

Audit Report for Pixowl The Sandbox Token (ERC20) and Sale on September 25th, 2019.

Summary
Audit Report prepared by Solidified for Pixowl covering the Sandbox ERC20 and Sale smart
contracts (and inherited dependencies).

Process and Delivery
Three (3) independent Solidified experts performed an unbiased and isolated audit of the code
below. The debrief took place on September 25th, 2019, and the final results are presented
here.

Audited Files
The following contracts were covered during the audit:

● Sand.sol
● TheSandbox712.sol
● ERC20BaseToken.sol
● ERC20ExecuteExtension.sol
● NativeMetaTransactionProcessor.sol
● Admin.sol
● ProxyImplementation.sol
● SuperOperators.sol
● ERC1271.sol
● ERC1271Constants.sol
● ERC20Events.sol
● BytesUtil.sol
● SafeMath.sol
● SigUtil.sol
● SandSale.sol

Notes​:
The audit was performed on commit ​246b773d1045e657cad3ca661741302b07485d1d​ of
repository ​https://github.com/pixowl/contracts_common​, and commit
15c875fe37ed5e51ad5e273b8148754b917398fc​ of repository
https://github.com/pixowl/sandbox-private-contracts​, using Solidity compiler version ​0.5.9​.

https://github.com/pixowl/contracts_common
https://github.com/pixowl/sandbox-private-contracts

Audit Report for Pixowl The Sandbox Token (ERC20) and Sale on September 25th, 2019.

Intended Behavior
The contracts implement the Sand ERC20 token, and its crowdsale.

Issues Found

Critical
No critical issues found.

Major
No major issues found.

Minor

1. ERC20 Standard Compliance

The current contract does not fully comply with the ERC20 standard in the following instances:
● The contract does not allow for transfers of zero value, but the standard requires that

these are processed normally: "Note Transfers of 0 values MUST be treated as normal
transfers and fire the ​Transfer​ event."

● The contract has functionality to perform approvals without emitting the ​Approve event:
"Approval: MUST trigger on any successful call to ​approve(address _spender,

uint256 _value)​". This is used only on external calls, with temporary approvals to the
callee.

Recommendation
Consider amending the items above, to ensure full compliance with the standard.

Amended [30.09.2019]

Audit Report for Pixowl The Sandbox Token (ERC20) and Sale on September 25th, 2019.

The contract was amended to accept transfers with 0 value per the standard. Pixowl provided
the following response for the approve event, witch we find acceptable and consider it
amended:
"ERC-20 is quite open to interpretation and I would argue that our temporary approval
mechanism is conformant.
To quote the standard on `transferFrom` : "The function SHOULD throw unless the _from
account has deliberately authorized the sender of the message via some mechanism."
If we consider the temporary approval as an alternative mechanism to the `approve` call then
the transferFrom happening as part of a meta-tx would still be conformant.
And such alternative mechanism has no obligation to emit an Approval event. The ERC20
specify the following only : "MUST trigger on any successful call to approve(address _spender,
uint256 _value)."

2. Points of centralization

Super operators are allowed to transfer and burn tokens from users at will. Execute operators,
although designed to be used along with the Native Meta transaction contract, could be granted
to an EOA, allowing the address to execute any transaction on behalf of the token contract.

Although we understand that the game design might require a central authority, a better design
would be to require users to approve operators from moving funds, and using the native ERC20
transactions to perform them. This will ensure only authorized (by the user) entities will move
funds from users.

Execute Operators were designed to execute meta transactions on behalf of users. In the
current implementation the Execute Operator is responsible to check the signature, fact that
allows for granting access to an EOA, or to a smart contract that verifies the signatures
incorrectly.

Lastly, all external calls performed for meta transactions will be executed from the token
contract. This means contracts that use msg.sender will see the token contract as the sender of
the transaction, a fact that can tamper with results of transactions involving ownership. For
example, any user would be able to move any token balance this contract has, or accidentally
have the token contract receive tokens on their behalf (tokens that could be transferred by any
other user).

Recommendation

Audit Report for Pixowl The Sandbox Token (ERC20) and Sale on September 25th, 2019.

We recommend reconsidering the super operator design, switching to the native
approve/transferFrom ERC20 functionality that is widely known, tested and trustless. Also
consider tying together the execution of meta transactions with the signature verification,
ensuring all transactions executed were previously signed by the user, also preventing accounts
with full execution rights (that could bypass signature verification).

