
Audit Report for Vega Protocol - October 11, 2021

Summary
Audit Report prepared by Solidified covering the Vega Protocol smart contracts.

Process and Delivery
Three (3) independent Solidified experts performed an unbiased and isolated audit of the code
below. The final debrief took place on October 11, 2021, and the results are presented here.

Audited Files

The source code has been supplied in 3 private code repositories:

https://github.com/vegaprotocol/Claim_Codes/tree/feat/v2
Commit number: b4724ecda8fdd636251966b42752f51205bc63b8

https://github.com/vegaprotocol/MultisigControl
Commit number: bba9dad49623bb297dc0b35d1a8491bc6d691841

https://github.com/vegaprotocol/Staking_Bridge
Commit number: c62309dfd40a0eb211a0102c63e191a47b9e46ec

UPDATE: Fixes were received on October 14, 2021 and the report was updated accordingly.

Intended Behavior

Vega Protocol is a decentralized network for trading derivatives.



Audit Report for Vega Protocol - October 11, 2021

Findings
Smart contract audits are an important step to improve the security of smart contracts
and can find many issues. However, auditing complex codebases has its limits and a
remaining risk is present (see disclaimer).

Users of a smart contract system should exercise caution. In order to help with the
evaluation of the remaining risk, we provide a measure of the following key indicators:
code complexity, code readability, level of documentation, and test coverage.

Note, that high complexity or lower test coverage does not necessarily equate to a
higher risk, although certain bugs are more easily detected in unit testing than a security
audit and vice versa.

Criteria Status Comment

Code complexity Medium -

Code readability and clarity High -

Level of Documentation High -

Test Coverage Medium -



Audit Report for Vega Protocol - October 11, 2021

Issues Found

Solidified found that the Vega Protocol contracts contain no critical issues, 2 major
issues, 2 minor issues, 6 informational notes and 1 warning.

We recommend issues are amended, while informational notes are up to the team’s
discretion, as they refer to best practices.

Issue # Description Severity Status

1 ERC20_Asset_Pool.sol: Function withdraw()
assumes all tokens return a value on transfer

Major Resolved

2 ETH_Asset_Pool.sol: Contract will always fail to
receive ETH

Major Resolved

3 ETH_Asset_Pool.sol: Function withdraw() can
potentially fail when transferring ETH to a smart
contract

Minor Resolved

4 ETH_Asset_Pool.sol / ERC20_Asset_Pool.sol:
Contracts could potentially be assigned an invalid
multisig_control_address

Minor Resolved

5 Vega_Staking_Bridge.sol: Function transfer_stake()
does not validate new_address

Note Acknowledged

6 MultisigControl Contracts: gas usage could be
optimized

Note Resolved

7 ERC20_Bridge_Logic.sol: Contract unnecessarily
uses the SafeMath library

Note Resolved

8 MultisigControl.sol: Events do not conform to the
IMultisigControl interface

Note Resolved

9 ETH_Asset_Pool.sol: Contract’s ETH balance is not
checked before initiating a transfer

Note Resolved

10 Miscellaneous Notes Note Acknowledged

11 Claim_Codes.sol: Allowed countries are easily
gameable

Warning Acknowledged



Audit Report for Vega Protocol - October 11, 2021

Critical Issues

No critical issues have been found.

Major Issues

1. ERC20_Asset_Pool.sol: Function withdraw() assumes all

tokens return a value on transfer

The function withdraw() assumes that all tokens’ transfer() function returns a value, which
is not true for a lot of common tokens that don’t fully conform to the ERC20 standard. If the
deposited token’s transfer() function does not return a value, withdraw() will always fail,
and the funds will remain forever locked in the contract.

Recommendation
Consider using Open Zeppelin's SafeERC20.safeTransfer() instead of transfer().

Note 1
The same issue applies to transferFrom() in ERC20_Bridge_Logic.deposit_asset(), albeit
to a lesser degree of severity.

Note 2
For a list of common tokens that don’t return a value on transfer(), please refer to
https://medium.com/coinmonks/missing-return-value-bug-at-least-130-tokens-aff

ected-d67bf08521ca

Status
Resolved



Audit Report for Vega Protocol - October 11, 2021

2. ETH_Asset_Pool.sol: Contract will always fail to receive ETH

The ETH_Asset_Pool contract is supposed to receive ETH whenever the
ETH_Bridge_Logic.deposit_asset() is called. However, ETH_Asset_Pool doesn’t have a
receive() function, and thus won’t be able to receive any ETH due to the transaction always
getting reverted.

Recommendation
Implement a receive() function in order to allow ETH_Asset_Pool to receive ETH.

