

Audit Report for The Sandbox Starter Pack Sale - October 22, 2020

Summary
Audit Report prepared by Solidified covering The Sandbox reward pool smart contracts (and
their associated components).

Process and Delivery
Three (3) independent Solidified experts performed an unbiased and isolated audit of the code
below. The debrief took place on October 20th, 2020.

Replies and fixes were received on October 21st, 2020. The final results are presented here.

Audited Files
The following contracts were covered during the audit:

- src/LiquidityMining/LandWeightedSANDRewardPool.sol

Supplied in the private repository:
https://github.com/thesandboxgame/sandbox-private-contracts

Notes:
The audit was based on commit 1768142603a948bd7492cc87a66e19160489043f

UPDATE: Fixes were received in commit c096223e27a736a103324e299c443699843a5a71

Intended Behavior
The reward pool implements a reward mechanism for stakers. It builds on the unipool contract
by Synthetix (https://github.com/Synthetixio/Unipool/blob/master/contracts/Unipool.sol) and
provides a mechanism to distribute rewards based on the amount of ERC-721 Land a staker
possess.

https://github.com/thesandboxgame/sandbox-private-contracts
https://github.com/Synthetixio/Unipool/blob/master/contracts/Unipool.sol

Audit Report for The Sandbox Starter Pack Sale - October 22, 2020

Executive Summary

Solidified found that the Sandbox contracts contain 3 major issues, 1 minor issue, in
addition to 1 informational note.

We recommend all issues are amended, while the notes are up to the team’s discretion,
as it refers to best practices.

Issues found:

Issue # Description Severity Status

1 Total contribution is not reduced when
stakes are withdrawn

Major Resolved

2 Land owned may not be accurate during
reward calculation

Major Acknowledged

3 Potential reentrancy from token contract Major Resolved

4 There is no check that ensures the
contract received the amount passed in
`notifyRewardAmount`

Minor Acknowledged

5 Reward calculation performed twice Note Resolved

Audit Report for The Sandbox Starter Pack Sale - October 22, 2020

Critical Issues

No critical issues have been found.

Major Issues

1. Total contribution is not reduced when stakes are withdrawn

The withdraw() function reduces the contribution of msg.sender, but fails to update the
_totalContributions variable. This leads to incorrect pool shares and, therefore, incorrect
reward distributions.

Recommendation
Subtract the withdrawn amount from _totalContributions.

2. Land owned may not be accurate during reward calculation

LandWeighterSANDRewardPool.sol: Contributions are calculated using the number of land
NFT at the time of staking. Since the number of land is not locked after staking, this value can
change anytime. Apart from not reflecting changes and introducing inconsistencies, this could
be exploited by transferring land between addresses to increase individual contributions.
In the case of land being available on an open market, the impact could increase significantly
with flashloans.

Recommendation
Consider changing the reward mechanism to require LAND to be staked, as well as SAND.

Team Response
“This is as expected and since the user loses some of the contribution share by loaning its
LANDs to others (as they can use it to increase their share), we do not think this is actually
economically sensical to do it. Furthermore, you still need to stake SAND
For these reasons, we think the current behavior is fine
It also has the benefit to allow Land owners to retain the ownership of their Land during the
reward period.”

Audit Report for The Sandbox Starter Pack Sale - October 22, 2020

3. Potential reentrency from token contract

LandWeighterSANDRewardPool.sol: The stake() and withdraw() function call their equivalents
in the LPTokenWrapper contract, which in turn calls the external token. If the token is untrusted
or allows untrusted code to be executed (as in some implementations), this may lead to a
potentially exploitable reentrancy.

Recommendation
It is recommended to move the super.stake() and super.withdraw() interactions towards
the end of the function.

Minor Issues

4. There is no check that ensures the contract received the
amount passed in `notifyRewardAmount`

 It is possible for this function to be called with a different amount than what was sent to the
contract, possibly making rewards insufficient for all stakers.

Recommendation
Add a mechanism to verify that the pool contract holds the amount passed in this function

Team Response
“We leave as is, as this allows more flexibility in setting this up.”

Notes

5. Reward calculation performed twice

The function getReward() calls the earned() function twice, once through the
updateReward() modifier, and then again immediately, introducing unnecessary logic to be
executed.

Audit Report for The Sandbox Starter Pack Sale - October 22, 2020

Recommendation
Instead of calling earned() again in the function body, the user’s rewards can be accessed
directly through rewards[msg.sender], since this has been updated by the modifier already.

Audit Report for The Sandbox Starter Pack Sale - October 22, 2020

Disclaimer

Solidified audit is not a security warranty, investment advice, or an endorsement of TSB

GAMING LTD or its products. This audit does not provide a security or correctness

guarantee of the audited smart contract. Securing smart contracts is a multistep

process, therefore running a bug bounty program as a complement to this audit is

strongly recommended.

The individual audit reports are anonymized and combined during a debrief process, in

order to provide an unbiased delivery and protect the auditors of Solidified platform from

legal and financial liability.

Solidified Technologies Inc.

