
Audit Report for Paraswap - April 06, 2021

Summary
Audit Report prepared by Solidified covering a subset of the Paraswap smart contracts, which
has been added to the protocol since the previous audit
(https://github.com/solidified-platform/audits/blob/master/Audit%20Report%20-%20ParaSwap%
20%5B20.01.2021%5D.pdf).

Process and Delivery
Three (2) independent Solidified experts performed an unbiased and isolated audit of the code
below. The final debrief took place on 29 March 2021, and the results are presented here.

Audited Files

The source code has been supplied in the form of a private GitHub repository:

https://github.com/paraswap/paraswap-contracts/tree/audit/03

Commit number: ac6671eff1c3e78edab9e9d92169e3b5517209d8

The scope of the audit was limited to the following files:

original_contracts/AugustusSwapper.sol
original_contracts/UniswapProxy.sol
original_contracts/TokenTransferProxy.sol
original_contracts/lib/ReduxToken.sol
original_contracts/lib/uniswapv2/UniswapV2.sol
original_contracts/lib/Utils.sol

Intended Behavior
The ParaSwap smart contracts implement the on-chain component of a DEX aggregator. The
audited components include single-path and multi-path token swap contracts and DEX router
adapters. The contracts included in the scope of this audit are a single- and multi-path swapper
contract the partnership program and Uniswap router.

https://github.com/solidified-platform/audits/blob/master/Audit%20Report%20-%20ParaSwap%20%5B20.01.2021%5D.pdf
https://github.com/solidified-platform/audits/blob/master/Audit%20Report%20-%20ParaSwap%20%5B20.01.2021%5D.pdf
https://github.com/paraswap/paraswap-contracts/tree/audit/03


Audit Report for Paraswap - April 06, 2021

Code Complexity and Test Coverage
Smart contract audits are an important step to improve the security of smart contracts
and can find many issues. However, auditing complex codebases has its limits and a
remaining risk is present (see disclaimer).

Users of a smart contract system should exercise caution. In order to help with the
evaluation of the remaining risk, we provide a measure of the following key indicators:
code complexity, code readability, level of documentation, and test coverage.

Note, that high complexity or lower test coverage does equate to a higher risk.
Certain bugs are more easily detected in unit testing than a security audit and
vice versa. It is, therefore, more likely that undetected issues remain if the test
coverage is low or non-existent.

Criteria Status Comment

Code complexity Medium -

Code readability and clarity Medium -

Level of Documentation Medium-low -

Test Coverage Medium -



Audit Report for Paraswap - April 06, 2021

Issues Found

Solidified found that the Paraswap contracts contain no critical issue, 2 major issues, 1
minor issue, 1 warning, in addition to 1 informational note.

We recommend all issues are amended, while the notes are up to the team’s discretion,
as they refer to best practices.

Issue # Description Severity Status

1 AugustusSwapper.sol: Contract owner can
arbitrarily modify _uniswapProxy while users
potentially have pending transactions

Major Resolved

2 UniswapV2.sol: Missing implementation for
onChainSwap() leads to loss of funds

Major Resolved

3 AugustusSwapper.sol: Implementation
discrepancy for function withdrawAllWETH()

Minor Acknowledged

4 AugustuSwapper.sol: AugustusSwapper might
misbehave with some ERC-20 tokens

Warning -

5 Code duplication Note -

6 ReduxToken.sol: Function _destroyChildren()
does not check if value equals zero

Note -



Audit Report for Paraswap - April 06, 2021

Critical Issues

No critical issues have been found.

Major Issues

1. AugustusSwapper.sol: Contract owner can arbitrarily modify
_uniswapProxy while users potentially have pending
transactions

Function changeUniswapProxy() allows the contract owner to modify _uniswapProxy at any
arbitrary time of their choice. This means that users who have pending transactions for
swapOnUniswap() or buyOnUniswap() (amongst several others) will end up having their
transactions executed on a different proxy contract than the one they were expecting at
transaction creation.

Recommendation
Only allow the owner to change _uniswapProxy after a certain time-lock period has passed,
which gives users the chance to drop their pending transactions in case they do not wish to
have them executed using the new proxy contract.

Update
Resolved by adding a timelock.

2. UniswapV2.sol: Missing implementation for onChainSwap()
leads to loss of funds

Function onChainSwap() is currently missing the implementation required for the actual
swapping of tokens (currently commented out in code). A call to this function that sends ETH will
result in loss of all the funds sent.

Recommendation
Provide appropriate implementation.



Audit Report for Paraswap - April 06, 2021

Update
Resolved by always reverting.

Minor Issues

3. AugustusSwapper.sol: Implementation discrepancy for
function withdrawAllWETH()

Function withdrawAllWETH()‘s documentation states that it sends the WETH returned during the
exchange to the user, while its implementation simply converts the contract’s WETH back to ETH.

Recommendation
Resolve discrepancy or remove function.

Warnings

4. AugustuSwapper.sol: AugustusSwapper might misbehave
with some ERC-20 tokens

There are some ERC-20 implementations out there and some of them might cause unexpected
consequences, such as tokens that charge fees on transfer, malicious implementations, or
tokens that return false instead of reverting.

Recommendation
There’s not a particular way to deal with this. One option is to add a list of allowed tokens and
block execution to others. Another option is to keep this list in the user interface and warn users
if they are interacting with tokens that might misbehave.

Informative Notes

5. Code duplication

Throughout the codebase there is a lot of duplicate code. Particular examples :
- duplicate implementations in original_contracts/lib/uniswapv2/UniswapV2.sol

and original_contracts/UniswapProxy.sol.



Audit Report for Paraswap - April 06, 2021

- Functions multiSwap() and megaSwap() in original_contracts/AugustusSwapper.sol.

Recommendation
Consider refactoring the code to reduce code duplication.

6. ReduxToken.sol: Function _destroyChildren() does not check
if value equals zero

Function _destroyChildren() does not check if value equals zero, resulting in unnecessary
instructions being executed and gas wasted when this is the case. This could happen on
multiple occasions, most notably when function freeFromUpTo() is called and userAllowance

is zero.

Recommendation
Check that value!=0 before executing any instructions.



Audit Report for Paraswap - April 06, 2021

Disclaimer

Solidified audit is not a security warranty, investment advice, or an endorsement of

Paraswap or its products. This audit does not provide a security or correctness

guarantee of the audited smart contract. Securing smart contracts is a multistep

process, therefore running a bug bounty program as a complement to this audit is

strongly recommended.

The individual audit reports are anonymized and combined during a debrief process, in

order to provide an unbiased delivery and protect the auditors of Solidified platform from

legal and financial liability.

Solidified Technologies Inc.


