

Audit Report for ParaSwap - January 20, 2021

Summary
Audit Report prepared by Solidified covering the ParaSwap smart contracts.

Process and Delivery
Three (3) independent Solidified experts performed an unbiased and isolated audit of the code
below. The final debrief took place on January 18, 2021, and the results are presented here.

Audited Files
The contracts audited were supplied in a specific branch of a private source code repository:

https://gitlab.com/paraswap/paraswap-contracts/-/tree/audit/02

The latest commit hash covered by this audit is:

017e9acf4e86603197c851a8cef44dde35c4d82d

UPDATE: Fixes were received in commit: 1d107fdec927551ba53fb19d37c82d5d7fc2d5f3

The scope of this audit was limited to the following files:

original_contracts/AugustusSwapper.sol

original_contracts/lib/Utils.sol

original_contracts/TokenTransferProxy.sol

original_contracts/Partner.sol

original_contracts/PartnerRegistry.sol

Uniswap Router:

original_contracts/lib/UniswapV3Lib.sol

original_contracts/UniswapV3Router.sol

Intended Behavior
The ParaSwap smart contracts implement the on-chain component of a DEX aggregator. The
audited components include single-path and multi-path token swap contracts and DEX router
adapters. The contracts included in the scope of this audit are a single- and multi-path swapper
contract the partnership program and Uniswap router.

https://gitlab.com/paraswap/paraswap-contracts/-/tree/audit/02

Audit Report for ParaSwap - January 20, 2021

Findings
Smart contract audits are an important step to improve the security of smart contracts
and can find many issues. However, auditing complex codebases has its limits and a
remaining risk is present (see disclaimer).

Users of a smart contract system should exercise caution. In order to help with the
evaluation of the remaining risk, we provide a measure of the following key indicators:
code complexity, code readability, level of documentation, and test coverage.

Note, that high complexity or lower test coverage does not necessarily equate to a
higher risk, although certain bugs are more easily detected in unit testing than a security
audit and vice versa.

Criteria Status Comment

Code complexity Medium -

Code readability and clarity High -

Level of Documentation High -

Test Coverage High -

Audit Report for ParaSwap - January 20, 2021

Issues Found

Solidified found that the ParaSwap contracts contain no critical issue, 2 major issue, 4
minor issues, in addition to 1 informational note.

We recommend all issues are amended, while the notes are up to the team’s discretion,
as it refers to best practices.

Issue # Description Severity Status

1 AugustuSwapper.sol: Use with ERC-777 tokens
may lead to reentrancy and cause gas refunds
to be exploitable

Major Acknowledged

2 AugustusSwapper.sol: An attacker can drain any
residual ETH available in the contract

Minor Acknowledged

3 AugustusSwapper might misbehave with some
ERC-20 token

Minor Acknowledged

4 AugustuSwapper.sol: performSimpleSwap()
does not verify matching parameter array
lengths

Minor Acknowledged

5 Utils.sol: use call() instead of transfer() for Ether
transfer

Minor Resolved

6 Utils.sol: Gas refund depends on hardcoded
values

Note -

7 AugustusSwapper.sol: Redundant assignment in
function takeFeeAndTransferTokens()

Note -

Audit Report for ParaSwap - January 20, 2021

Critical Issues

No critical issues have been found.

Major Issues

1. AugustuSwapper.sol: Use with ERC-777 tokens may lead to
reentrancy and cause gas refunds to be exploitable

Attackers can make use of tokens that trigger execution of injected code, such as ERC-777
hooks, to execute arbitrary code and to get gas refunds at the expense of Paraswap.

Also, If any part of the route triggers execution, the swapper contract becomes vulnerable
reenttrancy. There is no clear attack scenario for this, but it is important to make users aware of
this issue.

Recommendation
Consider simplifying gas management and making users aware of the incompatibility with
ERC-777 tokens. One option is to add a list of allowed tokens and block execution to others.
Another option is to keep this list in the user interface and warn users if they are interacting with
tokens that might misbehave.

Minor Issues

2. AugustusSwapper.sol: An attacker can drain any residual ETH
available in the contract

An attacker can use function simplBuy() to drain any residual ETH available in the contract
(e.g. ETH that was sent to the contract by mistake). The same attack can also be performed by
calling the buy() function.

To perform the attack, they would simply call simplBuy() without sending any ETH. Since
simplBuy() currently assumes that all ETH in the contract was sent by the current caller and
attempts to return all remainingAmount after it is done buying, the attack would succeed and
the caller would have effectively drained all available ETH.

Audit Report for ParaSwap - January 20, 2021

Recommendation
Require that msg.value be equal to fromAmount (in case fromToken is ETH_ADDRESS), then
calculate residualEth by subtracting msg.value from contract’s initial ETH balance. Only
return balance - residualEth to the caller when the function is done buying.

3. AugustuSwapper.sol: AugustusSwapper might misbehave
with some ERC-20 tokens

There are some ERC-20 implementations out there and some of them might cause unexpected
consequences, such as tokens that charge fees on transfer, malicious implementations, or
tokens that return false instead of reverting.

Recommendation
There’s not a particular way to deal with this. One option is to add a list of allowed tokens and
block execution to others. Another option is to keep this list in the user interface and warn users
if they are interacting with tokens that might misbehave.

4. AugustuSwapper.sol: performSimpleSwap() does not verify
matching parameter array lengths

In function performSimpleSwap() the arrays callees and values are passed as parameters
and should be of equal length. However, the check for this omitted from the precondition
checks.

Recommendation
Add the statement to the precondition checks:

require(values.length == callees.length);

5. Utils.sol: use call() instead of transfer() for Ether transfer

The function transferTokens() uses transfer() for Ether transfers. This used to be the
recommended method, but is not considered best practise anymore. In particular, since the
introduction of new gas cost for some opcodes in the Istanbul fork, the gas stipend forwarded

Audit Report for ParaSwap - January 20, 2021

with transfer() is not considered sufficient anymore, leading to smart contract receivers not
being able to receive Ether, meaning that the transaction will fail.

Recommendation
Consider using address.call{value: x}() instead of transfer().

Update
Resolved

Notes

6. Utils.sol: Gas refund depends on hardcoded values

The function refundGas() uses hardcoded gas costs in its calculations. However, gas prices
may change in future protocol updates, leading to incorrect calculations.

Recommendation
Consider making the values used configurable.

7. AugustusSwapper.sol: Redundant assignment in function
takeFeeAndTransferTokens()

Variable remainingAmount is first redundantly assigned to receivedAmount, then assigned
again to receivedAmount.sub(fee).

Recommendation
Remove redundancy to save on gas costs.

Audit Report for ParaSwap - January 20, 2021

Disclaimer

Solidified audit is not a security warranty, investment advice, or an endorsement of

ParaSwap or its products. This audit does not provide a security or correctness

guarantee of the audited smart contract. Securing smart contracts is a multistep

process, therefore running a bug bounty program as a complement to this audit is

strongly recommended.

The individual audit reports are anonymized and combined during a debrief process, in

order to provide an unbiased delivery and protect the auditors of Solidified platform from

legal and financial liability.

Solidified Technologies Inc.

