
Aura Finance contest
Findings & Analysis Report

2022-07-26

Table of contents
Overview

About C4

Wardens

Summary

Scope

Severity Criteria

High Risk Findings (1)

[H-01] User can forfeit other user rewards

Medium Risk Findings (22)

[M-01] BaseRewardPool4626 is not IERC4626 compliant

[M-02] CrvDepositorWrapper.sol relies on oracle that isn’t frequently

updated

[M-03] Improperly Skewed Governance Mechanism

[M-04] AuraLocker kick reward only takes last locked amount into

consideration, instead of whole balance

[M-05] Users can grief reward distribution

[M-06] Rewards distribution can be delayed/never distributed on

AuraLocker.sol#L848

https://code4rena.com/

[M-07] Reward may be locked forever if user doesn’t claim reward for a

very long time such that too many epochs have been passed

[M-08] Locking up AURA Token does not increase voting power of

individual

[M-09] Reward can be vested even a�er endTime

[M-10] Increase voting power by tokenizing the address that locks the

token

[M-11] Users may lose rewards to other users if rewards are given as fee-

on-transfer tokens

[M-12] User will lose funds

[M-13] ConvexMasterChef : When _lpToken is cvx, reward calculation is

incorrect

[M-14] Integer overflow will lock all rewards in AuraLocker

[M-15] ConvexMasterChef : safeRewardTransfer can cause loss of funds

[M-16] DDOS in BalLiquidityProvider

[M-17] ConvexMasterChef ’s deposit and withdraw can be reentered

drawing all reward funds from the contract if reward token allows for

transfer flow control

[M-18] AuraBalRewardPool charges a penalty to all users in the pool if the

AuraLocker has been shut down

[M-19] CrvDepositor.sol Wrong implementation of the 2-week buffer for

lock

[M-20] massUpdatePools() is susceptible to DoS with block gas limit

[M-21] ConvexMasterChef : When using add() and set() , it should

always call massUpdatePools() to update all pools

[M-22] Duplicate LP token could lead to incorrect reward distribution

Low Risk and Non-Critical Issues

Summary

L-01 Wrong amounts sent if arrays don’t match

L-02 Incorrect/misleading NatSpec

L-03 Function reverts if called a second time

L-04 pragma experimental ABIEncoderV2 is deprecated

L-05 safeApprove() is deprecated

L-06 Missing checks for address(0x0) when assigning values to address

state variables

N-01 Unused file

N-02 Call For / From variants instead of copying an pasting code

N-03 Remove tautological code

N-04 Adding a return statement when the function defines a named

return variable, is redundant

N-05 override function arguments that are unused should have the

variable name removed or commented out to avoid compiler warnings

N-06 public functions not called by the contract should be declared

external instead

N-07 type(uint<n>).max should be used instead of uint<n>(-1)

N-08 constant s should be defined rather than using magic numbers

N-09 Redundant cast

N-10 Numeric values having to do with time should use time units for

readability

N-11 Missing event for critical parameter change

N-12 Use a more recent version of solidity

N-13 Use a more recent version of solidity

N-14 Use a more recent version of solidity

N-15 Constant redefined elsewhere

N-16 Inconsistent spacing in comments

N-17 Non-library/interface files should use fixed compiler versions, not

floating ones

N-18 Typos

N-19 File is missing NatSpec

N-20 NatSpec is incomplete

N-21 Event is missing indexed fields

Gas Optimizations

Summary

G-01 Remove or replace unused state variables

G-02 Multiple address mappings can be combined into a single

mapping of an address to a struct , where appropriate

G-03 State variables only set in the constructor should be declared

immutable

G-04 State variables can be packed into fewer storage slots

G-05 Using calldata instead of memory for read-only arguments in

external functions saves gas

G-06 State variables should be cached in stack variables rather than re-

reading them from storage

G-07 <x> += <y> costs more gas than <x> = <x> + <y> for state

variables

G-08 internal functions only called once can be inlined to save gas

G-09 <array>.length should not be looked up in every loop of a for -

loop

G-10 ++i / i++ should be unchecked{++i} / unchecked{i++} when it is not

possible for them to overflow, as is the case when used in for - and

while -loops

G-11 require() / revert() strings longer than 32 bytes cost extra gas

G-12 keccak256() should only need to be called on a specific string

literal once

G-13 Not using the named return variables when a function returns,

wastes deployment gas

G-14 Using bool s for storage incurs overhead

G-15 Use a more recent version of solidity

G-16 Using > 0 costs more gas than != 0 when used on a uint in a

require() statement

G-17 It costs more gas to initialize variables to zero than to let the default

of zero be applied

G-18 ++i costs less gas than i++ , especially when it’s used in for -

loops (--i / i-- too)

G-19 Splitting require() statements that use && saves gas

G-20 Usage of uints / ints smaller than 32 bytes (256 bits) incurs

overhead

G-21 abi.encode() is less efficient than abi.encodePacked()

G-22 Using private rather than public for constants, saves gas

G-23 Don’t compare boolean expressions to boolean literals

G-24 Don’t use SafeMath once the solidity version is 0.8.0 or greater

G-25 Duplicated require() / revert() checks should be refactored to a

modifier or function

G-26 Multiplication/division by two should use bit shi�ing

G-27 Stack variable used as a cheaper cache for a state variable is only

used once

G-28 require() or revert() statements that check input arguments

should be at the top of the function

G-29 Empty blocks should be removed or emit something

G-30 Use custom errors rather than revert() / require() strings to save

deployment gas

G-31 Functions guaranteed to revert when called by normal users can be

marked payable

G-32 public functions not called by the contract should be declared

external instead

Disclosures

Overview

About C4

Code4rena (C4) is an open organization consisting of security researchers, auditors,

developers, and individuals with domain expertise in smart contracts.

A C4 audit contest is an event in which community participants, referred to as

Wardens, review, audit, or analyze smart contract logic in exchange for a bounty

provided by sponsoring projects.

During the audit contest outlined in this document, C4 conducted an analysis of the

Aura Finance smart contract system written in Solidity. The audit contest took place

between May 11—May 25 2022.

109 Wardens contributed reports to the Aura Finance contest:

�. csanuragjain

�. cccz

�. IllIllI

�. 0xjuicer

�. hyh

�. kirk-baird

�. catchup

�. QuantumBrief (pedroais, GermanKuber, and fatherOfBlocks)

�. WatchPug (jtp and ming)

��. kenzo

��. Chom

��. Kumpa

��. 0x52

��. 0xsomeone

��. xiaoming90

��. MaratCerby

Wardens

https://twitter.com/csanuragjain
https://twitter.com/0xhyh
https://twitter.com/kirkthebaird
https://twitter.com/catchup22
https://twitter.com/Pedroais2/
https://twitter.com/father0fBl0cks
https://twitter.com/WatchPug_
https://github.com/jack-the-pug
https://github.com/mingwatch
https://twitter.com/KenzoAgada
https://chom.dev/
https://github.com/alex-ppg
https://twitter.com/MaratCerby

��. BowTiedWardens (BowTiedHeron, BowTiedPickle, m4rio_eth, Dravee, and

BowTiedFirefox)

��. Aits

��. reassor

��. TerrierLover

��. 0xkatana

��. SmartSek (0xDjango and hake)

��. defsec

��. robee

��. 0xNazgul

��. 0x4non

��. joestakey

��. c3phas

��. Hawkeye (0xwags and 0xmint)

��. Tomio

��. hansfriese

��. kenta

��. MiloTruck

��. CertoraInc (egjlmn1, OriDabush, ItayG, and shakedwinder)

��. sashik_eth

��. _Adam

��. fatherOfBlocks

��. 0x1f8b

��. Funen

��. 0xf15ers (remora and twojoy)

��. Kaiziron

��. delfin454000

��. simon135

https://code4rena.com/reports/2022-05-aura/BowTiedETHernal
https://twitter.com/JustDravee
https://twitter.com/tamjid0x01
https://twitter.com/defsec_
https://twitter.com/0xNazgul
https://twitter.com/JoeStakey
https://twitter.com/c3ph_
https://twitter.com/meidhiwirara
https://twitter.com/hansfriese
https://milotruck.github.io/
https://twitter.com/CertoraInc
https://twitter.com/ori_dabush
https://twitter.com/father0fBl0cks
https://instagram.com/vanensurya

��. Waze

��. ellahi

��. mics

��. FSchmoede

��. bobirichman

��. cthulhu_cult (badbird and seanamani)

��. unforgiven

��. Ruhum

��. Tadashi

��. oyc_109

��. asutorufos

��. sach1r0

��. sikorico

��. NoamYakov

��. samruna

��. GimelSec (rayn and sces60107)

��. JC

��. Kthere

��. SooYa

��. z3s

��. jayjonah8

��. zmj

��. tintin

��. berndartmueller

��. cryptphi

��. Nethermind

��. PPrieditis

��. Rolezn

https://twitter.com/ellahinator
https://twitter.com/b4db1rd
https://twitter.com/SeanEmile
https://twitter.com/0xruhum
https://github.com/htadashi
https://twitter.com/rayn731
https://twitter.com/sm4rtcontr4ct
https://github.com/z3s/
https://twitter.com/berndartmueller
https://nethermind.io/

��. sorrynotsorry

��. BouSalman

��. p_crypt0

��. sseefried

��. 242

��. 0xNineDec

��. AlleyCat

��. ch13fd357r0y3r

��. JDeryl

��. hubble (ksk2345 and shri4net)

��. Cityscape

��. 0xKitsune

��. UnusualTurtle

��. rfa

��. 0v3rf10w

��. DavidGialdi

��. Fitraldys

��. Randyyy

��. antonttc

��. minhquanym

��. marcopaladin

��. orion

This contest was judged by LSDan.

Final report assembled by liveactionllama.

The C4 analysis yielded an aggregated total of 23 unique vulnerabilities. Of these

vulnerabilities, 1 received a risk rating in the category of HIGH severity and 22

Summary

https://twitter.com/BouSalman
http://seanseefried.org/blog
https://twitter.com/ch13fd357r0y3r
https://github.com/0xKitsune
https://www.instagram.com/riyan_rfa/
https://twitter.com/_0v3rf10w
https://twitter.com/fitraldys
https://twitter.com/randyyramadhan
https://github.com/antoncoding
https://twitter.com/Zcropakx
https://twitter.com/lsdan_defi
https://twitter.com/liveactionllama

received a risk rating in the category of MEDIUM severity.

Additionally, C4 analysis included 76 reports detailing issues with a risk rating of

LOW severity or non-critical. There were also 66 reports recommending gas

optimizations.

All of the issues presented here are linked back to their original finding.

The code under review can be found within the C4 Aura Finance contest

repository, and is composed of 44 smart contracts written in the Solidity

programming language and includes 6,034 lines of Solidity code.

C4 assesses the severity of disclosed vulnerabilities according to a methodology

based on OWASP standards.

Vulnerabilities are divided into three primary risk categories: high, medium, and

low/non-critical.

High-level considerations for vulnerabilities span the following key areas when

conducting assessments:

Malicious Input Handling

Escalation of privileges

Arithmetic

Gas use

Further information regarding the severity criteria referenced throughout the

submission review process, please refer to the documentation provided on the C4

website.

Scope

Severity Criteria

High Risk Findings (1)

[H-01] User can forfeit other user rewards

https://github.com/code-423n4/2022-05-aura
https://owasp.org/www-community/OWASP_Risk_Rating_Methodology
https://code4rena.com/
https://github.com/code-423n4/2022-05-aura-findings/issues/50

Submitted by csanuragjain

ExtraRewardsDistributor.sol#L127

User can forfeit other user rewards by giving a higher _startIndex in getReward

function.

�. Assume User B has not received any reward yet so that his userClaims[_token]

[User B]=0

�. User A calls getReward function with _account as User B and _startIndex as 5

�. This eventually calls _allClaimableRewards at ExtraRewardsDistributor.sol#L213

which computes epochIndex =5>0?5:0 = 5

�. Assuming tokenEpochs is 10 and latestEpoch is 8, so reward will computed

from epoch 5 till epoch index 7 and _allClaimableRewards will return index as 7

�. _getReward will simply update userClaims[_token][User B] with 7

�. This is incorrect because as per contract User B has received reward from

epoch 0-7 even though he only received reward for epoch 5-7

Do not allow users to call getReward function for other users.

0xMaharishi (Aura Finance) confirmed, but disagreed with severity and

commented:

This is a valid report, however, considering it is only related to the distribution of

reward tokens, I have a hard time classifying this as high risk.

LSDan (judge) commented:

I agree with the high risk rating on this one. A third party could cause significant loss

of expected reward funds for users across the entire protocol if so inclined.

0xMaharishi (Aura Finance) resolved:

Proof of Concept

Recommended Mitigation Steps

https://github.com/code-423n4/2022-05-aura/blob/main/contracts/ExtraRewardsDistributor.sol#L127
https://github.com/code-423n4/2022-05-aura-findings/issues/50#issuecomment-1137553569
https://github.com/code-423n4/2022-05-aura-findings/issues/50#issuecomment-1160704916
https://github.com/code-423n4/2022-05-aura-findings/issues/50

code4rena aurafinance/aura-contracts#84

All code4rena fixes code-423n4/2022-05-aura#6

Submitted by 0xjuicer

BaseRewardPool4626.sol

BaseRewardPool4626 is not IERC4626 compliant.

This makes the BaseRewardPool4626 contract irrelevant as it is for now since

projects won’t be able to integrate with BaseRewardPool4626 using the eip-4626

standard.

You can choose to remove the BaseRewardPool4626 and save on some deployment

gas or review the necessary functions and emits required on eip-4626 and add it

to BaseRewardPool4626.

0xMaharishi (Aura Finance) confirmed, but disagreed with severity and

commented:

Valid report. Probably should be severity 1 though.. no funds are ever at risk under

any scenario.

LSDan (judge) commented:

I agree with medium risk here.

0xMaharishi (Aura Finance) resolved:

code-423n4/2022-05-aura#5

Medium Risk Findings (22)

[M-01] BaseRewardPool4626 is not IERC4626 compliant

Recommended Mitigation Steps

https://github.com/aurafinance/aura-contracts/pull/84
https://github.com/code-423n4/2022-05-aura/pull/6
https://github.com/aurafinance/convex-platform/blob/9cae5eb5a77e73bbc1378ef213740c1889e2e8a3/contracts/contracts/BaseRewardPool4626.sol
https://eips.ethereum.org/EIPS/eip-4626
https://eips.ethereum.org/EIPS/eip-4626
https://github.com/code-423n4/2022-05-aura-findings/issues/26#issuecomment-1137484163
https://github.com/code-423n4/2022-05-aura-findings/issues/26#issuecomment-1160749004
https://github.com/code-423n4/2022-05-aura-findings/issues/26#event-6679177454
https://github.com/code-423n4/2022-05-aura/pull/5
https://github.com/code-423n4/2022-05-aura-findings/issues/26
https://github.com/code-423n4/2022-05-aura-findings/issues/115

Submitted by 0x52

CrvDepositorWrapper.sol#L56-L65

Unpredictable slippage, sandwich vulnerability or frequent failed transactions

CrvDepostiorWrapper uses the TWAP provided by the 20/80 WETH/BAL. The issue

is that this pool has only handled ~15 transactions per day in the last 30 days, which

means that the oracle frequently goes more than an hour without updating. Each

time a state changing operation is called, the following code in the balancer pool

takes a snapshot of the pool state BEFORE any operation changes it:

OracleWeightedPool.sol#L156-L161

This could result in the price of the oracle frequently not reflecting the true value of

the assets due to infrequency of update. Now also consider that the pool has a

trading fee of 2%. Combine an inaccurate oracle with a high fee pool and trades

can exhibit high levels of “slippage”. To account for this outputBps in

AuraStakingProxy needs to be set relatively low or risks frequent failed transactions

when calling distribute due to slippage conditions not being met. The lower

outputBps is set the more vulnerable distribute becomes to sandwich attacks.

Consider using chainlink oracles for both BAL and ETH to a realtime estimate of the

LP value. A chainlink LP oracle implementation can be found here.

0xMaharishi (Aura Finance) confirmed and commented:

Valid finding and agree with the severity generally. Vector here is either function

reverting or potentially getting sandwiched.

To mitigate this currently, there is a keeper address added and the tx would be sent

via flashbots, however agree that other steps could be taken to allow it to operate

more fluidly.

[M-02] CrvDepositorWrapper.sol relies on oracle that isn’t
frequently updated

Proof of Concept

Recommended Mitigation Steps

https://github.com/code-423n4/2022-05-aura/blob/4989a2077546a5394e3650bf3c224669a0f7e690/contracts/CrvDepositorWrapper.sol#L56-L65
https://github.com/balancer-labs/balancer-v2-monorepo/blob/80e1a5db7439069e2cb53e228bce0a8a51f5b23e/pkg/pool-weighted/contracts/oracle/OracleWeightedPool.sol#L156-L161
https://blog.alphaventuredao.io/fair-lp-token-pricing/
https://github.com/code-423n4/2022-05-aura-findings/issues/115#issuecomment-1138380103
https://github.com/code-423n4/2022-05-aura-findings/issues/115

0xMaharishi (Aura Finance) resolved and commented:

Resolution for now is to use the CrvDepositorWrapper price as a guideline and let

the keeper of AuraStakingProxy provide a minOut.

