

Audit Report for SingularityNET. February 12, 2019.

Summary
Audit Report prepared by Solidified for SingularityNET covering their smart contracts which
implement the SingularityNET platform.

Process and Delivery
Three (3) independent Solidified experts performed an unbiased and isolated audit of the below
contracts. The debrief took place on February 12, 2019 and the final results are presented here.

Audited Files
The following files were covered during the audit:

● IRegistry.sol
● Registry.sol
● MultiPartyEscrow.sol

Notes​:
The audit was performed on commit ​2242c2871ff31d01e8c07d2ad492bd5f0faa9eb7
The audit was based on the solidity compiler ​0.4.24​+​commit​.e67f0147

Intended Behavior
The specification of the contracts is found in the interface file ​IRegistry.sol​. ​Additional
information can be found in

Issues Found

Critical

No critical vulnerabilities were identified.

Major

No major vulnerabilities were identified.

https://github.com/singnet/platform-contracts/blob/master/contracts/IRegistry.sol

Audit Report for SingularityNET. February 12, 2019.

Minor

1. Iterating unbound arrays can cause Denial of Service (DoS)

In Registry.sol, arrays ​OrganizationRegistration.memberKeys​,
OrganizationRegistration.serviceKeys​, ​OrganizationRegistration.typeRepoKeys​,
ServiceRegistration.tags​, ​TypeRepositoryRegistration.tags​ have no upper bounds.
Since all of these arrays are being iterated in functions such as ​deleteOrganization​()​,
deleteServiceRegistrationInternal​()​,
deleteTypeRepositoryRegistrationInternal​()​, an organization can potentially face Denial
of Service (DoS) if the array count exceeds the block gas limit required to execute its respective
function.

Recommendation
Determine the maximum number of elements that will allow each function not to exceed the
block gas limit and enforce that on each array.

2. Incorrect nonces in Events

In ​MultiPartyEscrow.sol​, ​channelClaim()​ and ​channelClaimTimeout()​ emit events for
the post-update state, communicating a wrong nonce about the channels to the clients.

Recommendation​:
Emit the event before incrementing the nonce.

Notes

3. Gas Optimization during channel closing

The variable ​channel.value​ is written twice when ​channelClaim()​ is called with ​isSendback​,
here​ and ​here​. The code can be refactored to only write once and save gas.

Recommendation

https://github.com/singnet/platform-contracts/blob/master/contracts/MultiPartyEscrow.sol#L170
https://github.com/singnet/platform-contracts/blob/master/contracts/MultiPartyEscrow.sol#L130

Audit Report for SingularityNET. February 12, 2019.

The following proposed diff creates 9.3% gas savings when calling ​channelClaim()​. ​Patch
here​.

4. Re-implementation of ​supportsInterface​()​ is unnecessary

The re-implementation of ​supportsInterface()​ is unnecessary as the ​OpenZeppelin ERC165
contract already provides a ​_registerInterface()​ function.

Recommendation
Remove the implementation of ​supportsInterface()​ and add
_registerInterface​(​0x91372c6a​)​ to the contract's constructor instead.

5. Channel expiration time can be set in the past

During initialization of a channel in ​MultiPartyEscrow.sol​, its expiration can be set to a past
value. This may result in an unexpected scenario where a sender initiates a payment channel
with a receiver, and they instantly settle the payment channel after trading the first signature.

Recommendation
Consider setting the channel expiration to ​block.number + expiration​ ​so that a user only
needs to specify relative time, and not absolute time. Alternatively, add a check that the timeout
is in the future, or add preset timeout values. Also consider adding a check that enforces
newExpiration > block.number​ to ​channelExtend​.

6. Uniqueness of ​groupId​ is not enforced

In ​MultiPartyEscrow.sol​ ​The code comments indicate that the ​groupId​ value should not be
reused between channels with the same sender/recipient pair. The code does not enforce this
at any point.

