funds for the protocol
users.

Recommendation
Keep track of what strategies are in use and only allow removal of unused strategies.

Status
Resolved

5. SharesRegistry.sol: Anyone can call accrue() and manipulate
earned fees by protocol

The accrue() function handles the accumulation of fees. The function lacks access control and

can be called by anyone. A malicious caller can call the function and manipulate the amount of

earned fees by the protocol.

Recommendation

Use the modifier onlyStableManager to only allow StableManager to call accrue().

Status
Resolved

Audit Report for Pandora - May 19, 2022

6. SharesRegistry.sol: Unable to accrue interest as
INTEREST_PER_SECOND is not set and can not be updated

The accrue() function in SharesRegistry.sol calculates the accrued interest on the

borrowed tokens based on accrueInfo.INTEREST_PER_SECOND. But

accrueInfo.INTEREST_PER_SECOND is never initialized (default set to 0) nor is there a function

to update the value. Hence, borrowing is interest free.

Recommendation

Initialize accrueInfo.INTEREST_PER_SECOND to a value > 0 or consider adding a setter
function to allow the owner to update the value.

Status
Resolved

7. YearnStablecoin.sol: Fees for accumulated rewards will always
be 0

In the YearnStablecoin strategy contract, whenever deposited funds are withdrawn, the

protocol intends to take a fee of the accumulated rewards. But due to calling withdraw() before

calculating the rewards in getRewards(), the rewards will always be 0.

Recommendation

Calculate rewardPortion before withdrawing funds.

Status
Resolved

Audit Report for Pandora - May 19, 2022

8. OperationsLib.sol: safeApprove() is missing approve(0)

Some tokens, like USDT (see requirement line 199,

https://etherscan.io/address/0xdac17f958d2ee523a2206206994597c13d831ec7#code), require

first reducing the address allowance to 0 by calling approve(spender, 0) and then approve

the actual allowance.

When using one of these unsupported tokens, all transactions will revert and the protocol

cannot be used.

Recommendation

Approve with a zero amount first before setting the actual amount.

Status
Resolved

https://etherscan.io/address/0xdac17f958d2ee523a2206206994597c13d831ec7#code
https://etherscan.io/address/0xdac17f958d2ee523a2206206994597c13d831ec7#code

Audit Report for Pandora - May 19, 2022

Minor Issues

9. HoldingManager.sol: Function createHoldingForMyself() does

not enforce the firstDepositAmount requirement

Function createHoldingForMyself() allows users to create and assign a holding for
themselves without depositing the firstDepositAmount.

Recommendation
Transfer firstDepositAmount to the newly assigned holding in order to satisfy the protocol first
deposit requirement.

Status
Acknowledged. Team’s response: “That’s the intended behavior. A deposit is only required when
assigning a holding”.

10. HoldingManager.sol: The pause functionality is ineffective

In case of an emergency, the contract's owner can pause the contract, but cannot save users'
funds due to the lack of any fund recovery mechanism in the contract.

Recommendation
Either provide a way for the owner to save the funds, or remove the pause functionality.

Status
Resolved

Audit Report for Pandora - May 19, 2022

11. SharesRegistry.sol: Function acceptOwnership() does not

reset the value of temporaryOwner

After the new owner accepts ownership, function acceptOwnership() does not reset the value
of temporaryOwner.

Recommendation
Set the value of temporaryOwner to address(0) in order to reflect the correct state of the
contract.

Status
Resolved

12. Holding.sol: Unchecked low-level call() result

If the return value of a low-level call is not checked, the execution may resume even if the

function call throws an error. This can lead to unexpected behavior and inconsistent states.

The following contracts call genericCall() but do not check for the success return value:

CompoundStablecoin, ConvexBase, Curve3PoolBase, CurveDaiUsdcUsdtPoolBase, and

CurveTricryptoBase.

Recommendation

Check the success return value of genericCall() in the specified contracts and revert if
false.