Submitted by 0xsomeone

AuraLocker.sol#L594-L609

AuraLocker.sol#L611-L618

File Lines Type

AuraLocker.sol L594-L609, L611-L618 Governance Susceptibility

The balance checkpointing system exposed by the contract for governance

purposes is flawed as it does not maintain voting balances properly. In detail, the

total supply of votes is tracked as the sum of all locked balances, however, the total

voting power of an individual only tracks delegated balances. As a result,

governance percentage thresholds will be significantly affected and potentially

unmet.

The governance module may be unusable due to the significant discrepancy

between “circulating” voting power supply and the actual voting power of each

individual summed up.

We advise the total voting supply to properly track the delegated balances only as

otherwise, any system relying on proportionate checkpointed balances will fail to

function properly.

Issue is deducible by inspecting the relevant lines referenced in the issue and

making note of the calculations within the getPastVotes individual voting power

[M-03] Improperly Skewed Governance Mechanism

Description

Impact

Solution (Recommended Mitigation Steps)

Proof of Concept

https://github.com/code-423n4/2022-05-aura-findings/issues/115#issuecomment-1141477104
https://github.com/code-423n4/2022-05-aura/blob/main/contracts/AuraLocker.sol#L594-L609
https://github.com/code-423n4/2022-05-aura/blob/main/contracts/AuraLocker.sol#L611-L618
https://github.com/code-423n4/2022-05-aura/blob/main/contracts/AuraLocker.sol#L594-L609
https://github.com/code-423n4/2022-05-aura/blob/main/contracts/AuraLocker.sol#L611-L618
https://github.com/code-423n4/2022-05-aura-findings/issues/232

function as well as the getPastTotalSupply cumulative voting power function.

0xMaharishi (Aura Finance) disputed and commented:

This is intended behaviour. There is no incentive for users not to delegate their votes.

And even if there were, not delegating is the equivalent to having voting power but

not voting. Therefore this is not a relevant issue.

LSDan (judge) decreased severity to Medium and commented:

I’m going to leave this one in play and downgrade the severity. The warden’s report

is accurate; however, if the required percentages of voting cannot be met, the DAO

would simply have to go on a campaign to get people to delegate their votes. This

would be annoying but not critically destructive. That said, medium severity makes

sense because a bad actor could potentially gather voting power and intentionally

disrupt things by not delegating it. I’d recommend implementing the fix suggested

by the warden.

Submitted by kenzo

The issue occurs in AuraLocker, when expired locks are processed via kicking, and if

all the user locks have expired.

In this scenario, to calculate the kick reward, _processExpiredLocks multiplies the

last locked amount by the number of epochs between the last lock’s unlock time and

the current epoch.

A comment in this section mentions "wont have the exact reward rate that you

would get if looped through" . However, there’s no reason not to multiply user’s

whole locked balance by the number of epochs since the last lock’s unlock time,

instead of only the last locked amount.

While this will still not be as accurate as looping through, this will give a more

accurate kick reward result, which is still bounded by the full amount that would

have been calculated if we had looped through.

[M-04] AuraLocker kick reward only takes last locked
amount into consideration, instead of whole balance

Impact

https://github.com/code-423n4/2022-05-aura-findings/issues/232#issuecomment-1139705938
https://github.com/code-423n4/2022-05-aura-findings/issues/232#issuecomment-1160551188
https://github.com/code-423n4/2022-05-aura-findings/issues/156

The reward calculation is inaccurate and lacking for no reason.

Kickers receive less rewards than they should.

Giving them a bigger, more accurate reward, will incentivize them better.

This is the section that calculates the kick reward if all locks have expired:

This flow is for low gas processing, so the function is not looping through all the

locks (unlike the flow where some locks have not expired yet).

In this flow, the function is just calculating the reward for the last lock.

Instead of doing this, it can multiply the total amount locked by the user (locked ,

already saved) by the number of epochs between the last unlock time and current

epoch.

The reward will still be smaller than if we had looped through all the rewards (since

then each lock amount would be multiplied by more than just the last lock’s number

of expired epochs).

But it would be more accurate and give better incentive for kicking.

Change the last line in the code above to:

Proof of Concept

 //check for kick reward
 //this wont have the exact reward rate that you would get
 //but this section is supposed to be for quick and easy lo
 //we'll assume that if the reward was good enough someone
 if (_checkDelay > 0) {
 uint256 currentEpoch = block.timestamp.sub(_checkDelay
 uint256 epochsover = currentEpoch.sub(uint256(locks[le
 uint256 rRate = AuraMath.min(kickRewardPerEpoch.mul(ep
 reward = uint256(locks[length - 1].amount).mul(rRate)
 }

Recommended Mitigation Steps

 reward = uint256(locked).mul(rRate).div(denominator);

https://github.com/code-423n4/2022-05-aura/blob/main/contracts/AuraLocker.sol#L396:#L405

This will keep the low gas consumption of this flow, while giving a more accurate

result.

0xMaharishi (Aura Finance) confirmed, but disagreed with severity and

commented:

Valid, but unsure if it should be classified as medium risk. Probably 1.

LSDan (judge) commented:

I’m going to leave this one as medium because there is unnecessary fund loss over

time. Good suggestions.

0xMaharishi (Aura Finance) resolved:

code4rena aurafinance/aura-contracts#84

All code4rena fixes code-423n4/2022-05-aura#6

Submitted by IllIllI

Users can grief reward distributions by spending dust.

If a reward is targeted for an epoch in the past, a user can front-run the txn in the

mempool and call addRewardToEpoch() with a dust amount at an epoch a�er the

one in question. This will cause the transaction in the mempool to revert

ExtraRewardsDistributor.sol#L74

[M-05] Users can grief reward distribution

Proof of Concept

File: contracts/ExtraRewardsDistributor.sol #1

74 require(len == 0 || rewardEpochs[_token][len - 1] < _

Recommended Mitigation Steps

https://github.com/code-423n4/2022-05-aura-findings/issues/156#issuecomment-1138650007
https://github.com/code-423n4/2022-05-aura-findings/issues/156#issuecomment-1166064301
https://github.com/code-423n4/2022-05-aura-findings/issues/156
https://github.com/aurafinance/aura-contracts/pull/84
https://github.com/code-423n4/2022-05-aura/pull/6
https://github.com/code-423n4/2022-05-aura/blob/4989a2077546a5394e3650bf3c224669a0f7e690/contracts/ExtraRewardsDistributor.sol#L74
https://github.com/code-423n4/2022-05-aura-findings/issues/180

Allow the backdating of rewards, which will cost more gas

0xMaharishi (Aura Finance) acknowledged, but disagreed with severity and

commented:

Fair finding; however, this is a peripheral contract and only affects user reward

claiming. In the Aura system, rewards are only added to the current epoch so should

be fine.

0xMaharishi (Aura Finance) resolved:

All code4rena fixes code-423n4/2022-05-aura#6

code4rena aurafinance/aura-contracts#84

Submitted by 0xjuicer, also found by csanuragjain

Rewards distribution can be delayed/never distributed on AuraLocker.sol#L848

Someone malicious can delay the rewards distribution for non cvxCrv tokens

distributed on AuraLocker.sol.

1: Attacker will send one wei of token that are distributed on the AuraLocker.sol to

AuraStakingProxy.

2: Attacker will call distributeOther.

The function will call notifyRewardAmount that calls _notifyReward

When calling _notifyReward the rewards le� to distribute over the 7 days are

redistributed throughout a new period starting immediately.

[M-06] Rewards distribution can be delayed/never
distributed on AuraLocker.sol#L848

Issue

uint256 remaining = uint256(rdata.periodFinish).sub(block.timestamp);
uint256 leftover = remaining.mul(rdata.rewardRate);

https://github.com/code-423n4/2022-05-aura-findings/issues/180#issuecomment-1139658412
https://github.com/code-423n4/2022-05-aura-findings/issues/180
https://github.com/code-423n4/2022-05-aura/pull/6
https://github.com/aurafinance/aura-contracts/pull/84
https://github.com/aurafinance/aura-contracts-lite/blob/main/contracts/AuraLocker.sol#L848
https://github.com/aurafinance/aura-contracts-lite/blob/main/contracts/AuraLocker.sol
https://github.com/aurafinance/aura-contracts-lite/blob/6d60fca6f821dca1854a538807e7928ee582553a/contracts/AuraStakingProxy.sol
https://github.com/aurafinance/aura-contracts-lite/blob/6d60fca6f821dca1854a538807e7928ee582553a/contracts/AuraStakingProxy.sol#L203
https://github.com/aurafinance/aura-contracts-lite/blob/main/contracts/AuraLocker.sol#L860
https://github.com/aurafinance/aura-contracts-lite/blob/main/contracts/AuraLocker.sol#L860
https://github.com/code-423n4/2022-05-aura-findings/issues/1

Example: If the reward rate is 1 token (10**18) per second and 3.5 days are le�

(302400 seconds), we get a le�over of 302400 tokens. this is then divided by

604800, the reward rate is now 0.5 and the user of the protocol will have to wait

one week for tokens that were supposed to be distributed over 3.5 days. This can be

repeated again and again so that some rewards are never distributed.

I can see that queueNewRewards has some protective mechanism. A new period is

started only if the token that is added on top of the already distributed tokens during

the duration is over 120%.

I suggest adding a similar check to queueNewRewards

0xMaharishi (Aura Finance) confirmed, but disagreed with severity

0xMaharishi (Aura Finance) resolved:

code4rena aurafinance/aura-contracts#84

code-423n4/2022-05-aura#6

Submitted by Chom

ExtraRewardsDistributor.sol#L233-L240

AuraLocker.sol#L334-L337

Reward may be locked forever if user doesn’t claim reward for a very long time such

that too many epochs have been passed. The platform then forced to reimburse

reward to the user that got their reward locked. Causing huge economics loss.

rdata.rewardRate = _reward.add(leftover).div(rewardsDuration).to96();

Recommended Mitigation Steps

[M-07] Reward may be locked forever if user doesn’t claim
reward for a very long time such that too many epochs have
been passed

Proof of Concept

https://github.com/aurafinance/aura-contracts-lite/blob/main/contracts/AuraLocker.sol#L820
https://github.com/aurafinance/aura-contracts-lite/blob/main/contracts/AuraLocker.sol#L820
https://github.com/code-423n4/2022-05-aura-findings/issues/1
https://github.com/code-423n4/2022-05-aura-findings/issues/1#issuecomment-1141475659
https://github.com/aurafinance/aura-contracts/pull/84
https://github.com/code-423n4/2022-05-aura/pull/6
https://github.com/code-423n4/2022-05-aura/blob/4989a2077546a5394e3650bf3c224669a0f7e690/contracts/ExtraRewardsDistributor.sol#L233-L240
https://github.com/code-423n4/2022-05-aura/blob/4989a2077546a5394e3650bf3c224669a0f7e690/contracts/AuraLocker.sol#L334-L337
https://github.com/code-423n4/2022-05-aura-findings/issues/240

Can be done by reverse engineering from the affected code

From this line you will see a loop from epochIndex to tokenEpochs which loop

tokenEpochs - epochIndex times.

If tokenEpochs - epochIndex value goes high, it will consume too much gas which

go beyond the limit of the chain and cause the transaction to be always failed. As a

result, reward may be locked forever.

epochIndex is the maximum of _startIndex and latest index of rewardEpochs

that user has claim the reward

tokenEpochs is the number of epochs that has reward, can be added through

addRewardToEpoch function up to latest epoch count of auraLocker

latestEpoch is epoch count of auraLocker

If you specified too high _startIndex, the reward may be skipped and these skipped

reward are lost forever as the _getReward function set latest epoch that user has

claim to the lastest index of rewardEpochs that can be claimed.

 for (uint256 i = epochIndex; i < tokenEpochs; i++) {
 //only claimable after rewards are "locked in"
 if (rewardEpochs[_token][i] < latestEpoch) {
 claimableTokens += _claimableRewards(_account, _token
 //return index user claims should be set to
 epochIndex = i + 1;
 }
 }

 uint256 latestEpoch = auraLocker.epochCount() - 1;
 // e.g. tokenEpochs = 31, 21
 uint256 tokenEpochs = rewardEpochs[_token].length;

 // e.g. epochIndex = 0
 uint256 epochIndex = userClaims[_token][_account];
 // e.g. epochIndex = 27 > 0 ? 27 : 0 = 27
 epochIndex = _startIndex > epochIndex ? _startIndex : epochInd

the aura locker epoch can be added by using checkpointEpoch function which will

automatically add epochs up to current timestamp. Imagine today is 100 years from

latest checkpoint and rewardsDuration is 1 day, the total of around 36500 epochs

needed to be pushed into the array in single transaction which always failed due to

gasLimit. The code that responsible for pushing new epochs below (in AuraLocker

file)

Even if these line are passed because the nature that checkpointEpoch is likely to be

called daily and reward are added daily. if user doesn’t claim the reward for 100

years, rewardEpochs[_token].length = 36500 where epochIndex = 0. Which cause

an impossible loop that run 36500 times . In this case this transaction will always

be failed due to gas limit. In the worst case, If this problem cause staking fund to be

frozen, the only way is to trash the reward and use emergencyWithdraw to withdraw

staked fund.

From above statement, we can proof that there exists a case that user reward may

be locked forever due to looping too many times causing gas to be used beyond the

limit thus transaction always failed.

Reverse engineering using the help of IDE.

User should be able to supply endEpochIndex to the claim reward functions. And

only calculate reward from startIndex to min(auraLocker.epochCount() - 1,

endEpochIndex). And also add support for partial reward claiming.

0xMaharishi (Aura Finance) acknowledged, but disagreed with severity and

commented:

 while (epochs[epochs.length - 1].date != currentEpoch) {
 uint256 nextEpochDate = uint256(epochs[epochs.length
 epochs.push(Epoch({ supply: 0, date: uint32(nextEpochD
 }

Tools Used

Recommended Mitigation Steps

https://github.com/code-423n4/2022-05-aura-findings/issues/240#issuecomment-1139746911

Valid report although given these are reward tokens and the max amount of entries

is one per week, it would take some years for this to run over gas limit, during which

time the contract could easily be changed.

LSDan (judge) decreased severity to Medium and commented:

I’m downgrading this to medium severity. It is unreasonable to expect contracts to

be future proof to the tune of a hundred years or more, but if the frequency had

been unreasonably fast this issue could have kicked in.

0xMaharishi (Aura Finance) resolved and commented:

code-423n4/2022-05-aura#6

code4rena aurafinance/aura-contracts#84

Submitted by xiaoming90

Per the documentation, AURA tokens can be locked in the AuraLocker to recieve

vlAURA. vlAURA is voting power in the AURA ecosystem.

It is also possible for the users to delegate their voting power to a specific address

by calling the AuraLocker.delegate(address account) function.

However, a�er users locked up their AURA tokens in exchange for vlAURA tokens,

their voting power did not increase.

The following shows an example of Alice attempting to get some voting power by

locking up her AURA tokens, but her voting power did not increase:

�. At this point, Alice has not locked any AURA token into the AuraLocker yet.

Thus, when AuraLocker.getVotes(Alice.address) is called, it returned “0” (No

voting power. This is expected).

[M-08] Locking up AURA Token does not increase voting
power of individual

Proof of Concept

https://github.com/code-423n4/2022-05-aura-findings/issues/240#issuecomment-1160632546
https://github.com/code-423n4/2022-05-aura-findings/issues/240#issuecomment-1141476132
https://github.com/code-423n4/2022-05-aura/pull/6
https://github.com/aurafinance/aura-contracts/pull/84
https://github.com/code-423n4/2022-05-aura#auralocker
https://github.com/code-423n4/2022-05-aura-findings/issues/186

�. Alice decided to get some voting power. So, Alice locked 100 AURA tokens by

calling the AuraLocker._lock() function, and gain 100 vlAURA in return.

�. Alice understand that as per the design, voting power will be 0 a�er depositing

until the next epoch. So, she waited for around 1 week.

�. A�er a week has passed, the AuraLocker.getVotes(Alice.address) is called

again. Alice expected it to return”100”, but it still returned “0” (Still no voting

power).

�. Alice has locked up her AURA tokens for a week and hold 100 vlAURA, yet she

has no voting power.

The following snippet of test script demonstrates the above issue, showing that the

vote power remains the same a�er locking up the AURA tokens for a week.

it("(Debug) allows users to lock aura", async () => {
 const cvxBalance = await phase4.cvx.balanceOf(stakerAddress);
 const lockBefore = await phase4.cvxLocker.lockedBalances(stakerAdd
 console.log("(Debug) User Locked Balance Record = Total %s CVX (Un

 console.log("(Debug) User is going to lock %s CVX", cvxBalance)
 await phase4.cvx.connect(staker.signer).approve(phase4.cvxLocker.a
 await phase4.cvxLocker.connect(staker.signer).lock(stakerAddress,

 const lockAfter = await phase4.cvxLocker.lockedBalances(stakerAdd
 console.log("(Debug) User Locked Balance Record = Total %s CVX (Un

 expect(lockAfter.locked.sub(lockBefore.locked)).eq(cvxBalance);
});
it("(Debug) check user has votes after locking", async () => {
 const votesBefore = await phase4.cvxLocker.getVotes(stakerAddress
 const lock = await phase4.cvxLocker.lockedBalances(stakerAddress)
 console.log("(Debug) votesBefore = %s, locked CVX = %s", votesBefo
 console.log("(Debug) Properly locked tokens as of the most recent

 await increaseTime(ONE_WEEK);
 console.log("After 1 week")

 const votesAfter = await phase4.cvxLocker.getVotes(stakerAddress)
 console.log("(Debug) votesAfter = %s, locked CVX = %s", votesBefo
 console.log("(Debug) Properly locked tokens as of the most recent

https://github.com/code-423n4/2022-05-aura/blob/4989a2077546a5394e3650bf3c224669a0f7e690/contracts/AuraLocker.sol#L258

Following is the output of the test script.

