

Audit Report for SingularityNET. February 27, 2019.

Summary
Audit Report prepared by Solidified for SingularityNET covering their smart contracts which
implement the SingularityNET platform.

Process and Delivery
Three (3) independent Solidified experts performed an unbiased and isolated audit of the below
contracts. The debrief took place on February 28, 2019 and the final results are presented here.

Audited Files
The following files were covered during the audit:

● ServiceRequest.sol

Notes:
The audit was performed on commit 67a7323f66848bffb0495910a966e69a02c42086
The audit was based on the solidity compiler 0.4.24+commit.e67f0147

Intended Behavior
The specification of the contracts is found in the corresponding README file

Issues Found

Critical

No critical issues were found.

https://github.com/singnet/snet-rfai/blob/master/README.md

Audit Report for SingularityNET. February 27, 2019.

Major

1. Foundation can grief users

After a user has created a request, the only way for them to retrieve their funds is via
requestClaimBack(). The only way for requestClaimBack() to be called is if the
Request.status is Approved, Closed or Rejected. A request can transition to these states
only through the closeRequest(), rejectRequest() or approveRequest() functions, which
are all only callable by foundation members. As a result, if a foundation member never calls any
of these functions, a user’s funds can be frozen in the contract.

Recommendation
Allow a user to call closeRequest() on requests they have opened which are still in the
Opened state. This will allow them to subsequently call requestClaimback().

Minor

2. The function createRequest() does not provide any checks to
enforce that the request creator passes a valid value,
expiration and a documentURI with their request.

There is no check that the stake the user is providing to create a request is more than the
minimum stake. The same applies for the createOrUpdateSolutionProposal() function.

Recommendation
Add appropriate validation code to enforce that:
* value > 0 && value >= minStake
* expiration > block.number
* A valid IPFS documentURI exists

Audit Report for SingularityNET. February 27, 2019.

3. Owner cannot add funds to request before it’s approved

On first look, the code indicates that a user is expected to be able to put more funds in their
request before it is approved. For that to happen, the check of block.number <
req.endEvaluation must pass. This is not the case, as approveRequest() is the only place
where req.endEvaluation is set. As a result, block.number will always be greater than
req.endEvaluation and the call will revert.

Recommendation
The feature that an owner is able to top up their request before approval is not documented in
the specification. Consider removing the (req.status == RequestStatus.Open &&
req.requester == msg.sender) part of the require statement in line 206.

4. Consider counting previous stake towards minStake when
adding funds to a request

If a user has already staked in a request and desires to increase it, she currently needs to
increment at least minStake, even though that mark was already achieved.

Recommendation
Line 201:
require(balances[msg.sender] >= amount && amount > 0 &&
balances[msg.sender].(amount) >= minStake)

Notes

5. Tests do not pass

Upon cloning, calling npm install and then ./node_modules/.bin/truffle test, the tests
do not pass. This is a critical problem for the reliability of the codebase and verifying that the
code has intended behavior. What is being tested is not clear to a reader of the tests, neither
are any metrics about the code coverage provided.

Audit Report for SingularityNET. February 27, 2019.

Recommendation
Convert the tests to unit tests and make them independent of each other. Make use of
beforeEach blocks to deploy fresh versions of the contract on each test so that you can test the
behavior of each function in specific scenarios. An exceptional example of high quality testing is
MolochDAO.

In your case, the issue is in the migrations/3_ServiceRequest.js script and the amounts
used in the tests. The minimum stake variable minStake is set to a larger number than any of
the Amt1...Amt7 values, resulting in all calls to addFundsToRequest() to fail.

6. Rename variables for clarity

A variable with name status typically implies an enum of several values, and having its value as
a bool can be potentially confusing.

Recommendation
Consider renaming Member.status to Member.active. Also consider renaming Member.role
to Member.admin and converting it to a boolean variable.

7. Remove redundant operations

Variables do not need to be initialized to 0. Based on the fact that Request.endEvaluation
and Request.endSubmission are always required to be less than Request.expiration in
approveRequest(), the checks double checks in require statements such as in Line 209 and
306 are redundant.

Recommendation
Refactor the code and remove such operations. Remove (amount > 0) since it's already
covered in (amount >= minStake), unless minStake is set 0. Remove
require(req.totalFund > 0) in requestClaimBack() since it’s redundant in order to save
on gas costs. Using smaller uints can save storage gas inside structs. Ex: line 56 use uint8.
Remove unnecessary struct operations: Line 148 & 149, 128 & 132, 308 & 315

https://github.com/MolochVentures/moloch/blob/master/test/moloch.js

Audit Report for SingularityNET. February 27, 2019.

8. Upgrade tooling

Current truffle version is v5.0.5. It provides better debugging, improved migrations with better
async/await support, as well as shows the error strings from reverts. Avoid using outdated
tooling.

Recommendation
Modify the repository to use the latest version truffle.

9. Consider using latest version of Solidity and lock contract
compiler versions

The contracts use solidity version 0.4.24. It is suggested to use the latest version (0.5.4) and
fix all compiler errors or warnings that arise. Also consider locking the version of the compiler in
the pragma statement on the top of each file.

10. Add error strings to require statements

Since version 0.4.22 of solidity, require statements can include an error string. Consider
adding appropriate error messages to all require statements.

11. Consider using external

Consider using external for function visibility if the method will only be accessed from outside.
This can help save some gas especially in the case of functions where multiple arrays are
passed as arguments.

12. Consider following the Solidity style guide

Formatting of the code should be adjusted for maximum readability by making sure you follow
the solidity style guide rules. Consider using a linter such as ethlint. Also consider prefixing

https://github.com/duaraghav8/Ethlint

Audit Report for SingularityNET. February 27, 2019.

internal functions with an underscore, “_”. Also make sure to correct any typos in variable
naming, such as “fundation” to foundation.

13. Consider using Solidity's modifier pattern instead of in-lined
checks

It is best practice to use Solidity's modifier pattern instead of using inline-checks such as
repetitive require statements or regular guard functions.

Recommendation
There are multiple snippets where you are performing access control and state assertions about
a request which could be extracted to a modifier or a helper function.

14. Unnecessary wrapping of functions that return true or revert,
with require

Public functions such as depositAndCreateRequest() adopt the pattern of returning true on
success and reverting on failure. If that's the case, there's no need to wrap function calls in
require since the result will never be false.

Recommendation
Remove the wrapping require statements when calling such functions.

Audit Report for SingularityNET. February 27, 2019.

Closing Summary

One major and three minor deficiencies were found and should be addressed before
deployment of the smart contracts. Several informational notes around best practices
and optimizations were also raised, and although they carry no security risk to the
contracts we also encourage their amendment.

Beyond the issues mentioned, the contract was also checked for overflow/underflow
issues, DoS, and re-entrancy vulnerabilities. None were discovered.

The automated scanning tools Securify, Mythril and Slither did not produce any
true-positive results with respect to known vulnerabilities.

Disclaimer

Solidified audit is not a security warranty, investment advice, or an endorsement of

SingularityNET or its products. This audit does not provide a security or correctness

guarantee of the audited smart contracts. Securing smart contracts is a multistep

process, therefore running a bug bounty program as a complement to this audit is

strongly recommended.

The individual audit reports are anonymized and combined during a debrief process, in

order to provide an unbiased delivery and protect the auditors of Solidified platform from

legal and financial liability.

© 2019 Solidified Technologies Inc.