Recommendation
Consider removing the ​groupId​ parameter altogether, since it is not used anywhere in the
smart contract logic. The triple (sender, receiver, channelId) is enough to identify the channel
from the client-side. Alternatively, consider generating the groupId by hashing together the
(sender, receiver, channelId).

https://pastebin.com/fKtKM57j
https://pastebin.com/fKtKM57j
https://github.com/OpenZeppelin/openzeppelin-solidity/blob/v2.0.0/contracts/introspection/ERC165.sol

Audit Report for SingularityNET. February 12, 2019.

7. Consider using latest version of Solidity and lock contract
compiler versions

The contracts use solidity version 0.4.24. It is suggested to use the latest version (​0.5.3​) and
fix all compiler errors or warnings that arise. Also consider locking the version of the compiler in
the pragma statement on the top of each file.

8. Add error strings to require statements

Since version ​0.4.22​ of solidity, ​require​ ​statements can include an error string. Consider
adding appropriate error messages to all require statements.

9. Consider using ​external

Consider using ​external​ for function visibility if the method will only be accessed from outside.
This can help save some gas especially in the case of ​multiChannelClaim()​ where multiple
arrays are passed as arguments.

10. Consider following the Solidity style guide

Formatting of the code should be adjusted for maximum readability by making sure you follow
the solidity style guide rules. Consider using a linter such as ​ethlint​.

In Registry.sol some internal function names are suffixed with Internal, while others are not.
Consider settling on a naming scheme, either suffix all internal/private functions, or prefix them
with an underscore, “_”. Finally, update fields that use ​this​ to typecast it to ​address(this)​.

https://github.com/duaraghav8/Ethlint

Audit Report for SingularityNET. February 12, 2019.

11. Consider using Solidity's ​modifier​ pattern instead of regular
guard functions

It is best practice to use Solidity's ​modifier​ pattern instead of using regular guard functions.

Recommendation
Consider replacing the ​requireAuthorization​()​, ​requireOrgExistenceConstraint​()​,
requireServiceExistenceConstraint​()​,
requireTypeRepositoryExistenceConstraint​()​ guard functions with their respective
modifiers.

12. Consider writing a function to delete array elements

Instead of repeating code that swaps elements each time an array element is deleted, consider
implementing a single function that does that. This should significantly improve code readability
and help eliminate many potential bugs.

13. Block timestamp is more convenient than block number

Although timestamp can be, to a certain degree, manipulated by miners, it is considered a more
convenient way to track time in smart contracts.

Recommendation
Change the expiration parameter in MultiPartyEscrow.sol to use block timestamp instead of
block.number.

14. Sanitize inputs of organization management functions

In ​Registry.sol​, most of management functions do not properly sanitize inputs and therefore
zeroed address can be passed as organizations members and owner, as well empty strings can
be given as organization names.

Audit Report for SingularityNET. February 12, 2019.

Recommendation
Assert that given addresses and strings are existent and valid .

15. Unnecessary wrapping of functions that return true or revert,
with ​require

Public functions such as ​channelExtendAndAddFunds​ adopt the pattern of returning true on
success and reverting on failure. If that's the case, there's no need to wrap function calls in
require​ since the result will never be false.

Recommendation
Remove the wrapping ​require​ statements when calling such functions.

Audit Report for SingularityNET. February 12, 2019.

Closing Summary

Beyond the minor issues mentioned, the contracts were also checked for
overflow/underflow issues, DoS, and re-entrancy vulnerabilities. None were discovered.
The code could have been more thoroughly tested for edge cases and can be
refactored to improve gas efficiency.

The automated scanning tools Securify, Myth and Slither did not produce any
true-positive results with respect to known vulnerabilities.

Disclaimer

Solidified audit is not a security warranty, investment advice, or an endorsement of

SingularityNET or its products. This audit does not provide a security or correctness

guarantee of the audited smart contracts. Securing smart contracts is a multistep

process, therefore running a bug bounty program as a complement to this audit is

strongly recommended.

The individual audit reports are anonymized and combined during a debrief process, in

order to provide an unbiased delivery and protect the auditors of Solidified platform from

legal and financial liability.

© 2019 Solidified Technologies Inc.