�. The first section shows that user has 800563688188805506352 vlAURA a�er

locking up their AURA tokens

�. The second section shows that a�er a week, the user has 0 voting power even

though the user has 800557536376417310407 vlAURA tokens. Note that these

vlAURA tokens are all properly locked tokens that have not been expired.

(Note: vlAURA == vlCVX and AURA == CVX in this context)

 expect(votesAfter.sub(votesBefore)).eq(lock.locked);

});
it("(Debug) check user lock balance and votes after 20 weeks", async
 const TWENTY_WEEKS = BN.from(60 * 60 * 24 * 7 * 20);
 await increaseTime(TWENTY_WEEKS);
 console.log("(Debug) After 20 weeks")

 const lockAfter20 = await phase4.cvxLocker.lockedBalances(stakerAd
 console.log("(Debug) User Locked Balance = Total %s CVX (Unlockab
 console.log("(Debug) Properly locked tokens as of the most recent

 expect(lockAfter20.unlockable).eq(lockAfter20.total); // all lock
});

 aura locker
(Debug) User Locked Balance Record = Total 0 CVX (Unlockable = 0 CVX,
(Debug) User is going to lock 800563688188805506352 CVX
(Debug) User Locked Balance Record = Total 800563688188805506352 CVX
 ✓ (Debug) allows users to lock aura

(Debug) votesBefore = 0, locked CVX = 800563688188805506352
(Debug) Properly locked tokens as of the most recent eligible epoch =
After 1 week
(Debug) votesAfter = 0, locked CVX = 800563688188805506352
(Debug) Properly locked tokens as of the most recent eligible epoch =
 1) (Debug) check user has votes after locking

(Debug) After 20 weeks
(Debug) User Locked Balance = Total 800563688188805506352 CVX (Unlocka

Aura Finance has implemented a checkpointing mechanism for determine user’s

voting power. Therefore, accounting for the votes will only happen during

checkpoint when AuraLocker.checkpointDelegate() function is being called.

Therefore, the AuraLocker.getVotes() function will only consider the locked AURA

tokens that have been “checkpointed” as votes. In other words, if the locked AURA

tokens have not been “checkpointed” yet, it will simply remain as a balance in the

AuraLocker contract, and the user’s locked AURA tokens effectively have no voting

power.

Based on the source code, the root cause of this issue is that if a user does not have

a delegatee, the system will not perform any checkpointing, and user’s locked AURA

token will not be accounted as voting power.

Following code from AuraLocker._lock() shows that checkpointing will only be

performed if the user has a delegatee. Otherwise, no checkpointing will be

performed when users locked their AURA tokens.

The only way for Alice could get back her voting power is to delegate to herself a�er

locking her AURA tokens. This is a workaround. AuraLocker.delegate() sole

purpose should only serve to delegate one’s voting power to another user, and

should not be used as a workaround to force the system to perform checkpointing

to gain voting power.

(Debug) Properly locked tokens as of the most recent eligible epoch =
 ✓ (Debug) check user lock balance and votes after 20 weeks

function _lock(address _account, uint256 _amount) internal {
 ..SNIP..
 address delegatee = delegates(_account);
 if (delegatee != address(0)) {
 delegateeUnlocks[delegatee][unlockTime] += lockAmount;
 _checkpointDelegate(delegatee, lockAmount, 0);
 }
 // @audit - No checkpointing performed for the rest of the code in
 ..SNIP..
}

https://github.com/code-423n4/2022-05-aura/blob/4989a2077546a5394e3650bf3c224669a0f7e690/contracts/AuraLocker.sol#L511
https://github.com/code-423n4/2022-05-aura/blob/4989a2077546a5394e3650bf3c224669a0f7e690/contracts/AuraLocker.sol#L576
https://github.com/code-423n4/2022-05-aura/blob/4989a2077546a5394e3650bf3c224669a0f7e690/contracts/AuraLocker.sol#L258

For Alice to get back her voting power, she must call the

AuraLocker.delegate(Alice.address) function, which will delegate to herself. This

function will in turn call the AuraLocker._checkpointDelegate() function, which will

“checkpointed” Alice’s locked tokens to become votes. Only a�er this step, Alice’s

voting power will be updated and calling AuraLocker.getVotes(Alice.address)

should return “100” now.

Additionally, documentation did not mention that a user is required to delegate to

oneself in order to get the voting power. Thus, it is very likely that majority of the

users would not know how to get their voting power unless they review the source

code or is aware of this workaround.

The impact of this issue is that users might miss the opportunity to vote on critical

protocol decisions or flow of incentives (Gauge voting) due to lack of voting power

as voting power is not assigned to them a�er locking up AURA tokens.

If the users only realised this issue in the current epoch, they would miss the chance

to vote in current epoch. This is because by calling the

AuraLocker.delegate(address account) function to fix the issue, the votes will only

be effective in the next epoch.

The outcome of the governance or gauge voting might be impacted and might not

reflect the true consensus of the community as affected users are not able to

participate in the vote or have inaccurate voting power, thus affecting the protocol.

In Convex Finance, users lock their CVX tokens by calling CvxLocker._lock()

function and voting power will be allocated to the users immediately. Similar strategy

should be adopted.

It is recommended to update the AuraLocker._lock() function so that the user’s

locked AURA tokens are “checkpointed” and converted to voting power immediately

a�er locking up if a user has not assigned a delegatee yet. This will trigger the

accounting for votes and translate the newly locked tokens into voting power

immediately.

Impact

Recommended Mitigation Steps

Original Code

Suggested Modification

0xMaharishi (Aura Finance) disputed and commented:

Users must simply delegate to themselves to receive voting power

LSDan (judge) commented:

Valid issue. Fix the documentation or the code. If all users need to do is delegate to

themselves, then auto-delegating newly minted votes to the user would solve the

issue.

function _lock(address _account, uint256 _amount) internal {
 ..SNIP..
 address delegatee = delegates(_account);
 if (delegatee != address(0)) {
 delegateeUnlocks[delegatee][unlockTime] += lockAmount;
 _checkpointDelegate(delegatee, lockAmount, 0);
 }
 ..SNIP..
}

function _lock(address _account, uint256 _amount) internal {
 ..SNIP..
 address delegatee = delegates(_account);
 if (delegatee != address(0)) {
 delegateeUnlocks[delegatee][unlockTime] += lockAmount;
 _checkpointDelegate(delegatee, lockAmount, 0);
 } else {
 // If there is no delegatee,
 // then automatically delegate to the account to trigger the c
 delegateeUnlocks[_account][unlockTime] += lockAmount;
 _checkpointDelegate(_account, lockAmount, 0);
 }
 ..SNIP..
}

https://github.com/code-423n4/2022-05-aura-findings/issues/186#issuecomment-1139664883
https://github.com/code-423n4/2022-05-aura-findings/issues/186#issuecomment-1160556717

Submitted by csanuragjain

AuraVestedEscrow.sol#L96

Reward vesting should end once endTime is reached, this is not done currently.

�. Observe the fund function

�. Observe that there is no check to disallow funding once endTime has been

reached

Add below check

0xMaharishi (Aura Finance) acknowledged, but disagreed with severity and

commented:

This report is kind of invalid, because there would be no utility in this.. it’s specifically

le� open ended. With that being said, adding a check to ensure that funding is

made BEFORE START TIME would be good.

This should be a 0 or 1 at most.

LSDan (judge) commented:

As far as I can tell, this is totally valid. Funding in this state would cause a loss of

funds in that they would never go towards a reward.

0xMaharishi (Aura Finance) resolved:

code4rena aurafinance/aura-contracts#84

All code4rena fixes code-423n4/2022-05-aura#6

[M-09] Reward can be vested even a�er endTime

Proof of Concept

Recommended Mitigation Steps

require(block.timestamp<=endTime, "Reward vesting period over");

https://github.com/code-423n4/2022-05-aura/blob/main/contracts/AuraVestedEscrow.sol#L96
https://github.com/code-423n4/2022-05-aura-findings/issues/126#issuecomment-1138397223
https://github.com/code-423n4/2022-05-aura-findings/issues/126#issuecomment-1164775429
https://github.com/code-423n4/2022-05-aura-findings/issues/126
https://github.com/aurafinance/aura-contracts/pull/84
https://github.com/code-423n4/2022-05-aura/pull/6
https://github.com/code-423n4/2022-05-aura-findings/issues/126

Submitted by Kumpa

AuraLocker.sol#L258-L295

Without restriction on the type of address that lock the token, a bad actor could

lock the token through the smart contract. Doing so enable him to make the

lockedToken becomes liquidate by tokenize his smart contract which defeat the

purpose of the lockedToken that is supposed to be untransferable. Moreover, a bad

actor could attract people to lock the token through his smart contract instead of

directly locking with AuraLocker by injecting better short-term incentives to his

wrapper token. This enable the bad actor to accumulate voting power that could

dictate the future of the protocol.

A bad actor creates a smart contract

A contract calls lock in AuraLocker and locks the token

A bad actor tokenizes the contract

A bad actor attracts people to lock the token through his smart contract by

offering a wrapper tokens or additional incentives like high apy etc.

A bad actor dictates the smart contract to delegate its vote to his preferred

address.

It would be best to check whether the locker is the smart contract or the wallet and,

if the protocol wants the smart contract to be the locker, it can implement the

whitelist or blacklist.

0xMaharishi (Aura Finance) acknowledged, but disagreed with severity and

commented:

Given no user funds are at risk I don’t think this is a super high risk, but I do agree

that there is a governance risk there and it’s something to be concerned about

if/when there is no multisig intermediary between aura voters and execution. With

[M-10] Increase voting power by tokenizing the address that
locks the token

Proof of Concept

Recommended Mitigation Steps

https://github.com/code-423n4/2022-05-aura/blob/4989a2077546a5394e3650bf3c224669a0f7e690/contracts/AuraLocker.sol#L258-L295
https://github.com/code-423n4/2022-05-aura-findings/issues/278#issuecomment-1140251216
https://github.com/code-423n4/2022-05-aura-findings/issues/278

that being said, I think a good solution would be to have a blacklist that the owner

can set to block non-eoa’s from making any further locks: bool canLock =

isEOA(address) || !isBlacklisted(address)

LSDan (judge) decreased severity to Medium and commented:

I’ll leave this in place as a medium risk because there are external factors involved.

High risk is too severe.

0xMaharishi (Aura Finance) resolved:

code-423n4/2022-05-aura#6

code4rena aurafinance/aura-contracts#84

Submitted by IllIllI, also found by Aits, BowTiedWardens, and MaratCerby

If rewards are given in fee-on-transfer tokens, users may get no rewards, breaking

functionality.

Med: Assets not at direct risk, but the function of the protocol or its

availability could be impacted, or :::leak value with a hypothetical attack

path with stated assumptions:::, but external requirements. (emphasis mine)

The underlying BAL protocol support fee-on-transfer tokens, so should Aura.

[M-11] Users may lose rewards to other users if rewards are
given as fee-on-transfer tokens

Proof of Concept

File: contracts/ExtraRewardsDistributor.sol #1

87 function _addReward(
88 address _token,
89 uint256 _amount,
90 uint256 _epoch
91) internal nonReentrant {
92 // Pull before reward accrual
93 IERC20(_token).safeTransferFrom(msg.sender, address(this

https://github.com/code-423n4/2022-05-aura-findings/issues/278#issuecomment-1160643488
https://github.com/code-423n4/2022-05-aura-findings/issues/278#issuecomment-1141475162
https://github.com/code-423n4/2022-05-aura/pull/6
https://github.com/aurafinance/aura-contracts/pull/84
https://github.com/code-423n4/2022-05-aura-findings/issues/176

ExtraRewardsDistributor.sol#L87-L98

If a fee is charged the total amount available to be transferred later will be less than

the _amount passed in.

Consider the following scenario:

User A holds 98% of the total supply of vlBAL (the system is being bootstrapped)

User B holds 1%

User C holds 1%

�. _token is given out as a reward. It is a fee-on-transfer token with a fee of 2%

�. Nobody claims the reward until it’s fully available (to save gas on transaction

fees)

�. User A is the first to claim his/her reward and gets 98% of the reward, leaving 0

wei of the token le� (since the other 2% was already taken as a fee by the token

itself)

�. User B tries to claim and the call reverts since there’s no balance le�

�. User C tries to claim and the call reverts for them too

�. Users B and C are angry and stop using Aura

94
95 //convert to reward per token
96 uint256 supply = auraLocker.totalSupplyAtEpoch(_epoch);
97 uint256 rPerT = (_amount * 1e20) / supply;
98 rewardData[_token][_epoch] += rPerT;

File: contracts/ExtraRewardsDistributor.sol #2

87 function _addReward(
88 address _token,
89 uint256 _amount,
90 uint256 _epoch
91) internal nonReentrant {
92 // Pull before reward accrual
93 IERC20(_token).safeTransferFrom(msg.sender, address(this
94

https://github.com/code-423n4/2022-05-aura/blob/4989a2077546a5394e3650bf3c224669a0f7e690/contracts/ExtraRewardsDistributor.sol#L87-L98

ExtraRewardsDistributor.sol#L87-L98

Measure the contract balance before and a�er the transfer, and use the difference

as the amount, rather than the stated amount.

0xMaharishi (Aura Finance) disputed and commented:

This contract is optional to use - it is not supposed to support fee bearing tokens.

LSDan (judge) commented:

See my comment on issue #18: “There are several cases in the code reported where

the token in question comes from an external (non-admin, non-protocol) source.

One of these is the addReward functionality (ExtraRewards). This would indeed

cause an accounting issue and allow a potential malicious actor to send rewards

which cause distribution to fail due to lack of funds. Just because you don’t plan to

use fee on transfer tokens, does not mean they will not be used. This should be

protected against in the scenarios where it could cause an issue.

That said, this clearly requires external factors and relies on hypothetical attack

motivation that seems unlikely to me. I think it should be included as a medium risk.”

Submitted by csanuragjain, also found by hyh and kirk-baird

AuraClaimZap.sol#L224-L226

It was observed that User will lose funds due to missing else condition.

95 //convert to reward per token
96 uint256 supply = auraLocker.totalSupplyAtEpoch(_epoch);
97 uint256 rPerT = (_amount * 1e20) / supply;
98 rewardData[_token][_epoch] += rPerT;

Recommended Mitigation Steps

[M-12] User will lose funds

Proof of Concept

https://github.com/code-423n4/2022-05-aura/blob/4989a2077546a5394e3650bf3c224669a0f7e690/contracts/ExtraRewardsDistributor.sol#L87-L98
https://github.com/code-423n4/2022-05-aura-findings/issues/176#issuecomment-1138718030
https://github.com/code-423n4/2022-05-aura-findings/issues/176#issuecomment-1179232751
https://github.com/code-423n4/2022-05-aura-findings/issues/18
https://github.com/code-423n4/2022-05-aura/blob/main/contracts/AuraClaimZap.sol#L224-L226
https://github.com/code-423n4/2022-05-aura-findings/issues/108

�. User call claimRewards at ClaimZap.sol#L103 with Options.LockCvx as false

�. claimRewards internally calls _claimExtras

�. Everything goes good until AuraClaimZap.sol#L218

�. Since user cvxBalance>0 so cvxBalance is transferred from user to the contract.

�. Now since Options.LockCvx was set to false in options so if

(_checkOption(options, uint256(Options.LockCvx))) does not evaluate to true

and does not execute

�. This means User cvx funds are stuck in contract

The condition should check if user has enabled lock for cvx, otherwise cvx should

not be transferred from user

if (depositCvxMaxAmount > 0) {
 uint256 cvxBalance = IERC20(cvx).balanceOf(msg.sender).sub
 cvxBalance = AuraMath.min(cvxBalance, depositCvxMaxAmount
 if (cvxBalance > 0) {
 //pull cvx
 IERC20(cvx).safeTransferFrom(msg.sender, address(this
 if (_checkOption(options, uint256(Options.LockCvx))) {
 IAuraLocker(locker).lock(msg.sender, cvxBalance);
 }
 }
 }

Recommended Mitigation Steps

if (depositCvxMaxAmount > 0 && _checkOption(options, uint256(Options.
 uint256 cvxBalance = IERC20(cvx).balanceOf(msg.sender).sub(
 cvxBalance = AuraMath.min(cvxBalance, depositCvxMaxAmount);
 if (cvxBalance > 0) {
 //pull cvx
 IERC20(cvx).safeTransferFrom(msg.sender, address(this),

 IAuraLocker(locker).lock(msg.sender, cvxBalance);
 }
 }

0xMaharishi (Aura Finance) confirmed, but disagreed with severity and

commented:

This is valid, although it:

relies on user function input

does not affect user deposits

requires pre-approval of tokens

Therefore, I don’t think this should be a 3 severity. 2 at most.

LSDan (judge) decreased severity to Medium and commented:

This is a tough one, but I agree that medium severity makes more sense here since

we’re talking about a user acting on their own behalf in a very specific way. This

does not open up an attack vector which would allow a malicious actor to lock a

user’s funds.