Status
Resolved

Audit Report for Pandora - May 19, 2022

13. ChainlinkOracle.sol: Chainlink's latestRoundData might
return stale or incorrect results

In ChainlinkOracle.sol, latestRoundData() is used but there is no check if the return value

indicates stale data. This could lead to stale prices according to the Chainlink documentation:

https://docs.chain.link/docs/historical-price-data/#historical-rounds

https://docs.chain.link/docs/faq/#how-can-i-check-if-the-answer-to-a-round-is-being-carried-over

-from-a-previous-round

Recommendation

Consider adding checks for stale data. For instance:

(uint80 roundId, int256 priceC, , uint256 timestamp, uint80 answeredInRound)

= IAggregator(multiply).latestRoundData();

require(priceC > 0, "PRICE: NEGATIVE");

require(answeredInRound >= roundId, "PRICE: STALE PRICE");

require(timestamp != 0, "PRICE: ROUND INCOMPLETE");

Status
Resolved

14. ModChainlinkOracle.sol: Use of deprecated Chainlink oracle
aggregator function latestAnswer() in _get()

According to Chainlink's documentation, the latestAnswer() function is deprecated. This

function does not error if no answer has been reached but returns 0.

https://docs.chain.link/docs/historical-price-data/#historical-rounds
https://docs.chain.link/docs/faq/#how-can-i-check-if-the-answer-to-a-round-is-being-carried-over-from-a-previous-round
https://docs.chain.link/docs/faq/#how-can-i-check-if-the-answer-to-a-round-is-being-carried-over-from-a-previous-round

Audit Report for Pandora - May 19, 2022

The function is not present in the latest API reference:

https://docs.chain.link/docs/price-feeds-api-reference/

Recommendation

Use the latestRoundData() function to get the price instead. Add checks on the return data
with proper revert messages if the price is stale or the round is incomplete.

Status
Resolved

15. PandoraUSD.sol: Owner can mint and burn unlimited tokens

The minting and burning of PandoraUSD should only be done by the stables manager.

Recommendation
Change the mint and burn modifier from onlyOwnerOrStablesManager to
onlyStablesManager.

Status
Resolved

16. Staker.sol: _performanceFee is not validated in the

constructor

The parameter _performanceFee in the constructor is not validated to make sure it is less than

FEE_FACTOR.

https://docs.chain.link/docs/price-feeds-api-reference/
https://docs.chain.link/docs/price-feeds-api-reference/

Audit Report for Pandora - May 19, 2022

Recommendation

Use require(_fee < OperationsLib.FEE_FACTOR, "3018"); (from
setPerformanceFee()) to validate _performanceFee in the constructor.

Status
Resolved

17. SimpleUniswapV2Oracle.sol: Exchange rate is vulnerable to

flash loan attacks

The latest exchange rate is calculated using the current Uniswap token pair reserves. These

reserves can be easily manipulated via flash loan attacks to increase the current token balance

for the length of the current transaction.

Recommendation

We recommend not using the oracle contract SimpleUniswapV2Oracle, or to at least ensure no

actor can change the Uniswap pool contents earlier in the same block:

(uint256 r0, uint256 r1, uint32 blockTimestampLast) =

IUniswapV2Pair(pair).getReserves();

require(blockTimestampLast < block.number, "Pool changed in this block");

Status
Resolved

Audit Report for Pandora - May 19, 2022

Informational Notes

18. HoldingManager.sol: The _isContract() check in function

_assignHolding() could be bypassed

Any contract address can be precomputed before the contract is actually deployed to it. If a
precomputed contract address is passed to function _assignHolding(), it will be
indistinguishable from an EOA address, and the check will be bypassed.

Recommendation
Remove the redundant check.

Status
Resolved

19. TwapUniswapV2Oracle.sol: Function update() can save on

gas if it only fetches the current prices after checking the period

Function update() only requires the values fetched from
UniswapV2OracleLibrary.currentCumulativePrices() if the elapsed time has exceeded
period, but is currently fetching prices regardless of that condition.

Recommendation
Only call UniswapV2OracleLibrary.currentCumulativePrices() if (timeElapsed >=
period).