Status
Resolved

Minor Issues

3. ETH_Asset_Pool.sol: Function withdraw() can potentially fail

when transferring ETH to a smart contract

Function withdraw() calls transfer() when sending ETH to target, which only forwards
2300 gas. In cases where the target address is a smart contract whose fallback function
consumes more than 2300 gas, the call will always fail. This will have the side effect of
potentially preventing smart contracts (e.g. DAOs) from receiving transfers.

For a more in-depth discussion of issues with transfer() and smart contracts, please refer to
https://diligence.consensys.net/blog/2019/09/stop-using-soliditys-transfer-no

w/

https://diligence.consensys.net/blog/2019/09/stop-using-soliditys-transfer-now/
https://diligence.consensys.net/blog/2019/09/stop-using-soliditys-transfer-now/
https://diligence.consensys.net/blog/2019/09/stop-using-soliditys-transfer-now/


Audit Report for Vega Protocol - October 11, 2021

Recommendation
Replace instances of transfer() with call().

Status
Resolved

4. ETH_Asset_Pool.sol / ERC20_Asset_Pool.sol: Contracts could

potentially be assigned an invalid multisig_control_address

In the case where ETH_Asset_Pool and ERC20_Asset_Pool contracts are mistakenly assigned
an invalid multisig_control_address, the contracts will be permanently locked out of setting
a new multisig_control_address or ETH_bridge_address.

Recommendation
Require that multisig_control_address != address(0).

Status
Resolved

Informational Notes

5. Vega_Staking_Bridge.sol: Function transfer_stake() does not

validate new_address

Lack of validation for new_address can result in users accidentally burning their staked tokens.



Audit Report for Vega Protocol - October 11, 2021

Recommendation
Consider requiring that new_address != address(0).

Status
Acknowledged. Team’s response: “No fix for this has been implemented at this time. The
contract is live in production”.

6. MultisigControl Contracts: gas usage could be optimized

The MultisigControl contracts all declare their respective functions’ signatures array as
memory, which consumes extra gas as the compiler copies its value from calldata.

Recommendation
Consider either declaring signatures as calldata instead of memory, or declaring all functions
as external instead of public.

Status
Resolved

7. ERC20_Bridge_Logic.sol: Contract unnecessarily uses the

SafeMath library

Since Solidity versions 8.0 and later automatically revert on arithmetic underflow and overflow,
there is no need to use the SafeMath library in ERC20_Bridge_Logic.

Recommendation
Consider removing the SafeMath library to save on gas.

Status
Resolved



Audit Report for Vega Protocol - October 11, 2021

8. MultisigControl.sol: Events do not conform to the

IMultisigControl interface

The MultisigControl contract declares the SignerAdded, SignerRemoved and
ThresholdSet events with only one parameter, while IMultisigControl declares them with
two parameters.

Recommendation
Consider having only one version of the aforementioned events.

Status
Resolved

9. ETH_Asset_Pool.sol: Contract’s ETH balance is not checked

before initiating a transfer

If the transferred ETH is more than the current contract’s balance, the transaction will revert
without giving an adequate error message.

Recommendation
Consider checking the contract’s balance before transferring and providing an error message if
the amount exceeds the contract’s balance.

Status
Resolved



Audit Report for Vega Protocol - October 11, 2021

10. Miscellaneous Notes

● Vega_Staking_Bridge.sol: Functions remove_stake() & transfer_stake() lack
informational error messages when user input exceeds their stake.

● Claim_Codes.sol, Vega_Staking_Bridge.sol: several require() statements are missing
their respective error messages.

● Claim_Codes.sol: Function permit_issuer() is missing zero address validation.

Status
Acknowledged. Team’s response: “No fix for this has been implemented at this time. The
contract is live in production”.

Warnings

11. Claim_Codes.sol: Allowed countries are easily gameable

Users are required to enter their country code when claiming a code in functions
claim_targeted() and claim_untargeted(), however this is impossible to enforce.

Status
Acknowledged. Team’s response: “It is understood that the countries are gameable, this is not
fixable but does show ill intent of the gamer”.



Audit Report for Vega Protocol - October 11, 2021

Disclaimer

Solidified audit is not a security warranty, investment advice, or an endorsement of Vega

Protocol or its products. This audit does not provide a security or correctness guarantee

of the audited smart contract. Securing smart contracts is a multistep process, therefore

running a bug bounty program as a complement to this audit is strongly recommended.

The individual audit reports are anonymized and combined during a debrief process, in

order to provide an unbiased delivery and protect the auditors of Solidified platform from

legal and financial liability.

Solidified Technologies Inc.