0xMaharishi (Aura Finance) resolved:

code4rena aurafinance/aura-contracts#84

All code4rena fixes code-423n4/2022-05-aura#6

Submitted by cccz

In the ConvexMasterChef contract, a new staking pool can be added using the add()

function. The staking token for the new pool is defined using the _lpToken variable.

However, there is no additional checking whether the _lpToken is the same as the

reward token (cvx) or not.

[M-13] ConvexMasterChef : When _lpToken is cvx, reward
calculation is incorrect

 function add(
 uint256 _allocPoint,
 IERC20 _lpToken,

https://github.com/code-423n4/2022-05-aura-findings/issues/108#issuecomment-1137625568
https://github.com/code-423n4/2022-05-aura-findings/issues/108#issuecomment-1160694547
https://github.com/code-423n4/2022-05-aura-findings/issues/108
https://github.com/aurafinance/aura-contracts/pull/84
https://github.com/code-423n4/2022-05-aura/pull/6
https://github.com/code-423n4/2022-05-aura-findings/issues/151

When the _lpToken is the same token as cvx, reward calculation for that pool in the

updatePool() function can be incorrect. This is because the current balance of the

_lpToken in the contract is used in the calculation of the reward. Since the _lpToken

is the same token as the reward, the reward minted to the contract will inflate the

value of lpSupply, causing the reward of that pool to be less than what it should be.

 IRewarder _rewarder,
 bool _withUpdate
) public onlyOwner {
 if (_withUpdate) {
 massUpdatePools();
 }
 uint256 lastRewardBlock = block.number > startBlock
 ? block.number
 : startBlock;
 totalAllocPoint = totalAllocPoint.add(_allocPoint);
 poolInfo.push(
 PoolInfo({
 lpToken: _lpToken,
 allocPoint: _allocPoint,
 lastRewardBlock: lastRewardBlock,
 accCvxPerShare: 0,
 rewarder: _rewarder
 })
);
 }

 function updatePool(uint256 _pid) public {
 PoolInfo storage pool = poolInfo[_pid];
 if (block.number <= pool.lastRewardBlock) {
 return;
 }
 uint256 lpSupply = pool.lpToken.balanceOf(address(this));
 if (lpSupply == 0) {
 pool.lastRewardBlock = block.number;
 return;
 }
 uint256 multiplier = getMultiplier(pool.lastRewardBlock, block.n
 uint256 cvxReward = multiplier
 .mul(rewardPerBlock)
 .mul(pool.allocPoint)

ConvexMasterChef.sol#L96-L118

ConvexMasterChef.sol#L186-L206

Add a check that _lpToken is not cvx in the add function or mint the reward token to

another contract to prevent the amount of the staked token from being mixed up

with the reward token.

0xMaharishi (Aura Finance) commented:

Could potentially require not to be the reward token, but I think this is just a relevant

part of dao ownership.

0xMaharishi (Aura Finance) confirmed and resolved

Submitted by kirk-baird

AuraLocker.sol#L176-L177

AuraLocker.sol#L802-L814

AuraLocker.sol#L864

There is a potential overflow in the rewards calculations which would lead to

updateReward() always reverting.

The impact of this overflow is that all reward tokens will be permanently locked in

the contract. User’s will be unable to call any of the functions which have the

 .div(totalAllocPoint);
 //cvx.mint(address(this), cvxReward);
 pool.accCvxPerShare = pool.accCvxPerShare.add(
 cvxReward.mul(1e12).div(lpSupply)
);
 pool.lastRewardBlock = block.number;
 }

Proof of Concept

Recommended Mitigation Steps

[M-14] Integer overflow will lock all rewards in AuraLocker

https://github.com/code-423n4/2022-05-aura/blob/4989a2077546a5394e3650bf3c224669a0f7e690/convex-platform/contracts/contracts/ConvexMasterChef.sol#L96-L118
https://github.com/code-423n4/2022-05-aura/blob/4989a2077546a5394e3650bf3c224669a0f7e690/convex-platform/contracts/contracts/ConvexMasterChef.sol#L186-L206
https://github.com/code-423n4/2022-05-aura-findings/issues/151#issuecomment-1138636754
https://github.com/code-423n4/2022-05-aura-findings/issues/151
https://github.com/code-423n4/2022-05-aura/blob/4989a2077546a5394e3650bf3c224669a0f7e690/contracts/AuraLocker.sol#L176-L177
https://github.com/code-423n4/2022-05-aura/blob/4989a2077546a5394e3650bf3c224669a0f7e690/contracts/AuraLocker.sol#L802-L814
https://github.com/code-423n4/2022-05-aura/blob/4989a2077546a5394e3650bf3c224669a0f7e690/contracts/AuraLocker.sol#L864
https://github.com/code-423n4/2022-05-aura-findings/issues/261

updateReward() modifier, that is:

lock()

getReward()

_processExpiredLocks()

_notifyReward()

As a result the contract will need to call shutdown() and the users will only be able

to receive their staked tokens via emergencyWithdraw() , which does not transfer the

users the reward tokens.

Note that if one reward token overflows this will cause a revert on all reward tokens

due to the loop over reward tokens.

This issue will always be present if the staked token is one with a low number of

decimal places such as USDC or USDT which have 6 decimal places. This is because

the totalSupply will be limited in size by the decimal places of the stakingToken .

The overflow may occur due to the base of values in _rewardPerToken() .

The return value of _rewardPerToken() is in terms of

Proof of Concept

 function _rewardPerToken(address _rewardsToken) internal view ret
 if (lockedSupply == 0) {
 return rewardData[_rewardsToken].rewardPerTokenStored;
 }
 return
 uint256(rewardData[_rewardsToken].rewardPerTokenStored).ad
 _lastTimeRewardApplicable(rewardData[_rewardsToken].pe
 .sub(rewardData[_rewardsToken].lastUpdateTime)
 .mul(rewardData[_rewardsToken].rewardRate)
 .mul(1e18)
 .div(lockedSupply)
);
 }

Here (now - lastUpdateTime) has a maximum value of rewardDuration = 6 *

10**5 .

Now rewardRate is the _reward.div(rewardsDuration) as seen in

_notifyRewardAmount() on line #864. Note that rewardDuration is a constant

604,800.

rewardDuration = 6 * 10**5

Thus, if we have a rewards such as AURA or WETH (or most ERC20 tokens) which

have units 10**18 we can transfer 1 WETH to the reward distributor which calls

_notifyRewardAmount() and sets the reward rate to,

rewardRate = 10**18 / (6 * 10**5) ~= 10**12

Finally, if this attack is run either by the first depositor they may lock() a single

token which would set totalSupply = 1 .

Therefore our equation in terms of units will become,

In since rewardPerTokenStored is a uint96 it has a maximum value of 2**96 ~=

7.9 * 10**28 . Hence there will be an overflow in newRewardPerToken.to96() . Since

we are unable to add more total supply due to lock() reverting there will be no

way to circumvent this revert except to shutdown() .

(now - lastUpdateTime) * rewardRate * 10**18 / totalSupply

(now - lastUpdateTime) * rewardRate * 10**18 / totalSupply => 10**5 *

 uint256 newRewardPerToken = _rewardPerToken(token);
 rewardData[token].rewardPerTokenStored = newRewardPerT

Note this attack is described when we have a low totalSupply . However it is also

possible to apply this attack on a larger totalSupply when there are reward tokens

which have decimal places larger than 18 or tokens which such as SHIB which have

small token value and so many of the tokens can be bought for cheap.

To mitigate this issue it is recommended to increase the size of the

rewardPerTokenStored . Since updating this value will require another slot to be

used we recommend updating this to either uint256 or to update both rewardRate

and rewardPerTokenStored to be uint224 .

0xMaharishi (Aura Finance) confirmed, but disagreed with severity and

commented:

Given that the staked token will have 18 decimals (it’s the aura token) and there will

be at least 1e21 units in there before any rewards come, it would take a number of

tokens equal to 7.9e49 to be distributed to get this overflow.

I think that while this is certainly a possibility, it would take an orchestrated

governance attack and wouldn’t necessarily put any funds at risk. That said, a solid

mitigation would be to enforce rewardRate < 1e17 in the notifyRewardAmount,

therefore it would never be possible for this to happen.

IMO this should be a medium risk.

LSDan (judge) decreased severity to Medium and commented:

Agree with sponsor about the downgrade to medium. This requires external factors

to be an issue, including potential governance collusion in the attack.

0xMaharishi (Aura Finance) resolved:

code-423n4/2022-05-aura#6

code4rena aurafinance/aura-contracts#84

Recommended Mitigation Steps

https://github.com/code-423n4/2022-05-aura-findings/issues/261#issuecomment-1140243416
https://github.com/code-423n4/2022-05-aura-findings/issues/261#issuecomment-1160710719
https://github.com/code-423n4/2022-05-aura-findings/issues/261#issuecomment-1141474956
https://github.com/code-423n4/2022-05-aura/pull/6
https://github.com/aurafinance/aura-contracts/pull/84
https://github.com/code-423n4/2022-05-aura-findings/issues/272

Submitted by cccz

Same as https://github.com/code-423n4/2022-02-concur-findings/issues/244

All calculations are rounded down, since a lack of tokens in the contracts cannot be

rounding errors’ fault. So the function is redundant.

On the other hand, if the contract is undersupplied with cvx tokens, this will cause

depositors to be sent less tokens than needed (or none). This is especially unsafe

because the tokens that were lacking are not resembled in accountings at all. Thus a

depositor may invoke the safeRewardTransfer and not receive tokens they were

supposed to.

ConvexMasterChef.sol#L299-L306

Use usual safeTransfer instead of safeRewardTransfer.

0xMaharishi (Aura Finance) acknowledged, but disagreed with severity and

commented:

Reward tokens are transferred here before rewards start.

LSDan (judge) commented:

I agree with this report. The fallback situation in this function specifically prioritizes

loss of funds over bricking the contract, which while laudable, results in what is

effectively a silent failure case.

0xMaharishi (Aura Finance) resolved:

code-423n4/2022-05-aura#6

[M-15] ConvexMasterChef : safeRewardTransfer can cause
loss of funds

Proof of Concept

Recommended Mitigation Steps

[M-16] DDOS in BalLiquidityProvider

https://github.com/code-423n4/2022-02-concur-findings/issues/244
https://github.com/code-423n4/2022-05-aura/blob/4989a2077546a5394e3650bf3c224669a0f7e690/convex-platform/contracts/contracts/ConvexMasterChef.sol#L299-L306
https://github.com/code-423n4/2022-05-aura-findings/issues/272#issuecomment-1140246065
https://github.com/code-423n4/2022-05-aura-findings/issues/272#issuecomment-1163805621
https://github.com/code-423n4/2022-05-aura-findings/issues/272#issuecomment-1141475114
https://github.com/code-423n4/2022-05-aura/pull/6
https://github.com/code-423n4/2022-05-aura-findings/issues/272
https://github.com/code-423n4/2022-05-aura-findings/issues/285

Submitted by QuantumBrief

DDOS to liquidity providers in BalLiquidityProvider.

bal is equal to the contract’s balance of the asset: BalLiquidityProvider.sol#L56

bal is required to be equal to the input parameter _request.maxAmountsIn[i]:

BalLiquidityProvider.sol#L57

An attacker can front-run liquidity providers by sending 1 Wei of the asset to make

the balance not equal to the input. This can be repeated and be used to impede the

liquidity provider from using the function which will always revert since bal !=

_request.maxAmountsIn[i]

Balances shouldn’t be required to be equal to an input variable. An attacker can

always make the balance a little bigger. This check should be removed or changed

to require (bal >= _request.maxAmountsIn[i]).

0xMaharishi (Aura Finance) acknowledged, but disagreed with severity and

commented:

Fair report 👍

0xMaharishi (Aura Finance) resolved:

code-423n4/2022-05-aura#6

code4rena aurafinance/aura-contracts#84

Submitted by hyh

Reward token accounting update in deposit() and withdraw() happens a�er reward

transfer. If reward token allows for the control of transfer call flow or can be

Proof of Concept

Recommended Mitigation Steps

[M-17] ConvexMasterChef ’s deposit and withdraw can be
reentered drawing all reward funds from the contract if
reward token allows for transfer flow control

https://github.com/code-423n4/2022-05-aura/blob/4989a2077546a5394e3650bf3c224669a0f7e690/contracts/BalLiquidityProvider.sol#L56
https://github.com/code-423n4/2022-05-aura/blob/4989a2077546a5394e3650bf3c224669a0f7e690/contracts/BalLiquidityProvider.sol#L57
https://github.com/code-423n4/2022-05-aura-findings/issues/285#issuecomment-1140251794
https://github.com/code-423n4/2022-05-aura-findings/issues/285#issuecomment-1141475216
https://github.com/code-423n4/2022-05-aura/pull/6
https://github.com/aurafinance/aura-contracts/pull/84
https://github.com/code-423n4/2022-05-aura-findings/issues/313

upgraded to allow it in the future (i.e. have or can introduce the

_beforetokentransfer, _a�erTokenTransfer type of hooks; or, say, can be upgraded to

ERC777), the current implementation makes it possible to drain all the reward token

funds of the contract by directly reentering deposit() or withdraw() with tiny

_amount.

Setting the severity to medium as this is conditional to transfer flow control

assumption, but the impact is the full loss of contract reward token holdings.

Both withdraw() and deposit() have the issue, performing late accounting update and

not controlling for reentrancy:

ConvexMasterChef.sol#L209-L221

ConvexMasterChef.sol#L239-L250

Proof of Concept

 function deposit(uint256 _pid, uint256 _amount) public {
 PoolInfo storage pool = poolInfo[_pid];
 UserInfo storage user = userInfo[_pid][msg.sender];
 updatePool(_pid);
 if (user.amount > 0) {
 uint256 pending = user
 .amount
 .mul(pool.accCvxPerShare)
 .div(1e12)
 .sub(user.rewardDebt);
 safeRewardTransfer(msg.sender, pending);
 }
 pool.lpToken.safeTransferFrom(

 function withdraw(uint256 _pid, uint256 _amount) public {
 PoolInfo storage pool = poolInfo[_pid];
 UserInfo storage user = userInfo[_pid][msg.sender];
 require(user.amount >= _amount, "withdraw: not good");
 updatePool(_pid);
 uint256 pending = user.amount.mul(pool.accCvxPerShare).div(1e1
 user.rewardDebt

https://github.com/code-423n4/2022-05-aura/blob/4989a2077546a5394e3650bf3c224669a0f7e690/convex-platform/contracts/contracts/ConvexMasterChef.sol#L209-L221
https://github.com/code-423n4/2022-05-aura/blob/4989a2077546a5394e3650bf3c224669a0f7e690/convex-platform/contracts/contracts/ConvexMasterChef.sol#L239-L250

Consider adding a direct reentrancy control, e.g. nonReentrant modifier:

https://docs.openzeppelin.com/contracts/2.x/api/utils#ReentrancyGuard

Also, consider finishing all internal state updates prior to external calls:

https://consensys.github.io/smart-contract-best-

practices/attacks/reentrancy/#pitfalls-in-reentrancy-solutions

0xMaharishi (Aura Finance) confirmed and commented:

Protected by governance, but agree could be solved with simple reentrancy guard.

0xMaharishi (Aura Finance) resolved:

code-423n4/2022-05-aura#6

code4rena aurafinance/aura-contracts#84

Submitted by IllIllI, also found by csanuragjain

Users are charged the penalty due to admin actions, and they have no way to avoid

it

When claiming their rewards, users are charged a penalty if they take the reward

directly, rather than by passing it into the auraLocker . Those are the only two

);
 safeRewardTransfer(msg.sender, pending);
 user.amount = user.amount.sub(_amount);
 user.rewardDebt = user.amount.mul(pool.accCvxPerShare).div(1e1
 pool.lpToken.safeTransfer(address(msg.sender), _amount);

Recommended Mitigation Steps

[M-18] AuraBalRewardPool charges a penalty to all users in
the pool if the AuraLocker has been shut down

Proof of Concept

https://docs.openzeppelin.com/contracts/2.x/api/utils#ReentrancyGuard
https://consensys.github.io/smart-contract-best-practices/attacks/reentrancy/#pitfalls-in-reentrancy-solutions
https://github.com/code-423n4/2022-05-aura-findings/issues/313#issuecomment-1140258550
https://github.com/code-423n4/2022-05-aura-findings/issues/313#issuecomment-1141475322
https://github.com/code-423n4/2022-05-aura/pull/6
https://github.com/aurafinance/aura-contracts/pull/84
https://github.com/code-423n4/2022-05-aura-findings/issues/179

options:

AuraBalRewardPool.sol#L176-L186

If the pool has been shut down, the auraLocker.lock() call will always revert, which

means the user must take the penalty path:

AuraLocker.sol#L258-L260

Don’t charge the penalty if the locker has been shut down.

0xMaharishi (Aura Finance) acknowledged, but disagreed with severity and

commented:

The auraBAL reward pool only runs for 2 weeks at the beginning of the protocol. It’s

highly unlikely the AuraLocker will be shut down.