Status
Resolved

Audit Report for Pandora - May 19, 2022

20. AaveStablecoin.sol: Function deposit() is missing an AAVE

referral code

Function deposit() does not provide an AAVE referral code when calling
lendingPool.deposit().

Recommendation
Implement a referral code setter function in the contract, so that a referral code is active as soon
as AAVE enables it. For more information, refer to:
https://docs.aave.com/developers/v/2.0/the-core-protocol/lendingpool#deposit.

Status
Resolved

21. lpVault is redundant across all Curve contracts

lpVault is being set across all Curve contracts but is never used.

Recommendation
Consider removing all occurrences of lpVault in order to save on deployment gas fees.

Status
Resolved

Audit Report for Pandora - May 19, 2022

22. SigningManager.sol: Function getDomainSeparator()

unnecessarily uses assembly to fetch the current chain id

Recommendation
Consider using block.chainid instead.

Status
Resolved

23. SharesRegistry.sol: Oracle might return 0

The SharesRegistry contract retrieves the current exchange rate from an oracle in

updateExchangeRate() and caches the value in the storage variable exchangeRate, but there

is no check if the returned exchange rate is valid (> 0).

Recommendation

Validate the returned oracle exchange rate and revert if rate = 0.

Status
Resolved

24. PandoraUSD.sol: Use ERC20.totalSupply instead of

totalMinted

Audit Report for Pandora - May 19, 2022

PandoraUSD.sol uses a custom storage variable totalMinted to keep track of the total

amount of minted PandoraUSD tokens. This variable is not necessary and can be easily

replaced with totalSupply from the ERC20 standard.

Recommendation

Consider using totalSupply from ERC20 and remove the storage variable totalMinted.

Status
Resolved

25. Contracts inheriting Ownable have renounceOwnership()

functionality

Renouncing ownership will leave the contract without an owner. This functionality is desirable in

certain scenarios and is typically allowed by libraries such as Ownable. Following contracts

inherit from Ownable, thus having the functionality to renounce ownership:

- HoldingManager

- Manager

- ManagerContainer

- PandoraMerkle

- StablesManager

- Staker

- StrategyManager

- SigningManager

- ModChainlinkOracle

- StrategyBase

- ConvexBase

Audit Report for Pandora - May 19, 2022

- CurveBase

- Curve3PoolLPGetter

- CurveDaiUsdcUsdtLPGetter

- CurveTricryptoLPGetter

Recommendation

Consider overriding renounceOwnership() function in contracts to prevent renouncing

ownership accidentally.

Status
Resolved

26. OperationsLib.sol: Use .selector instead of a hexadecimal

number

In the contract OperationsLib.sol the function selector in safeApprove() is encoded as a

hexadecimal number. Solidity has the keyword .selector which makes the code easier to read

and less error prone.

Recommendation

Consider using bytes4(keccak256("approve(address,uint256)")) instead of a
hexadecimal number.

Status
Resolved

Audit Report for Pandora - May 19, 2022

27. Gas Optimizations

1. HoldingManager.sol: Only transfer reward for creating new holding if mintingTokenReward

> 0 in createHolding(). Resolved

2. HoldingManager.sol: Only transfer first deposit amount when self-assigning holding if

firstDepositAmount > 0 in assignHoldingToMyself(). Resolved

3. Holding.sol: require(_balance >= _amount, "2001"); check in transfer() is not

needed as this is already checked in the OpenZeppelin ERC20 implementation. Resolved

