

Audit Report for The Sandbox Starter Pack Sale - September 29, 2020

Summary
Audit Report prepared by Solidified covering The Sandbox Starter Pack sale smart contracts
(and their associated components).

Process and Delivery
Two (3) independent Solidified experts performed an unbiased and isolated audit of the code
below. The debrief took place on September 29th, 2020 and the results are presented here.

Audited Files
The following contracts were covered during the audit:

- src/StarterPack/PurchaseValidator.sol
- src/StarterPack/StarterPackV1.sol
- src/BaseWithStorage/ERC20Group.sol
- src//BaseWithStorage/ERC20SubToken.sol
- src/Catalyst/CatalystDataBase.sol
- src/Catalyst/CatalystToken.sol
- src/Catalyst/CatalystValue.sol
- src/Catalyst/ERC20GroupCatalyst.sol
- src/Catalyst/ERC20GroupGem.sol
- src/Catalyst/GemToken.sol

Supplied in the private repository:
https://github.com/thesandboxgame/sandbox-private-contracts

Notes:
The audit was based on commit fcb5ea804fddf8e94683405f39630ad61a16f120, Solidity
compiler version 0.6.5.

https://github.com/thesandboxgame/sandbox-private-contracts

Audit Report for The Sandbox Starter Pack Sale - September 29, 2020

Intended Behavior
The starter pack is used to sell starter backs, which are bundles of ERC20 tokens (organized in
ERC20 group tokens) to users of the Sandbox game.
All sales are validated by signatures provided by an authorized address.

Executive Summary

Solidified found that the Sandbox contracts contain 2 major issues, 2 minor issues, in
addition to 4 informational notes.

We recommend all issues are amended, while the notes are up to the team’s discretion,
as it refers to best practices.

Issues found:

Critical Major Minor Notes

0 2 2 4

Audit Report for The Sandbox Starter Pack Sale - September 29, 2020

Issues Found

Critical Issues

No critical issues have been found.

Major Issues

1. Unsecure source of randomness

The computation for simulating pseudo-random numbers in CatalystDataBase.sol, depends
purely on user-supplied values passed as arguments to getValues(). This means that the
caller can pre-compute values that are advantageous.

Recommendation
Unpredictable values, such as the number of a future blockhash can be used to generate
random numbers. In general, be aware that the security of the randomness has an upper bound
on the value of the asset.

2. StarterPackV1.sol: Maker can update priceFeed

The StarterPackV1 uses Maker’s medianizer to read the ETH/USD value pair, but this address
could be upgraded by Maker and the price stops updating, affecting all sale prices. This has
happened in the past to Maker provided oracles.

Recommendation
A possible solution is for the admin to be able to change the medianizer address. Another one is
to set a default price in case of problems with the feed.

Audit Report for The Sandbox Starter Pack Sale - September 29, 2020

Minor Issues

3. SatrterPackV1.sol: Change can be sent to relayer

When an exceeding amount is sent to the contract, the outstanding amount is returned to
msg.sender which could be a meta transaction relayer. This can cause issues since
transfer() only forwards a small amount of gas, which might not be enough to perform the
necessary calculations to return to the original user.

Recommendation
It’s recommended to use a low-level call to send funds, but it must be protected against
reentrancy issues.

4. Potential Integer Overflow in StartPackV1.sol

StarterPackV1.sol - L286 & L290: Possible integer overflow if quantities and prices are large
enough. The function _calculateTotalPriceInSand() does not include enough guards to
check a possible overflow during total price calculation.

Recommendation
It is recommended to check for overflows after adding each item price to totalPrice or use
SafeMath while accumulating prices.

Notes

5. StarterPackV1.sol: No input validation in price calculation

The function _calculateTotalPriceInSand() doesn’t do any sanitization on the inputs it
receives. A possible problem is for catalystIds and catalystQuantities to be of different lengths,
which might cause unintended behaviours.

Audit Report for The Sandbox Starter Pack Sale - September 29, 2020

6. Potential gas saving on price calculation

Instead of every purchase calling the function to _priceSelector(), consider changing the
dynamics of price changes by the admin calling the contract a second time to make the new
price effective. This way every purchase will simply read the saved value, saving quite a lot of
gas on the long term.

7. Get prices can return inconsistent switch time

SarterPackV1.sol L235 - L251: Switch time value can be inconsistent depending on the time
the function is called. If the getPrices function is called after _priceChangeDelay but before
someone purchases, switchTime is the time when the switch happened. But if someone has
made a purchase, the switchTime shows 0. It is recommended to show consistent values
without depending on external factors not directly related to this function.

8. Consider using alias or constants instead of magic numbers

In file StarterPackV1.sol in function purchaseWithDAI() a magic variable is used:

uint256 DAIRequired = amountInSand.mul(DAI_PRICE).div(1000000000000000000);

A better approach to use the alias `ether` to be sure of decimal places instead of counting
zeros, which could be mistakenly changed during development, and is hard to notice. Another
good practice is to export it to constant variables, so it can be properly named:

const DECIMAL_PLACES = 1 ether

And then
uint256 DAIRequired = amountInSand.mul(DAI_PRICE).div(DECIMAL_PLACES);

Audit Report for The Sandbox Starter Pack Sale - September 29, 2020

Disclaimer

Solidified audit is not a security warranty, investment advice, or an endorsement of TSB

GAMING LTD or its products. This audit does not provide a security or correctness

guarantee of the audited smart contract. Securing smart contracts is a multistep

process, therefore running a bug bounty program as a complement to this audit is

strongly recommended.

The individual audit reports are anonymized and combined during a debrief process, in

order to provide an unbiased delivery and protect the auditors of Solidified platform from

legal and financial liability.

Solidified Technologies Inc.