File: contracts/AuraBalRewardPool.sol #1

176 function getReward(bool _lock) public updateReward(msg.sende
177 uint256 reward = rewards[msg.sender];
178 if (reward > 0) {
179 rewards[msg.sender] = 0;
180 if (_lock) {
181 auraLocker.lock(msg.sender, reward);
182 } else {
183 uint256 penalty = (reward * 2) / 10;
184 pendingPenalty += penalty;
185 rewardToken.safeTransfer(msg.sender, reward - pe
186 }

File: contracts/AuraLocker.sol #2

258 function _lock(address _account, uint256 _amount) internal
259 require(_amount > 0, "Cannot stake 0");
260 require(!isShutdown, "shutdown");

Recommended Mitigation Steps

https://github.com/code-423n4/2022-05-aura/blob/4989a2077546a5394e3650bf3c224669a0f7e690/contracts/AuraBalRewardPool.sol#L176-L186
https://github.com/code-423n4/2022-05-aura/blob/4989a2077546a5394e3650bf3c224669a0f7e690/contracts/AuraLocker.sol#L258-L260
https://github.com/code-423n4/2022-05-aura-findings/issues/179#issuecomment-1138697795

Submitted by WatchPug

CrvDepositor.sol#L127-L134

In _lockCurve() , unlockInWeeks - unlockTime is being used as a number in

weeks, while it actually is a number in seconds.

Thus, comparing it with 2 actually means a 2 seconds buffer instead of a 2 weeks

buffer.

The intention is to wait for 2 weeks before extending the lock time again, but the

current implementation allows the extension of the lock once a new week begins.

Consider changing the name of unlockTime to unlockTimeInWeeks , and:

�. Change L94-102 to:

CrvDepositor.sol#L94-L102

[M-19] CrvDepositor.sol Wrong implementation of the 2-
week buffer for lock

uint256 unlockAt = block.timestamp + MAXTIME;
uint256 unlockInWeeks = (unlockAt/WEEK)*WEEK;

//increase time too if over 2 week buffer
if(unlockInWeeks.sub(unlockTime) > 2){
 IStaker(staker).increaseTime(unlockAt);
 unlockTime = unlockInWeeks;
}

Recommended Mitigation Steps

uint256 unlockAt = block.timestamp + MAXTIME;
uint256 unlockInWeeks = unlockAt / WEEK;

//release old lock if exists
IStaker(staker).release();

https://github.com/code-423n4/2022-05-aura/blob/4989a2077546a5394e3650bf3c224669a0f7e690/convex-platform/contracts/contracts/CrvDepositor.sol#L127-L134
https://github.com/code-423n4/2022-05-aura/blob/4989a2077546a5394e3650bf3c224669a0f7e690/convex-platform/contracts/contracts/CrvDepositor.sol#L94-L102
https://github.com/code-423n4/2022-05-aura-findings/issues/343

�. Change L127-L134 to:

0xMaharishi (Aura Finance) confirmed and resolved:

code-423n4/2022-05-aura#6

Submitted by catchup

ConvexMasterChef.sol#L178-L183

massUpdatePools() is a public function and it calls the updatePool() function for the

length of poolInfo. Hence, it is an unbounded loop, depending on the length of

poolInfo.

If poolInfo.length is big enough, block gas limit may be hit.

https://consensys.github.io/smart-contract-best-practices/attacks/denial-of-

service/#dos-with-block-gas-limit

//create new lock
uint256 crvBalanceStaker = IERC20(crvBpt).balanceOf(staker);
IStaker(staker).createLock(crvBalanceStaker, unlockAt);
unlockTimeInWeeks = unlockInWeeks;

uint256 unlockAt = block.timestamp + MAXTIME;
uint256 unlockInWeeks = unlockAt / WEEK;

//increase time too if over 2 week buffer
if(unlockInWeeks.sub(unlockTime) > 2){
 IStaker(staker).increaseTime(unlockAt);
 unlockTimeInWeeks = unlockInWeeks;
}

[M-20] massUpdatePools() is susceptible to DoS with block
gas limit

Proof of Concept

Recommended Mitigation Steps

https://github.com/code-423n4/2022-05-aura-findings/issues/343#issuecomment-1141475468
https://github.com/code-423n4/2022-05-aura/pull/6
https://github.com/code-423n4/2022-05-aura/blob/main/convex-platform/contracts/contracts/ConvexMasterChef.sol#L178-L183
https://consensys.github.io/smart-contract-best-practices/attacks/denial-of-service/#dos-with-block-gas-limit
https://github.com/code-423n4/2022-05-aura-findings/issues/197

I suggest to limit the max number of loop iterations to prevent hitting block gas limit.

0xMaharishi (Aura Finance) disagreed with severity and commented:

Duplicate of #147

LSDan (judge) commented:

This is not a duplicate of Duplicate of #147 and is also clearly documented as a

potential issue in the code itself. If the admin were to accidentally add too many

pools the contract would be affected, but the likelihood of this is low and if it were to

happen, the admin could still turn off the pools and migrate to another contract. This

would, however, affect the protocol in a severely negative way. Not fully updating all

of the pools would potentially cause accounting issue and lead to loss of earned

rewards. Given the impact and likelihood together, I think medium is actually

reasonable in this case.

IllIllI000 (warden) commented:

@LSDan- The massUpdatePool() function was found to be non-critical in previous

contests (https://github.com/code-423n4/2022-02-concur-findings/issues/161)

and when I filed the issue with Convex for their bug bounty, they rejected it saying it

was a “non-issue” and didn’t meet their criteria for a bounty. Furthermore,

ConvexMasterChef.sol is not listed as in scope for this contest:

https://github.com/code-423n4/2022-05-aura#contracts-of-interest

dmitriia (warden) commented:

@IllIllI000- Actually the scope was all non-test contracts, https://github.com/code-

423n4/2022-05-aura#repo

LSDan (judge) commented:

@IllIllI000- Unlike the other contest, massUpdatePools() is used in this contract. I’m

going to keep this as medium.

0xMaharishi (Aura Finance) confirmed and resolved

https://github.com/code-423n4/2022-05-aura-findings/issues/197#issuecomment-1139677686
https://github.com/code-423n4/2022-05-aura-findings/issues/147
https://github.com/code-423n4/2022-05-aura-findings/issues/197#issuecomment-1163797599
https://github.com/code-423n4/2022-05-aura-findings/issues/147
https://github.com/code-423n4/2022-05-aura-findings/issues/197#issuecomment-1179486987
https://github.com/code-423n4/2022-02-concur-findings/issues/161
https://github.com/code-423n4/2022-05-aura#contracts-of-interest
https://github.com/code-423n4/2022-05-aura-findings/issues/197#issuecomment-1179587719
https://github.com/code-423n4/2022-05-aura#repo
https://github.com/code-423n4/2022-05-aura-findings/issues/197#issuecomment-1180927499
https://github.com/code-423n4/2022-05-aura-findings/issues/197

Submitted by cccz

Same as IDX-003 in https://public-

stg.inspex.co/report/Inspex_AUDIT2021024_LuckyLion_Farm_FullReport_v2.0.p

df

The totalAllocPoint variable is used to determine the portion that each pool would

get from the total reward, so it is one of the main factors used in the rewards

calculation. Therefore, whenever the totalAllocPoint variable is modified without

updating the pending reward first, the reward of each pool will be incorrectly

calculated.

For example, when _withUpdate is false, in the add() shown below, the

totalAllocPoint variable will be modified without updating the rewards

(massUpdatePools()).

[M-21] ConvexMasterChef : When using add() and set() , it
should always call massUpdatePools() to update all pools

 function add(
 uint256 _allocPoint,
 IERC20 _lpToken,
 IRewarder _rewarder,
 bool _withUpdate
) public onlyOwner {
 if (_withUpdate) {
 massUpdatePools();
 }
 uint256 lastRewardBlock = block.number > startBlock
 ? block.number
 : startBlock;
 totalAllocPoint = totalAllocPoint.add(_allocPoint);
 poolInfo.push(
 PoolInfo({
 lpToken: _lpToken,
 allocPoint: _allocPoint,
 lastRewardBlock: lastRewardBlock,
 accCvxPerShare: 0,
 rewarder: _rewarder
 })
);

https://public-stg.inspex.co/report/Inspex_AUDIT2021024_LuckyLion_Farm_FullReport_v2.0.pdf
https://github.com/code-423n4/2022-05-aura-findings/issues/147

ConvexMasterChef.sol#L96-L138

Removing the _withUpdate variable in the add() and set() functions and always

calling the massUpdatePools() function before updating totalAllocPoint variable.

0xMaharishi (Aura Finance) confirmed and commented:

We didn’t change this from the Convex implementation. I believe it is there to

protect the contract from bricking in case there are too many pools added. The

choice here is between giving admin the ability to brick, and giving admin the

responsibility of adding the correct alloc points. I think we should remove as

advised, because we are only likely to have a few pools.

0xMaharishi (Aura Finance) resolved:

code4rena aurafinance/aura-contracts#84

All code4rena fixes code-423n4/2022-05-aura#6

Submitted by csanuragjain, also found by cccz

ConvexMasterChef.sol#L96

It was observed that add function is not checking for duplicate lpToken which allows

2 or more pools to have exact same lpToken. This can cause issue with reward

distribution

In case of duplicate lpToken, lpSupply will become incorrect

(ConvexMasterChef.sol#L160), hence rewards will be calculated incorrectly

 }

Proof of Concept

Recommended Mitigation Steps

[M-22] Duplicate LP token could lead to incorrect reward
distribution

https://github.com/code-423n4/2022-05-aura/blob/4989a2077546a5394e3650bf3c224669a0f7e690/convex-platform/contracts/contracts/ConvexMasterChef.sol#L96-L138
https://github.com/code-423n4/2022-05-aura-findings/issues/147#issuecomment-1138626980
https://github.com/code-423n4/2022-05-aura-findings/issues/147
https://github.com/aurafinance/aura-contracts/pull/84
https://github.com/code-423n4/2022-05-aura/pull/6
https://github.com/code-423n4/2022-05-aura/blob/main/convex-platform/contracts/contracts/ConvexMasterChef.sol#L96
https://github.com/code-423n4/2022-05-aura-findings/issues/124

�. Owner call add function and uses lpToken as A

�. Owner again call add function and mistakenly provides lpToken as A

�. Now 2 pools will be created with lpToken as A

�. This becomes a problem while reward calculation or updatePool function which

uses pool.lpToken.balanceOf(address(this)). Since both pool have same lpToken

so lpSupply will be calculated as same which is wrong. Since lpSupply defines

the rewardRate so this directly impact reward calculation

Add a global variable keeping track of all lpToken added for pool. In case of

duplicate lpToken add function should fail.

0xMaharishi (Aura Finance) acknowledged, but disagreed with severity and

commented:

Given the result of this would be a net negative to everyone (due to overall increased

lp token supply) there doesn’t seem to be any incentive for anyone to do this.

Considering that the owner is a distributed 4 of 7 multisig, i think it is an acceptable

scenario.

LSDan (judge) commented:

I’m going to let this one stand. Multisigs make mistakes and it would be trivial to

prevent this one.

For this contest, 76 reports were submitted by wardens detailing low risk and non-

critical issues. The report highlighted below by IllIllI received the top score from the

judge.

The following wardens also submitted reports: MaratCerby, reassor,

BowTiedWardens, TerrierLover, SmartSek, 0x4non, 0xNazgul, hyh, robee, tintin,

catchup, defsec, Hawkeye, joestakey, _Adam, 0x1f8b, fatherOfBlocks, Funen,

berndartmueller, cryptphi, hansfriese, kenta, Nethermind, PPrieditis,

Proof of Concept

Recommended Mitigation Steps

Low Risk and Non-Critical Issues

https://github.com/code-423n4/2022-05-aura-findings/issues/124#issuecomment-1138394820
https://github.com/code-423n4/2022-05-aura-findings/issues/124#issuecomment-1163802748
https://github.com/code-423n4/2022-05-aura-findings/issues/173
https://github.com/code-423n4/2022-05-aura-findings/issues/17
https://github.com/code-423n4/2022-05-aura-findings/issues/295
https://github.com/code-423n4/2022-05-aura-findings/issues/337
https://github.com/code-423n4/2022-05-aura-findings/issues/249
https://github.com/code-423n4/2022-05-aura-findings/issues/246
https://github.com/code-423n4/2022-05-aura-findings/issues/25
https://github.com/code-423n4/2022-05-aura-findings/issues/28
https://github.com/code-423n4/2022-05-aura-findings/issues/362
https://github.com/code-423n4/2022-05-aura-findings/issues/45
https://github.com/code-423n4/2022-05-aura-findings/issues/194
https://github.com/code-423n4/2022-05-aura-findings/issues/203
https://github.com/code-423n4/2022-05-aura-findings/issues/291
https://github.com/code-423n4/2022-05-aura-findings/issues/287
https://github.com/code-423n4/2022-05-aura-findings/issues/153
https://github.com/code-423n4/2022-05-aura-findings/issues/207
https://github.com/code-423n4/2022-05-aura-findings/issues/83
https://github.com/code-423n4/2022-05-aura-findings/issues/150
https://github.com/code-423n4/2022-05-aura-findings/issues/304
https://github.com/code-423n4/2022-05-aura-findings/issues/308
https://github.com/code-423n4/2022-05-aura-findings/issues/269
https://github.com/code-423n4/2022-05-aura-findings/issues/218
https://github.com/code-423n4/2022-05-aura-findings/issues/326
https://github.com/code-423n4/2022-05-aura-findings/issues/254
https://github.com/code-423n4/2022-05-aura-findings/issues/235

QuantumBrief, Rolezn, sorrynotsorry, 0xf15ers, bobirichman, BouSalman, c3phas,

cccz, cthulhu_cult, FSchmoede, Kaiziron, kenzo, mics, MiloTruck, p_crypt0,

Ruhum, sseefried, Tadashi, unforgiven, WatchPug, 0xkatana, CertoraInc,

csanuragjain, delfin454000, ellahi, GimelSec, JC, Kthere, sashik_eth, sikorico,

simon135, Waze, oyc_109, 242, 0xNineDec, AlleyCat, asutorufos,

ch13fd357r0y3r, Chom, jayjonah8, JDeryl, kirk-baird, NoamYakov, sach1r0,

samruna, SooYa, z3s, hubble, Cityscape, Kumpa, and zmj.

Issue Instances

L-01 Wrong amounts sent if arrays don’t match 1

L-
02

Incorrect/misleading NatSpec 1

L-
03

Function reverts if called a second time 1

L-
04

pragma experimental ABIEncoderV2 is deprecated 1

L-
05

safeApprove() is deprecated 36

L-
06

Missing checks for address(0x0) when assigning values to address state

variables

103

Total: 143 instances over 6 issues

Issue Instances

N‑01 Unused file 1

N‑02 Call For / From variants instead of copying an pasting code 1

N‑03 Remove tautological code 1

N‑04 Adding a return statement when the function defines a named return

variable, is redundant

3

N‑05 override function arguments that are unused should have the variable

name removed or commented out to avoid compiler warnings

1

Summary

Low Risk Issues

Non-critical Issues

https://github.com/code-423n4/2022-05-aura-findings/issues/282
https://github.com/code-423n4/2022-05-aura-findings/issues/213
https://github.com/code-423n4/2022-05-aura-findings/issues/310
https://github.com/code-423n4/2022-05-aura-findings/issues/329
https://github.com/code-423n4/2022-05-aura-findings/issues/43
https://github.com/code-423n4/2022-05-aura-findings/issues/92
https://github.com/code-423n4/2022-05-aura-findings/issues/161
https://github.com/code-423n4/2022-05-aura-findings/issues/154
https://github.com/code-423n4/2022-05-aura-findings/issues/306
https://github.com/code-423n4/2022-05-aura-findings/issues/130
https://github.com/code-423n4/2022-05-aura-findings/issues/206
https://github.com/code-423n4/2022-05-aura-findings/issues/275
https://github.com/code-423n4/2022-05-aura-findings/issues/39
https://github.com/code-423n4/2022-05-aura-findings/issues/159
https://github.com/code-423n4/2022-05-aura-findings/issues/172
https://github.com/code-423n4/2022-05-aura-findings/issues/183
https://github.com/code-423n4/2022-05-aura-findings/issues/268
https://github.com/code-423n4/2022-05-aura-findings/issues/252
https://github.com/code-423n4/2022-05-aura-findings/issues/294
https://github.com/code-423n4/2022-05-aura-findings/issues/348
https://github.com/code-423n4/2022-05-aura-findings/issues/192
https://github.com/code-423n4/2022-05-aura-findings/issues/300
https://github.com/code-423n4/2022-05-aura-findings/issues/47
https://github.com/code-423n4/2022-05-aura-findings/issues/271
https://github.com/code-423n4/2022-05-aura-findings/issues/274
https://github.com/code-423n4/2022-05-aura-findings/issues/226
https://github.com/code-423n4/2022-05-aura-findings/issues/355
https://github.com/code-423n4/2022-05-aura-findings/issues/187
https://github.com/code-423n4/2022-05-aura-findings/issues/323
https://github.com/code-423n4/2022-05-aura-findings/issues/41
https://github.com/code-423n4/2022-05-aura-findings/issues/259
https://github.com/code-423n4/2022-05-aura-findings/issues/215
https://github.com/code-423n4/2022-05-aura-findings/issues/100
https://github.com/code-423n4/2022-05-aura-findings/issues/298
https://github.com/code-423n4/2022-05-aura-findings/issues/217
https://github.com/code-423n4/2022-05-aura-findings/issues/12
https://github.com/code-423n4/2022-05-aura-findings/issues/169
https://github.com/code-423n4/2022-05-aura-findings/issues/5
https://github.com/code-423n4/2022-05-aura-findings/issues/230
https://github.com/code-423n4/2022-05-aura-findings/issues/35
https://github.com/code-423n4/2022-05-aura-findings/issues/66
https://github.com/code-423n4/2022-05-aura-findings/issues/265
https://github.com/code-423n4/2022-05-aura-findings/issues/257
https://github.com/code-423n4/2022-05-aura-findings/issues/140
https://github.com/code-423n4/2022-05-aura-findings/issues/59
https://github.com/code-423n4/2022-05-aura-findings/issues/10
https://github.com/code-423n4/2022-05-aura-findings/issues/312
https://github.com/code-423n4/2022-05-aura-findings/issues/361
https://github.com/code-423n4/2022-05-aura-findings/issues/276
https://github.com/code-423n4/2022-05-aura-findings/issues/279
https://github.com/code-423n4/2022-05-aura-findings/issues/114