4. StrategyManager.sol: require(strategyInfo[_strategy].whitelisted, "3060");

check in updateStrategy() is not needed as this is already checked in the validStrategy

modifier. Resolved

5. StablesManager.sol#721: Cache recurring storage access to totals[IERC20(_token)] in

variable

6. StablesManager.sol#751: Cache recurring storage access to totals[IERC20(_token)] in

variable

7. Curve3Pool.sol#122: Use cached variable depositToken instead of reading tokenIn from

storage. Resolved

8. Curve3Pool.sol#138: Use cached variable depositToken instead of reading tokenIn from

storage. Resolved

9. CurveDaiUsdcUsdtPool.sol#122: Use cached variable depositToken instead of reading

tokenIn from storage. Resolved

10. CurveDaiUsdcUsdtPool.sol#138: Use cached variable depositToken instead of reading

tokenIn from storage. Resolved

11. SharesRegistry.sol: Unused RebaseLib library. Resolved

12. Curve3PoolBase.sol: Unused function _claimRewards

13. CurveDaiUsdcUsdtPoolBase.sol: Unused function _claimRewards

Audit Report for Pandora - May 19, 2022

14. SharesRegistry.sol: Redundant underflow check in unregisterCollateral().

Resolved

15. HoldingManager.sol: Modifier onlyHoldingUser is redundant. Resolved

28. Misc Notes

1. Add address(0) validations throughout the contracts to prevent any accidental transfers.
Findings:

- Manager.constructor() - _usdc

- ManagerContainer.constructor() - _manager

- AaveStablecoin.constructor() - tokenIn, tokenOut

Resolved

2. StablesManager.sol#22: Update NatSpec comment and remove AlcBox. Resolved

3. SigningManager.sol: Remove references of AlcBox. Resolved

4. Duplicate NatSpec function parameter documentation. Findings:
- ./strategies/curve/3pool/Curve3Pool.sol:146 - param _asset

- ./strategies/curve/tricrypto/CurveTricrypto.sol:143 - param _asset

- ./strategies/curve/daiUsdcUsdt/CurveDaiUsdcUsdtPool.sol:146 - param _asset

- ./strategies/convex/3pool/Convex3Pool.sol:157 - param _asset

- ./strategies/convex/daiUsdcUsdt/ConvexDaiUsdcUsdt.sol:152 - param _asset

Resolved

5. Events are not indexed. Findings:
- TwapUniswapV2Oracle.sol - event PriceUpdated

- IMerkleDistributor.sol - event Claimed

- IModChainlinkOracle.sol - event AggregatorAdded

Audit Report for Pandora - May 19, 2022

- ISharesRegistry.sol - event BorrowedSet

- ISharesRegistry.sol - event BorrowedSharesSet

Resolved

6. CurveDaiUsdcUsdtLPGetter.sol#13: Wrong mentioning of Convex. Replace with Curve.

Resolved

7. Function visibility should be internal. Findings:

- YearnOracle.sol - function _get

- CurveOracle.sol - function _get

- ChainlinkOracle.sol - function _get

- ModChainlinkOracle.sol - function _get

- FairUniswapV2Oracle.sol - function _get

- SimpleUniswapV2Oracle.sol - function _get

Resolved

8. StablesManager.sol: Consider using accrue() to DRY. Findings:
- StablesManager.sol#372
- StablesManager.sol#448

Resolved

9. PandoraUSD.sol#37: Too many zeros used to represent the number 1000000 for

mintLimit, consider using scientific notation 1e6 and use the constant DECIMALS; mintLimit

= 1e6 * (10**DECIMALS). Resolved

10. PandoraUSD.sol#43: Wrong NatSpec function comment for updateMintLimit().

Resolved

11. TwapUniswapV2Oracle.sol: The NatSpec function comment for peek() is mentioning the
wrong amount of decimals. It should be 1e18 decimals. Resolved
12. ModChainlinkOracle.sol: Consider moving require statements in addAggregator() to

_addAggregator(). Resolved

13. SharesRegistry.sol: Consider adding a setter function for oracle. Resolved

Audit Report for Pandora - May 19, 2022

Disclaimer

Solidified audit is not a security warranty, investment advice, or an endorsement of

Pandora or its products. This audit does not provide a security or correctness guarantee

of the audited smart contract. Securing smart contracts is a multistep process, therefore

running a bug bounty program as a complement to this audit is strongly recommended.

The individual audit reports are anonymized and combined during a debrief process, in

order to provide an unbiased delivery and protect the auditors of Solidified platform from

legal and financial liability.

Oak Security GmbH