Pixowl's response [30.09.2019]
"Similarly to our Asset smart contract, the end goal is to remove these responsibility down the
line. All of these rights will be managed from a hardware wallet based multi-sig in the mean
time.
- Super Operators allow us to add new contract to our system without requiring users to make
an tx to approve it, improving the experience
- Execution Operators allow us to support new Meta-tx standard or modify our current one if we
find issues with it.
We agree that there is a centralisation weakness but this is by design. We plan to remove the
centralisation once the platform is ready. So basically, once all the smart contracts required for
the platform are all linked together through these superOperators rights, we would be able to
remove admin rights and any future contracts would have to be approved by the users
themselves.
The reason behind that choice is to remove the need for our users to pre-approve contracts.
This is especially important for meta-tx as we want these meta-tx to enable users without ether
to participate on our platform. If these have to first get ether to approve our contract, this defeat
one of the main purposes of meta-tx.
The reason we have the ability to add/remove meta tx processors is that it is too early to decide
what the best design for those and we want thus to have flexibility to change them. And that's
why we decided to move the processing out of the Sand smart contract and leave there only the
strict minimum to perform the operation at optimal gas cost."

3. Unchanged allowances in external calls

The function ​_approveAndExecuteWithSpecificGas captures a snapshot of the existing
allowances, then it executes an external call, and once it succeeds it restores the initial allowed
amount. This structure will make any changes to the allowances that happen in the external call,
for example a transferFrom or approve function, to be ignored.

Recommendation
This behaviour seems counterintuitive, and could be removed, or apply a new allowance before
the external call is made.

Audit Report for Pixowl The Sandbox Token (ERC20) and Sale on September 25th, 2019.

Amended [18.10.2019]
The issue was fixed and is no longer present in commit
a3446efcb78af14beb439722e6f9edc2ed72806d​.

Note: This bug was found by Pixowl team during the audit process.

Notes

4. Hardcoded Number of Decimals in ERC20BaseToken

The ​decimals() method in the ​ERC20BaseToken contract always returns the number 18. While
18 decimals are common practice, the method is unnecessary if the number is hardcoded.

Recommendation
We recommend defining the number of decimals in the derived contracts.

5. Signature Verification does not Check for Malleable Addresses

The signature verification does not check for malleable addresses which are still allowed by
ecrecover​.

Recommendation
We recommend adding checks for malleable addresses. ​Here is an example of how to check for
this:
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/master/contracts/cryptography/E
CDSA.sol

Follow up [30.09.2019]
This issue was previously reported as major, but lowered to a note after discussion with Pixowl.
Although vulnerable to transaction malleability, the contract does not rely on the signature to
determine uniqueness, and therefore the impact of an exploit is null.

https://github.com/OpenZeppelin/openzeppelin-contracts/blob/master/contracts/cryptography/ECDSA.sol
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/master/contracts/cryptography/ECDSA.sol
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/master/contracts/cryptography/ECDSA.sol

Audit Report for Pixowl The Sandbox Token (ERC20) and Sale on September 25th, 2019.

6. Sale contract assumes amount in decimals in ETH but not in
DAI

The sale contract can receive the required amount in DAI or in ETH. However, the ETH sale
function receives the amount in Wei, whereas the DAI method does not consider the decimals in
its parameters, requiring an internal multiplier of 10**18. This is not documented and may be
confusing.

Recommendation
We recommend adjusting the buySandWithDai() method to receive the amount in decimals or,
alternatively, documenting the parameters correctly.

Amended [30.09.2019]
The issue was fixed and is no longer present in commit
a3446efcb78af14beb439722e6f9edc2ed72806d​.

7. Use require instead of assert in SafeMath

Although Safemath is not used to validate inputs several times in the current codebase, it often
is, and might be in future instances of the smart contracts. Reverting the transactions through a
require​ is the appropriate way to revert on input validation, while also reimbursing the unused
gas back to the user.

Amended [30.09.2019]
The issue was fixed and is no longer present in commit
e1d3ade1876923f6c6f89778efaaac2c9c1454c8​.

Audit Report for Pixowl The Sandbox Token (ERC20) and Sale on September 25th, 2019.

Closing Summary

The contracts audited contain couple of minor issues.

We recommend the issues are amended, while the notes are up to the client’s
discretion, as they mainly refer to improving the operation of the smart contract.

Disclaimer

Solidified audit is not a security warranty, investment advice, or an endorsement of the

Pixowl platform or its products. This audit does not provide a security or correctness

guarantee of the audited smart contract. Securing smart contracts is a multistep

process, therefore running a bug bounty program as a complement to this audit is

strongly recommended.

The individual audit reports are anonymized and combined during a debrief process, in

order to provide an unbiased delivery and protect the auditors of Solidified platform from

legal and financial liability.

Solidified Technologies Inc.