Issue Instances

N‑06 public functions not called by the contract should be declared external

instead

18

N‑07 type(uint<n>).max should be used instead of uint<n>(-1) 8

N‑08 constant s should be defined rather than using magic numbers 47

N‑09 Redundant cast 2

N-10 Numeric values having to do with time should use time units for readability 4

N-11 Missing event for critical parameter change 24

N-12 Use a more recent version of solidity 1

N-13 Use a more recent version of solidity 26

N-14 Use a more recent version of solidity 1

N-15 Constant redefined elsewhere 38

N-16 Inconsistent spacing in comments 80

N-17 Non-library/interface files should use fixed compiler versions, not floating
ones

12

N-18 Typos 29

N-19 File is missing NatSpec 6

N-20 NatSpec is incomplete 21

N‑21 Event is missing indexed fields 66

Total: 390 instances over 21 issues

The caller may make a copy-paste error where they provide all amounts, but miss

one of the recipients in the middle of the list they’re copying. This will cause all

recipients a�er that mistake to get the wrong amounts, and the function will not

revert

There is 1 instance of this issue:

[L-01] Wrong amounts sent if arrays don’t match

File: contracts/AuraVestedEscrow.sol #1

https://github.com/code-423n4/2022-05-

aura/blob/4989a2077546a5394e3650bf3c224669a0f7e690/contracts/AuraVest

edEscrow.sol#L96

The function retrieves the number of votes at the end of an epoch, not at the end of

a block. Furthermore, blockNumber is not an actual variable name

There is 1 instance of this issue:

https://github.com/code-423n4/2022-05-

aura/blob/4989a2077546a5394e3650bf3c224669a0f7e690/contracts/AuraLock

er.sol#L595

safeApprove() reverts if called a second time without fist calling safeApprove(0)

There is 1 instance of this issue:

96: function fund(address[] calldata _recipient, uint256[] callda

[L-02] Incorrect/misleading NatSpec

File: contracts/AuraLocker.sol #1

595: * @dev Retrieve the number of votes for `account` at the end

[L-03] Function reverts if called a second time

File: contracts/CrvDepositorWrapper.sol #1

/// @audit `setApprovals()` is an external function that calls this fu
51 function _setApprovals() internal {
52 IERC20(WETH).safeApprove(address(BALANCER_VAULT), type(u
53 IERC20(BAL).safeApprove(address(BALANCER_VAULT), type(ui
54: }

https://github.com/code-423n4/2022-05-aura/blob/4989a2077546a5394e3650bf3c224669a0f7e690/contracts/AuraVestedEscrow.sol#L96
https://github.com/code-423n4/2022-05-aura/blob/4989a2077546a5394e3650bf3c224669a0f7e690/contracts/AuraLocker.sol#L595

https://github.com/code-423n4/2022-05-

aura/blob/4989a2077546a5394e3650bf3c224669a0f7e690/contracts/CrvDepo

sitorWrapper.sol#L51-L54

Use pragma abicoder v2 instead

There is 1 instance of this issue:

https://github.com/code-423n4/2022-05-

aura/blob/4989a2077546a5394e3650bf3c224669a0f7e690/contracts/AuraLock

er.sol#L3

Deprecated in favor of safeIncreaseAllowance() and safeDecreaseAllowance() . If

only setting the initial allowance to the value that means infinite,

safeIncreaseAllowance() can be used instead

There are 36 instances of this issue. For details, see the warden’s full report.

There are 103 instances of this issue. For details, see the warden’s full report.

The file is never imported by any other file

There is 1 instance of this issue:

[L-04] pragma experimental ABIEncoderV2 is deprecated

File: contracts/AuraLocker.sol #1

3: pragma experimental ABIEncoderV2;

[L-05] safeApprove() is deprecated

[L-06] Missing checks for address(0x0) when assigning
values to address state variables

[N-01] Unused file

File: convex-platform/contracts/contracts/interfaces/BoringMath.sol

https://github.com/code-423n4/2022-05-aura/blob/4989a2077546a5394e3650bf3c224669a0f7e690/contracts/CrvDepositorWrapper.sol#L51-L54
https://github.com/ethereum/solidity/blob/69411436139acf5dbcfc5828446f18b9fcfee32c/docs/080-breaking-changes.rst#silent-changes-of-the-semantics
https://github.com/code-423n4/2022-05-aura/blob/4989a2077546a5394e3650bf3c224669a0f7e690/contracts/AuraLocker.sol#L3
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/bfff03c0d2a59bcd8e2ead1da9aed9edf0080d05/contracts/token/ERC20/utils/SafeERC20.sol#L38-L45
https://github.com/code-423n4/2022-05-aura-findings/issues/173
https://github.com/code-423n4/2022-05-aura-findings/issues/173

https://github.com/code-423n4/2022-05-

aura/blob/4989a2077546a5394e3650bf3c224669a0f7e690/convex-

platform/contracts/contracts/interfaces/BoringMath.sol#L0

Duplicating code can lead to errors when a change is made to only one of the

locations

There is 1 instance of this issue:

https://github.com/code-423n4/2022-05-

aura/blob/4989a2077546a5394e3650bf3c224669a0f7e690/contracts/AuraBalR

ewardPool.sol#L120-L130

There is 1 instance of this issue:

0: // SPDX-License-Identifier: MIT

[N-02] Call For / From variants instead of copying an pasting
code

File: contracts/AuraBalRewardPool.sol #1

/// @audit This function should call `stakeFor(msg.sender, _amount)` i
120 function stake(uint256 _amount) public updateReward(msg.sende
121 require(_amount > 0, "RewardPool : Cannot stake 0");
122
123 _totalSupply = _totalSupply.add(_amount);
124 _balances[msg.sender] = _balances[msg.sender].add(_amount
125
126 stakingToken.safeTransferFrom(msg.sender, address(this),
127 emit Staked(msg.sender, _amount);
128
129 return true;
130: }

[N-03] Remove tautological code

https://github.com/code-423n4/2022-05-aura/blob/4989a2077546a5394e3650bf3c224669a0f7e690/convex-platform/contracts/contracts/interfaces/BoringMath.sol#L0
https://github.com/code-423n4/2022-05-aura/blob/4989a2077546a5394e3650bf3c224669a0f7e690/contracts/AuraBalRewardPool.sol#L120-L130

https://github.com/code-423n4/2022-05-

aura/blob/4989a2077546a5394e3650bf3c224669a0f7e690/convex-

platform/contracts/contracts/CrvDepositor.sol#L75

There are 3 instances of this issue:

https://github.com/code-423n4/2022-05-

aura/blob/4989a2077546a5394e3650bf3c224669a0f7e690/contracts/AuraLock

er.sol#L678

https://github.com/code-423n4/2022-05-

aura/blob/4989a2077546a5394e3650bf3c224669a0f7e690/contracts/AuraLock

er.sol#L778

File: convex-platform/contracts/contracts/CrvDepositor.sol #1

/// @audit `_lockIncentive` is always greater than or equal to zero,
75: if(_lockIncentive >= 0 && _lockIncentive <= 30){

[N-04] Adding a return statement when the function
defines a named return variable, is redundant

File: contracts/AuraLocker.sol #1

678: return amount;

File: contracts/AuraLocker.sol #2

778: return userRewards;

File: convex-platform/contracts/contracts/VoterProxy.sol #3

196: return balance;

https://github.com/code-423n4/2022-05-aura/blob/4989a2077546a5394e3650bf3c224669a0f7e690/convex-platform/contracts/contracts/CrvDepositor.sol#L75
https://github.com/code-423n4/2022-05-aura/blob/4989a2077546a5394e3650bf3c224669a0f7e690/contracts/AuraLocker.sol#L678
https://github.com/code-423n4/2022-05-aura/blob/4989a2077546a5394e3650bf3c224669a0f7e690/contracts/AuraLocker.sol#L778

https://github.com/code-423n4/2022-05-

aura/blob/4989a2077546a5394e3650bf3c224669a0f7e690/convex-

platform/contracts/contracts/VoterProxy.sol#L196

There is 1 instance of this issue:

https://github.com/code-423n4/2022-05-

aura/blob/4989a2077546a5394e3650bf3c224669a0f7e690/convex-

platform/contracts/contracts/BaseRewardPool4626.sol#L134

Contracts are allowed to override their parents’ functions and change the visibility

from external to public .

There are 18 instances of this issue. For details, see the warden’s full report.

There are 8 instances of this issue:

[N-05] override function arguments that are unused should
have the variable name removed or commented out to avoid
compiler warnings

File: convex-platform/contracts/contracts/BaseRewardPool4626.sol #1

134: function maxDeposit(address owner) public view virtual over

[N-06] public functions not called by the contract should be
declared external instead

[N-07] type(uint<n>).max should be used instead of uint<n>
(-1)

File: convex-platform/contracts/contracts/interfaces/BoringMath.sol

25: require(a <= uint128(-1), "BoringMath: uint128 Overflow

30: require(a <= uint64(-1), "BoringMath: uint64 Overflow")

35: require(a <= uint32(-1), "BoringMath: uint32 Overflow")

https://github.com/code-423n4/2022-05-aura/blob/4989a2077546a5394e3650bf3c224669a0f7e690/convex-platform/contracts/contracts/VoterProxy.sol#L196
https://github.com/code-423n4/2022-05-aura/blob/4989a2077546a5394e3650bf3c224669a0f7e690/convex-platform/contracts/contracts/BaseRewardPool4626.sol#L134
https://docs.soliditylang.org/en/latest/contracts.html#function-overriding
https://github.com/code-423n4/2022-05-aura-findings/issues/173

https://github.com/code-423n4/2022-05-

aura/blob/4989a2077546a5394e3650bf3c224669a0f7e690/convex-

platform/contracts/contracts/interfaces/BoringMath.sol#L25

There are 47 instances of this issue. For details, see the warden’s full report.

The type of the variable is the same as the type to which the variable is being cast

There are 2 instances of this issue:

https://github.com/code-423n4/2022-05-

aura/blob/4989a2077546a5394e3650bf3c224669a0f7e690/contracts/AuraLock

er.sol#L654

40: require(a <= uint40(-1), "BoringMath: uint40 Overflow")

45: require(a <= uint112(-1), "BoringMath: uint112 Overflow

50: require(a <= uint224(-1), "BoringMath: uint224 Overflow

55: require(a <= uint208(-1), "BoringMath: uint208 Overflow

60: require(a <= uint216(-1), "BoringMath: uint216 Overflow

[N-08] constant s should be defined rather than using magic
numbers

[N-09] Redundant cast

File: contracts/AuraLocker.sol #1

/// @audit uint256(_epoch)
654: uint256 epochStart = uint256(epochs[0].date).add(uint256

File: contracts/AuraLocker.sol #2

/// @audit uint256(_epoch)

https://github.com/code-423n4/2022-05-aura/blob/4989a2077546a5394e3650bf3c224669a0f7e690/convex-platform/contracts/contracts/interfaces/BoringMath.sol#L25
https://github.com/code-423n4/2022-05-aura-findings/issues/173
https://github.com/code-423n4/2022-05-aura/blob/4989a2077546a5394e3650bf3c224669a0f7e690/contracts/AuraLocker.sol#L654

https://github.com/code-423n4/2022-05-

aura/blob/4989a2077546a5394e3650bf3c224669a0f7e690/contracts/AuraLock

er.sol#L718

There are units for seconds, minutes, hours, days, and weeks

There are 4 instances of this issue:

https://github.com/code-423n4/2022-05-

aura/blob/4989a2077546a5394e3650bf3c224669a0f7e690/contracts/AuraLock

er.sol#L81

https://github.com/code-423n4/2022-05-

aura/blob/4989a2077546a5394e3650bf3c224669a0f7e690/contracts/CrvDepo

sitorWrapper.sol#L60

718: uint256 epochStart = uint256(epochs[0].date).add(uint256

[N-10] Numeric values having to do with time should use time
units for readability

File: contracts/AuraLocker.sol #1

/// @audit 86400
81: uint256 public constant rewardsDuration = 86400 * 7;

File: contracts/CrvDepositorWrapper.sol #2

/// @audit 3600
60: queries[0].secs = 3600; // last hour

File: convex-platform/contracts/contracts/CrvDepositor.sol #3

/// @audit 86400
26: uint256 private constant MAXTIME = 1 * 364 * 86400;

https://github.com/code-423n4/2022-05-aura/blob/4989a2077546a5394e3650bf3c224669a0f7e690/contracts/AuraLocker.sol#L718
https://docs.soliditylang.org/en/latest/units-and-global-variables.html#time-units
https://github.com/code-423n4/2022-05-aura/blob/4989a2077546a5394e3650bf3c224669a0f7e690/contracts/AuraLocker.sol#L81
https://github.com/code-423n4/2022-05-aura/blob/4989a2077546a5394e3650bf3c224669a0f7e690/contracts/CrvDepositorWrapper.sol#L60

https://github.com/code-423n4/2022-05-

aura/blob/4989a2077546a5394e3650bf3c224669a0f7e690/convex-

platform/contracts/contracts/CrvDepositor.sol#L26

https://github.com/code-423n4/2022-05-

aura/blob/4989a2077546a5394e3650bf3c224669a0f7e690/convex-

platform/contracts/contracts/CrvDepositor.sol#L27

There are 24 instances of this issue. For details, see the warden’s full report.

Use a solidity version of at least 0.8.12 to get string.concat() to be used instead of

abi.encodePacked(<str>,<str>)

There is 1 instance of this issue:

https://github.com/code-423n4/2022-05-

aura/blob/4989a2077546a5394e3650bf3c224669a0f7e690/contracts/AuraMer

kleDrop.sol#L2

Use a solidity version of at least 0.8.13 to get the ability to use using for with a list

of free functions

There are 26 instances of this issue. For details, see the warden’s full report.

File: convex-platform/contracts/contracts/CrvDepositor.sol #4

/// @audit 86400
27: uint256 private constant WEEK = 7 * 86400;

[N-11] Missing event for critical parameter change

[N-12] Use a more recent version of solidity

File: contracts/AuraMerkleDrop.sol #1

2: pragma solidity ^0.8.11;

[N-13] Use a more recent version of solidity

https://github.com/code-423n4/2022-05-aura/blob/4989a2077546a5394e3650bf3c224669a0f7e690/convex-platform/contracts/contracts/CrvDepositor.sol#L26
https://github.com/code-423n4/2022-05-aura/blob/4989a2077546a5394e3650bf3c224669a0f7e690/convex-platform/contracts/contracts/CrvDepositor.sol#L27
https://github.com/code-423n4/2022-05-aura-findings/issues/173
https://github.com/code-423n4/2022-05-aura/blob/4989a2077546a5394e3650bf3c224669a0f7e690/contracts/AuraMerkleDrop.sol#L2
https://github.com/code-423n4/2022-05-aura-findings/issues/173

Use a solidity version of at least 0.8.4 to get bytes.concat() instead of

abi.encodePacked(<bytes>,<bytes>) Use a solidity version of at least 0.8.12 to get

string.concat() instead of abi.encodePacked(<str>,<str>)

There is 1 instance of this issue:

https://github.com/code-423n4/2022-05-

aura/blob/4989a2077546a5394e3650bf3c224669a0f7e690/convex-

platform/contracts/contracts/DepositToken.sol#L2

Consider defining in only one contract so that values cannot become out of sync

when only one location is updated. A cheap way to store constants in a single

location is to create an internal constant in a library . If the variable is a local

cache of another contract’s value, consider making the cache variable internal or

private, which will require external users to query the contract with the source of

truth, so that callers don’t get out of sync.

There are 38 instances of this issue. For details, see the warden’s full report.

Some lines use // x and some use //x . The instances below point out the usages

that don’t follow the majority, within each file

There are 80 instances of this issue. For details, see the warden’s full report.

There are 12 instances of this issue:

[N-14] Use a more recent version of solidity

File: convex-platform/contracts/contracts/DepositToken.sol #1

2: pragma solidity 0.6.12;

[N-15] Constant redefined elsewhere

[N-16] Inconsistent spacing in comments

[N-17] Non-library/interface files should use fixed compiler
versions, not floating ones

https://github.com/code-423n4/2022-05-aura/blob/4989a2077546a5394e3650bf3c224669a0f7e690/convex-platform/contracts/contracts/DepositToken.sol#L2
https://medium.com/coinmonks/gas-cost-of-solidity-library-functions-dbe0cedd4678
https://github.com/code-423n4/2022-05-aura-findings/issues/173
https://github.com/code-423n4/2022-05-aura-findings/issues/173

https://github.com/code-423n4/2022-05-

aura/blob/4989a2077546a5394e3650bf3c224669a0f7e690/contracts/AuraClai

mZap.sol#L2

https://github.com/code-423n4/2022-05-

aura/blob/4989a2077546a5394e3650bf3c224669a0f7e690/contracts/AuraMint

er.sol#L2

https://github.com/code-423n4/2022-05-

aura/blob/4989a2077546a5394e3650bf3c224669a0f7e690/contracts/ExtraRew

ardsDistributor.sol#L2

https://github.com/code-423n4/2022-05-

aura/blob/4989a2077546a5394e3650bf3c224669a0f7e690/contracts/AuraMer

kleDrop.sol#L2

File: contracts/AuraClaimZap.sol

2: pragma solidity ^0.8.11;

File: contracts/AuraMinter.sol

2: pragma solidity ^0.8.11;

File: contracts/ExtraRewardsDistributor.sol

2: pragma solidity ^0.8.11;

File: contracts/AuraMerkleDrop.sol

2: pragma solidity ^0.8.11;

File: contracts/AuraPenaltyForwarder.sol

https://github.com/code-423n4/2022-05-aura/blob/4989a2077546a5394e3650bf3c224669a0f7e690/contracts/AuraClaimZap.sol#L2
https://github.com/code-423n4/2022-05-aura/blob/4989a2077546a5394e3650bf3c224669a0f7e690/contracts/AuraMinter.sol#L2
https://github.com/code-423n4/2022-05-aura/blob/4989a2077546a5394e3650bf3c224669a0f7e690/contracts/ExtraRewardsDistributor.sol#L2
https://github.com/code-423n4/2022-05-aura/blob/4989a2077546a5394e3650bf3c224669a0f7e690/contracts/AuraMerkleDrop.sol#L2

https://github.com/code-423n4/2022-05-

aura/blob/4989a2077546a5394e3650bf3c224669a0f7e690/contracts/AuraPena

ltyForwarder.sol#L2

https://github.com/code-423n4/2022-05-

aura/blob/4989a2077546a5394e3650bf3c224669a0f7e690/contracts/AuraBalR

ewardPool.sol#L2

https://github.com/code-423n4/2022-05-

aura/blob/4989a2077546a5394e3650bf3c224669a0f7e690/contracts/AuraLock

er.sol#L2

https://github.com/code-423n4/2022-05-

aura/blob/4989a2077546a5394e3650bf3c224669a0f7e690/contracts/ClaimFee

sHelper.sol#L2

2: pragma solidity ^0.8.11;

File: contracts/AuraBalRewardPool.sol

2: pragma solidity ^0.8.11;

File: contracts/AuraLocker.sol

2: pragma solidity ^0.8.11;

File: contracts/ClaimFeesHelper.sol

2: pragma solidity ^0.8.11;

File: contracts/Aura.sol

https://github.com/code-423n4/2022-05-aura/blob/4989a2077546a5394e3650bf3c224669a0f7e690/contracts/AuraPenaltyForwarder.sol#L2
https://github.com/code-423n4/2022-05-aura/blob/4989a2077546a5394e3650bf3c224669a0f7e690/contracts/AuraBalRewardPool.sol#L2
https://github.com/code-423n4/2022-05-aura/blob/4989a2077546a5394e3650bf3c224669a0f7e690/contracts/AuraLocker.sol#L2
https://github.com/code-423n4/2022-05-aura/blob/4989a2077546a5394e3650bf3c224669a0f7e690/contracts/ClaimFeesHelper.sol#L2

https://github.com/code-423n4/2022-05-

aura/blob/4989a2077546a5394e3650bf3c224669a0f7e690/contracts/Aura.sol#

L2

https://github.com/code-423n4/2022-05-

aura/blob/4989a2077546a5394e3650bf3c224669a0f7e690/contracts/AuraStaki

ngProxy.sol#L2

https://github.com/code-423n4/2022-05-

aura/blob/4989a2077546a5394e3650bf3c224669a0f7e690/contracts/AuraVest

edEscrow.sol#L2

https://github.com/code-423n4/2022-05-

aura/blob/4989a2077546a5394e3650bf3c224669a0f7e690/contracts/BalLiquid

ityProvider.sol#L2

There are 29 instances of this issue. For details, see the warden’s full report.

2: pragma solidity ^0.8.11;

File: contracts/AuraStakingProxy.sol

2: pragma solidity ^0.8.11;

File: contracts/AuraVestedEscrow.sol

2: pragma solidity ^0.8.11;

File: contracts/BalLiquidityProvider.sol

2: pragma solidity ^0.8.11;

[N-18] Typos

[N-19] File is missing NatSpec

https://github.com/code-423n4/2022-05-aura/blob/4989a2077546a5394e3650bf3c224669a0f7e690/contracts/Aura.sol#L2
https://github.com/code-423n4/2022-05-aura/blob/4989a2077546a5394e3650bf3c224669a0f7e690/contracts/AuraStakingProxy.sol#L2
https://github.com/code-423n4/2022-05-aura/blob/4989a2077546a5394e3650bf3c224669a0f7e690/contracts/AuraVestedEscrow.sol#L2
https://github.com/code-423n4/2022-05-aura/blob/4989a2077546a5394e3650bf3c224669a0f7e690/contracts/BalLiquidityProvider.sol#L2
https://github.com/code-423n4/2022-05-aura-findings/issues/173

There are 6 instances of this issue:

https://github.com/code-423n4/2022-05-

aura/blob/4989a2077546a5394e3650bf3c224669a0f7e690/contracts/Interface

s.sol

https://github.com/code-423n4/2022-05-

aura/blob/4989a2077546a5394e3650bf3c224669a0f7e690/convex-

platform/contracts/contracts/Interfaces.sol

https://github.com/code-423n4/2022-05-

aura/blob/4989a2077546a5394e3650bf3c224669a0f7e690/convex-

platform/contracts/contracts/interfaces/IGaugeController.sol

https://github.com/code-423n4/2022-05-

aura/blob/4989a2077546a5394e3650bf3c224669a0f7e690/convex-

platform/contracts/contracts/interfaces/IProxyFactory.sol

https://github.com/code-423n4/2022-05-

aura/blob/4989a2077546a5394e3650bf3c224669a0f7e690/convex-

File: contracts/Interfaces.sol

File: convex-platform/contracts/contracts/Interfaces.sol

File: convex-platform/contracts/contracts/interfaces/IGaugeController

File: convex-platform/contracts/contracts/interfaces/IProxyFactory.so

File: convex-platform/contracts/contracts/interfaces/IRewardHook.sol

https://github.com/code-423n4/2022-05-aura/blob/4989a2077546a5394e3650bf3c224669a0f7e690/contracts/Interfaces.sol
https://github.com/code-423n4/2022-05-aura/blob/4989a2077546a5394e3650bf3c224669a0f7e690/convex-platform/contracts/contracts/Interfaces.sol
https://github.com/code-423n4/2022-05-aura/blob/4989a2077546a5394e3650bf3c224669a0f7e690/convex-platform/contracts/contracts/interfaces/IGaugeController.sol
https://github.com/code-423n4/2022-05-aura/blob/4989a2077546a5394e3650bf3c224669a0f7e690/convex-platform/contracts/contracts/interfaces/IProxyFactory.sol
https://github.com/code-423n4/2022-05-aura/blob/4989a2077546a5394e3650bf3c224669a0f7e690/convex-platform/contracts/contracts/interfaces/IRewardHook.sol

platform/contracts/contracts/interfaces/IRewardHook.sol

https://github.com/code-423n4/2022-05-

aura/blob/4989a2077546a5394e3650bf3c224669a0f7e690/convex-

platform/contracts/contracts/interfaces/IRewarder.sol

There are 21 instances of this issue. For details, see the warden’s full report.

Each event should use three indexed fields if there are three or more fields

There are 66 instances of this issue. For details, see the warden’s full report.

0xMaharishi (Aura Finance) acknowledged

For this contest, 66 reports were submitted by wardens detailing gas optimizations.

The report highlighted below by IllIllI received the top score from the judge.

The following wardens also submitted reports: BowTiedWardens, 0xkatana, Tomio,

TerrierLover, defsec, 0xKitsune, c3phas, joestakey, catchup, CertoraInc,

hansfriese, kenta, MaratCerby, MiloTruck, robee, sashik_eth, UnusualTurtle,

_Adam, 0xf15ers, 0xNazgul, delfin454000, fatherOfBlocks, Kaiziron, simon135,

WatchPug, Waze, 0x1f8b, 0x4non, ellahi, reassor, rfa, 0v3rf10w, asutorufos,

DavidGialdi, mics, oyc_109, sach1r0, Fitraldys, FSchmoede, Funen, Hawkeye,

NoamYakov, Randyyy, samruna, sikorico, antonttc, bobirichman, csanuragjain,

cthulhu_cult, GimelSec, hyh, minhquanym, QuantumBrief, SmartSek, SooYa,

unforgiven, z3s, jayjonah8, JC, Kthere, marcopaladin, orion, Ruhum, Tadashi, and

zmj.

File: convex-platform/contracts/contracts/interfaces/IRewarder.sol

[N-20] NatSpec is incomplete

[N-21] Event is missing indexed fields

Gas Optimizations

https://github.com/code-423n4/2022-05-aura/blob/4989a2077546a5394e3650bf3c224669a0f7e690/convex-platform/contracts/contracts/interfaces/IRewardHook.sol
https://github.com/code-423n4/2022-05-aura/blob/4989a2077546a5394e3650bf3c224669a0f7e690/convex-platform/contracts/contracts/interfaces/IRewarder.sol
https://github.com/code-423n4/2022-05-aura-findings/issues/173
https://github.com/code-423n4/2022-05-aura-findings/issues/173
https://github.com/code-423n4/2022-05-aura-findings/issues/173
https://github.com/code-423n4/2022-05-aura-findings/issues/33
https://github.com/code-423n4/2022-05-aura-findings/issues/336
https://github.com/code-423n4/2022-05-aura-findings/issues/193
https://github.com/code-423n4/2022-05-aura-findings/issues/359
https://github.com/code-423n4/2022-05-aura-findings/issues/264
https://github.com/code-423n4/2022-05-aura-findings/issues/321
https://github.com/code-423n4/2022-05-aura-findings/issues/167
https://github.com/code-423n4/2022-05-aura-findings/issues/191
https://github.com/code-423n4/2022-05-aura-findings/issues/134
https://github.com/code-423n4/2022-05-aura-findings/issues/204
https://github.com/code-423n4/2022-05-aura-findings/issues/299
https://github.com/code-423n4/2022-05-aura-findings/issues/219
https://github.com/code-423n4/2022-05-aura-findings/issues/325
https://github.com/code-423n4/2022-05-aura-findings/issues/16
https://github.com/code-423n4/2022-05-aura-findings/issues/158
https://github.com/code-423n4/2022-05-aura-findings/issues/44
https://github.com/code-423n4/2022-05-aura-findings/issues/327
https://github.com/code-423n4/2022-05-aura-findings/issues/352
https://github.com/code-423n4/2022-05-aura-findings/issues/208
https://github.com/code-423n4/2022-05-aura-findings/issues/328
https://github.com/code-423n4/2022-05-aura-findings/issues/27
https://github.com/code-423n4/2022-05-aura-findings/issues/270
https://github.com/code-423n4/2022-05-aura-findings/issues/148
https://github.com/code-423n4/2022-05-aura-findings/issues/205
https://github.com/code-423n4/2022-05-aura-findings/issues/260
https://github.com/code-423n4/2022-05-aura-findings/issues/349
https://github.com/code-423n4/2022-05-aura-findings/issues/214
https://github.com/code-423n4/2022-05-aura-findings/issues/82
https://github.com/code-423n4/2022-05-aura-findings/issues/24
https://github.com/code-423n4/2022-05-aura-findings/issues/273
https://github.com/code-423n4/2022-05-aura-findings/issues/297
https://github.com/code-423n4/2022-05-aura-findings/issues/317
https://github.com/code-423n4/2022-05-aura-findings/issues/333
https://github.com/code-423n4/2022-05-aura-findings/issues/170
https://github.com/code-423n4/2022-05-aura-findings/issues/251
https://github.com/code-423n4/2022-05-aura-findings/issues/38
https://github.com/code-423n4/2022-05-aura-findings/issues/99
https://github.com/code-423n4/2022-05-aura-findings/issues/141
https://github.com/code-423n4/2022-05-aura-findings/issues/335
https://github.com/code-423n4/2022-05-aura-findings/issues/131
https://github.com/code-423n4/2022-05-aura-findings/issues/303
https://github.com/code-423n4/2022-05-aura-findings/issues/286
https://github.com/code-423n4/2022-05-aura-findings/issues/255
https://github.com/code-423n4/2022-05-aura-findings/issues/330
https://github.com/code-423n4/2022-05-aura-findings/issues/57
https://github.com/code-423n4/2022-05-aura-findings/issues/40
https://github.com/code-423n4/2022-05-aura-findings/issues/164
https://github.com/code-423n4/2022-05-aura-findings/issues/42
https://github.com/code-423n4/2022-05-aura-findings/issues/129
https://github.com/code-423n4/2022-05-aura-findings/issues/307
https://github.com/code-423n4/2022-05-aura-findings/issues/227
https://github.com/code-423n4/2022-05-aura-findings/issues/174
https://github.com/code-423n4/2022-05-aura-findings/issues/212
https://github.com/code-423n4/2022-05-aura-findings/issues/281
https://github.com/code-423n4/2022-05-aura-findings/issues/247
https://github.com/code-423n4/2022-05-aura-findings/issues/216
https://github.com/code-423n4/2022-05-aura-findings/issues/305
https://github.com/code-423n4/2022-05-aura-findings/issues/311
https://github.com/code-423n4/2022-05-aura-findings/issues/34
https://github.com/code-423n4/2022-05-aura-findings/issues/356
https://github.com/code-423n4/2022-05-aura-findings/issues/95
https://github.com/code-423n4/2022-05-aura-findings/issues/97
https://github.com/code-423n4/2022-05-aura-findings/issues/109
https://github.com/code-423n4/2022-05-aura-findings/issues/184
https://github.com/code-423n4/2022-05-aura-findings/issues/253
https://github.com/code-423n4/2022-05-aura-findings/issues/106

Issue Instances

G‑01 Remove or replace unused state variables 1

G‑02 Multiple address mappings can be combined into a single mapping of an

address to a struct , where appropriate

8

G‑03 State variables only set in the constructor should be declared immutable 6

G‑04 State variables can be packed into fewer storage slots 3

G‑05 Using calldata instead of memory for read-only arguments in external

functions saves gas

6

G‑06 State variables should be cached in stack variables rather than re-reading
them from storage

60

G‑07 <x> += <y> costs more gas than <x> = <x> + <y> for state variables 5

G‑08 internal functions only called once can be inlined to save gas 4

G‑09 <array>.length should not be looked up in every loop of a for -loop 13

G-10 ++i / i++ should be unchecked{++i} / unchecked{i++} when it is not

possible for them to overflow, as is the case when used in for - and

while -loops

13

G-11 require() / revert() strings longer than 32 bytes cost extra gas 1

G-12 keccak256() should only need to be called on a specific string literal once 1

G-13 Not using the named return variables when a function returns, wastes
deployment gas

10

G-14 Using bool s for storage incurs overhead 18

G-15 Use a more recent version of solidity 28

G-16 Using > 0 costs more gas than != 0 when used on a uint in a

require() statement

23

G-17 It costs more gas to initialize variables to zero than to let the default of zero
be applied

26

G-18 ++i costs less gas than i++ , especially when it’s used in for -loops (--

i / i-- too)

24

G-19 Splitting require() statements that use && saves gas 15

G-20 Usage of uints / ints smaller than 32 bytes (256 bits) incurs overhead 99

Summary

Issue Instances

G-21 abi.encode() is less efficient than abi.encodePacked() 2

G-22 Using private rather than public for constants, saves gas 30

G-23 Don’t compare boolean expressions to boolean literals 9

G-24 Don’t use SafeMath once the solidity version is 0.8.0 or greater 2

G-25 Duplicated require() / revert() checks should be refactored to a

modifier or function

32

G-26 Multiplication/division by two should use bit shi�ing 5

G-27 Stack variable used as a cheaper cache for a state variable is only used
once

1

G-28 require() or revert() statements that check input arguments should be

at the top of the function

11

G-29 Empty blocks should be removed or emit something 6

G-
30

Use custom errors rather than revert() / require() strings to save

deployment gas

101

G-31 Functions guaranteed to revert when called by normal users can be
marked payable

37

G-32 public functions not called by the contract should be declared external
instead

18

Total: 618 instances over 32 issues

Saves a storage slot. If the variable is assigned a non-zero value, saves Gsset

(20000 gas). If it’s assigned a zero value, saves Gsreset (2900 gas). If the variable

remains unassigned, there is no gas savings unless the variable is public , in which

case the compiler-generated non-payable getter deployment cost is saved. If the

state variable is overriding an interface’s public function, mark the variable as

constant or immutable so that it does not use a storage slot

There is 1 instance of this issue:

[G-01] Remove or replace unused state variables

File: convex-platform/contracts/contracts/RewardFactory.sol #1

https://github.com/code-423n4/2022-05-

aura/blob/4989a2077546a5394e3650bf3c224669a0f7e690/convex-

platform/contracts/contracts/RewardFactory.sol#L28

Saves a storage slot for the mapping. Depending on the circumstances and sizes of

types, can avoid a Gsset (20000 gas) per mapping combined. Reads and

subsequent writes can also be cheaper when a function requires both values and

they both fit in the same storage slot

There are 8 instances of this issue:

https://github.com/code-423n4/2022-05-

aura/blob/4989a2077546a5394e3650bf3c224669a0f7e690/contracts/ExtraRew

ardsDistributor.sol#L20-L24

28: mapping(address => uint256[]) public rewardActiveList;

[G-02] Multiple address mappings can be combined into a
single mapping of an address to a struct , where
appropriate

File: contracts/ExtraRewardsDistributor.sol

20 mapping(address => mapping(uint256 => uint256)) public rewa
21 // token -> epochList
22 mapping(address => uint256[]) public rewardEpochs;
23 // token -> account -> last claimed epoch index
24: mapping(address => mapping(address => uint256)) public userC

File: contracts/AuraBalRewardPool.sol

44 mapping(address => uint256) public userRewardPerTokenPaid;
45 mapping(address => uint256) public rewards;
46: mapping(address => uint256) private _balances;

https://github.com/code-423n4/2022-05-aura/blob/4989a2077546a5394e3650bf3c224669a0f7e690/convex-platform/contracts/contracts/RewardFactory.sol#L28
https://github.com/code-423n4/2022-05-aura/blob/4989a2077546a5394e3650bf3c224669a0f7e690/contracts/ExtraRewardsDistributor.sol#L20-L24

https://github.com/code-423n4/2022-05-

aura/blob/4989a2077546a5394e3650bf3c224669a0f7e690/contracts/AuraBalR

ewardPool.sol#L44-L46

https://github.com/code-423n4/2022-05-

aura/blob/4989a2077546a5394e3650bf3c224669a0f7e690/contracts/AuraLock

er.sol#L91-L100

https://github.com/code-423n4/2022-05-

aura/blob/4989a2077546a5394e3650bf3c224669a0f7e690/contracts/AuraVest

edEscrow.sol#L35-L36

File: contracts/AuraLocker.sol

91 mapping(address => Balances) public balances;
92 mapping(address => LockedBalance[]) public userLocks;
93
94 // Voting
95 // Stored delegations
96 mapping(address => address) private _delegates;
97 // Checkpointed votes
98 mapping(address => DelegateeCheckpoint[]) private _checkpoi
99 // Delegatee balances (user -> unlock timestamp -> amoun
100: mapping(address => mapping(uint256 => uint256)) public deleg

File: contracts/AuraVestedEscrow.sol

35 mapping(address => uint256) public totalLocked;
36: mapping(address => uint256) public totalClaimed;

File: convex-platform/contracts/contracts/VoterProxy.sol

35 mapping (address => bool) private stashPool;
36: mapping (address => bool) private protectedTokens;

https://github.com/code-423n4/2022-05-aura/blob/4989a2077546a5394e3650bf3c224669a0f7e690/contracts/AuraBalRewardPool.sol#L44-L46
https://github.com/code-423n4/2022-05-aura/blob/4989a2077546a5394e3650bf3c224669a0f7e690/contracts/AuraLocker.sol#L91-L100
https://github.com/code-423n4/2022-05-aura/blob/4989a2077546a5394e3650bf3c224669a0f7e690/contracts/AuraVestedEscrow.sol#L35-L36

https://github.com/code-423n4/2022-05-

aura/blob/4989a2077546a5394e3650bf3c224669a0f7e690/convex-

platform/contracts/contracts/VoterProxy.sol#L35-L36

https://github.com/code-423n4/2022-05-

aura/blob/4989a2077546a5394e3650bf3c224669a0f7e690/convex-

platform/contracts/contracts/BaseRewardPool.sol#L80-L82

https://github.com/code-423n4/2022-05-

aura/blob/4989a2077546a5394e3650bf3c224669a0f7e690/convex-

platform/contracts/contracts/VirtualBalanceRewardPool.sol#L97-L98

https://github.com/code-423n4/2022-05-

aura/blob/4989a2077546a5394e3650bf3c224669a0f7e690/convex-

platform/contracts/contracts/RewardFactory.sol#L27-L28

File: convex-platform/contracts/contracts/BaseRewardPool.sol

80 mapping(address => uint256) public userRewardPerTokenPaid;
81 mapping(address => uint256) public rewards;
82: mapping(address => uint256) private _balances;

File: convex-platform/contracts/contracts/VirtualBalanceRewardPool.so

97 mapping(address => uint256) public userRewardPerTokenPaid;
98: mapping(address => uint256) public rewards;

File: convex-platform/contracts/contracts/RewardFactory.sol

27 mapping (address => bool) private rewardAccess;
28: mapping(address => uint256[]) public rewardActiveList;

[G-03] State variables only set in the constructor should be
declared immutable

https://github.com/code-423n4/2022-05-aura/blob/4989a2077546a5394e3650bf3c224669a0f7e690/convex-platform/contracts/contracts/VoterProxy.sol#L35-L36
https://github.com/code-423n4/2022-05-aura/blob/4989a2077546a5394e3650bf3c224669a0f7e690/convex-platform/contracts/contracts/BaseRewardPool.sol#L80-L82
https://github.com/code-423n4/2022-05-aura/blob/4989a2077546a5394e3650bf3c224669a0f7e690/convex-platform/contracts/contracts/VirtualBalanceRewardPool.sol#L97-L98
https://github.com/code-423n4/2022-05-aura/blob/4989a2077546a5394e3650bf3c224669a0f7e690/convex-platform/contracts/contracts/RewardFactory.sol#L27-L28

Avoids a Gsset (20000 gas) in the constructor, and replaces each Gwarmacces

(100 gas) with a PUSH32 (3 gas).

There are 6 instances of this issue:

https://github.com/code-423n4/2022-05-

aura/blob/4989a2077546a5394e3650bf3c224669a0f7e690/contracts/AuraLock

er.sol#L117

https://github.com/code-423n4/2022-05-

aura/blob/4989a2077546a5394e3650bf3c224669a0f7e690/contracts/ClaimFee

sHelper.sol#L23

https://github.com/code-423n4/2022-05-

aura/blob/4989a2077546a5394e3650bf3c224669a0f7e690/convex-

platform/contracts/contracts/TokenFactory.sol#L21

File: contracts/AuraLocker.sol

117: string private _name;

118: string private _symbol;

File: contracts/ClaimFeesHelper.sol

23: IFeeDistributor public feeDistro;

File: convex-platform/contracts/contracts/TokenFactory.sol

21: string public namePostfix;

22: string public symbolPrefix;

File: convex-platform/contracts/contracts/BaseRewardPool4626.sol

https://github.com/code-423n4/2022-05-aura/blob/4989a2077546a5394e3650bf3c224669a0f7e690/contracts/AuraLocker.sol#L117
https://github.com/code-423n4/2022-05-aura/blob/4989a2077546a5394e3650bf3c224669a0f7e690/contracts/ClaimFeesHelper.sol#L23
https://github.com/code-423n4/2022-05-aura/blob/4989a2077546a5394e3650bf3c224669a0f7e690/convex-platform/contracts/contracts/TokenFactory.sol#L21

https://github.com/code-423n4/2022-05-

aura/blob/4989a2077546a5394e3650bf3c224669a0f7e690/convex-

platform/contracts/contracts/BaseRewardPool4626.sol#L26

If variables occupying the same slot are both written the same function or by the

constructor, avoids a separate Gsset (20000 gas). Reads of the variables can also

be cheaper

There are 3 instances of this issue:

https://github.com/code-423n4/2022-05-

aura/blob/4989a2077546a5394e3650bf3c224669a0f7e690/convex-

platform/contracts/contracts/CrvDepositor.sol#L29

https://github.com/code-423n4/2022-05-

aura/blob/4989a2077546a5394e3650bf3c224669a0f7e690/convex-

platform/contracts/contracts/ExtraRewardStashV3.sol#L33

26: address public override asset;

[G-04] State variables can be packed into fewer storage slots

File: convex-platform/contracts/contracts/CrvDepositor.sol #1

/// @audit Variable ordering with 5 slots instead of the current 6:
 uint256(32):lockIncentive, uint256(32):incentiveCrv, uint256(32):unlo
29: uint256 public lockIncentive = 10; //incentive to users who

File: convex-platform/contracts/contracts/ExtraRewardStashV3.sol #2

/// @audit Variable ordering with 9 slots instead of the current 10:
 uint256(32):pid, mapping(32):historicalRewards, mapping(32):tokenInfo
33: uint256 public pid;

File: convex-platform/contracts/contracts/Booster.sol #3

https://github.com/code-423n4/2022-05-aura/blob/4989a2077546a5394e3650bf3c224669a0f7e690/convex-platform/contracts/contracts/BaseRewardPool4626.sol#L26
https://github.com/code-423n4/2022-05-aura/blob/4989a2077546a5394e3650bf3c224669a0f7e690/convex-platform/contracts/contracts/CrvDepositor.sol#L29
https://github.com/code-423n4/2022-05-aura/blob/4989a2077546a5394e3650bf3c224669a0f7e690/convex-platform/contracts/contracts/ExtraRewardStashV3.sol#L33

https://github.com/code-423n4/2022-05-

aura/blob/4989a2077546a5394e3650bf3c224669a0f7e690/convex-

platform/contracts/contracts/Booster.sol#L26

When a function with a memory array is called externally, the abi.decode() step has

to use a for-loop to copy each index of the calldata to the memory index. Each

iteration of this for-loop costs at least 60 gas (i.e. 60 * <mem_array>.length). Using

calldata directly, obliviates the need for such a loop in the contract code and

runtime execution. Structs have the same overhead as an array of length one

There are 6 instances of this issue:

https://github.com/code-423n4/2022-05-

aura/blob/4989a2077546a5394e3650bf3c224669a0f7e690/contracts/Interface

s.sol#L17

/// @audit Variable ordering with 18 slots instead of the current 19:
 uint256(32):lockIncentive, uint256(32):stakerIncentive, uint256(32):e
26: uint256 public lockIncentive = 825; //incentive to crv stake

[G-05] Using calldata instead of memory for read-only
arguments in external functions saves gas

File: contracts/Interfaces.sol

17: function getTimeWeightedAverage(OracleAverageQuery[] memory

79: JoinPoolRequest memory request

83: SingleSwap memory singleSwap,

84: FundManagement memory funds,

93: ExitPoolRequest memory request

File: convex-platform/contracts/contracts/PoolManagerSecondaryProxy.so

https://github.com/code-423n4/2022-05-aura/blob/4989a2077546a5394e3650bf3c224669a0f7e690/convex-platform/contracts/contracts/Booster.sol#L26
https://github.com/code-423n4/2022-05-aura/blob/4989a2077546a5394e3650bf3c224669a0f7e690/contracts/Interfaces.sol#L17

https://github.com/code-423n4/2022-05-

aura/blob/4989a2077546a5394e3650bf3c224669a0f7e690/convex-

platform/contracts/contracts/PoolManagerSecondaryProxy.sol#L68

The instances below point to the second+ access of a state variable within a

function. Caching will replace each Gwarmaccess (100 gas) with a much cheaper

stack read. Less obvious fixes/optimizations include having local storage variables of

mappings within state variable mappings or mappings within state variable structs,

having local storage variables of structs within mappings, having local memory

caches of state variable structs, or having local caches of state variable

contracts/addresses.

There are 60 instances of this issue. For details, see the warden’s full report.

There are 5 instances of this issue:

https://github.com/code-423n4/2022-05-

aura/blob/4989a2077546a5394e3650bf3c224669a0f7e690/contracts/AuraMer

kleDrop.sol#L137

68: function setUsedAddress(address[] memory usedList) external

[G-06] State variables should be cached in stack variables
rather than re-reading them from storage

[G-07] <x> += <y> costs more gas than <x> = <x> + <y> for
state variables

File: contracts/AuraMerkleDrop.sol

137: pendingPenalty += penalty;

File: contracts/AuraBalRewardPool.sol

184: pendingPenalty += penalty;

https://github.com/code-423n4/2022-05-aura/blob/4989a2077546a5394e3650bf3c224669a0f7e690/convex-platform/contracts/contracts/PoolManagerSecondaryProxy.sol#L68
https://github.com/code-423n4/2022-05-aura-findings/issues/33
https://github.com/code-423n4/2022-05-aura/blob/4989a2077546a5394e3650bf3c224669a0f7e690/contracts/AuraMerkleDrop.sol#L137

https://github.com/code-423n4/2022-05-

aura/blob/4989a2077546a5394e3650bf3c224669a0f7e690/contracts/AuraBalR

ewardPool.sol#L184

https://github.com/code-423n4/2022-05-

aura/blob/4989a2077546a5394e3650bf3c224669a0f7e690/contracts/AuraLock

er.sol#L363

https://github.com/code-423n4/2022-05-

aura/blob/4989a2077546a5394e3650bf3c224669a0f7e690/contracts/Aura.sol#

L130

https://github.com/code-423n4/2022-05-

aura/blob/4989a2077546a5394e3650bf3c224669a0f7e690/contracts/AuraVest

edEscrow.sol#L66

Not inlining costs 20 to 40 gas because of two extra JUMP instructions and

additional stack operations needed for function calls.

There are 4 instances of this issue:

File: contracts/AuraLocker.sol

363: lockedSupply -= amt;

File: contracts/Aura.sol

130: minterMinted += _amount;

File: contracts/AuraVestedEscrow.sol

66: require(totalTime >= 16 weeks, "!short");

[G-08] internal functions only called once can be inlined to
save gas

https://github.com/code-423n4/2022-05-aura/blob/4989a2077546a5394e3650bf3c224669a0f7e690/contracts/AuraBalRewardPool.sol#L184
https://github.com/code-423n4/2022-05-aura/blob/4989a2077546a5394e3650bf3c224669a0f7e690/contracts/AuraLocker.sol#L363
https://github.com/code-423n4/2022-05-aura/blob/4989a2077546a5394e3650bf3c224669a0f7e690/contracts/Aura.sol#L130
https://github.com/code-423n4/2022-05-aura/blob/4989a2077546a5394e3650bf3c224669a0f7e690/contracts/AuraVestedEscrow.sol#L66

https://github.com/code-423n4/2022-05-

aura/blob/4989a2077546a5394e3650bf3c224669a0f7e690/contracts/AuraClai

mZap.sol#L171-L177

https://github.com/code-423n4/2022-05-

aura/blob/4989a2077546a5394e3650bf3c224669a0f7e690/convex-

platform/contracts/contracts/VoterProxy.sol#L230

https://github.com/code-423n4/2022-05-

aura/blob/4989a2077546a5394e3650bf3c224669a0f7e690/convex-

platform/contracts/contracts/ExtraRewardStashV3.sol#L124-L125

File: contracts/AuraClaimZap.sol #1

171 function _claimExtras(// solhint-disable-line
172 uint256 depositCrvMaxAmount,
173 uint256 minAmountOut,
174 uint256 depositCvxMaxAmount,
175 uint256 removeCrvBalance,
176 uint256 removeCvxBalance,
177: uint256 options

File: convex-platform/contracts/contracts/VoterProxy.sol #2

230: function _withdrawSome(address _gauge, uint256 _amount) inte

File: convex-platform/contracts/contracts/ExtraRewardStashV3.sol #3

124 function checkForNewRewardTokens() internal {
125: for(uint256 i = 0; i < maxRewards; i++){

File: convex-platform/contracts/contracts/Booster.sol #4

572: function _earmarkRewards(uint256 _pid) internal {

https://github.com/code-423n4/2022-05-aura/blob/4989a2077546a5394e3650bf3c224669a0f7e690/contracts/AuraClaimZap.sol#L171-L177
https://github.com/code-423n4/2022-05-aura/blob/4989a2077546a5394e3650bf3c224669a0f7e690/convex-platform/contracts/contracts/VoterProxy.sol#L230
https://github.com/code-423n4/2022-05-aura/blob/4989a2077546a5394e3650bf3c224669a0f7e690/convex-platform/contracts/contracts/ExtraRewardStashV3.sol#L124-L125

https://github.com/code-423n4/2022-05-

aura/blob/4989a2077546a5394e3650bf3c224669a0f7e690/convex-

platform/contracts/contracts/Booster.sol#L572

The overheads outlined below are PER LOOP, excluding the first loop

storage arrays incur a Gwarmaccess (100 gas)

memory arrays use MLOAD (3 gas)

calldata arrays use CALLDATALOAD (3 gas)

Caching the length changes each of these to a DUP<N> (3 gas), and gets rid of the

extra DUP<N> needed to store the stack offset

There are 13 instances of this issue:

https://github.com/code-423n4/2022-05-

aura/blob/4989a2077546a5394e3650bf3c224669a0f7e690/contracts/AuraClai

mZap.sol#L143

[G-09] <array>.length should not be looked up in every
loop of a for -loop

File: contracts/AuraClaimZap.sol

143: for (uint256 i = 0; i < rewardContracts.length; i++) {

147: for (uint256 i = 0; i < extraRewardContracts.length; i++

151: for (uint256 i = 0; i < tokenRewardContracts.length; i++

File: contracts/AuraLocker.sol

696: for (uint256 i = nextUnlockIndex; i < locks.length; i++

https://github.com/code-423n4/2022-05-aura/blob/4989a2077546a5394e3650bf3c224669a0f7e690/convex-platform/contracts/contracts/Booster.sol#L572
https://github.com/code-423n4/2022-05-aura/blob/4989a2077546a5394e3650bf3c224669a0f7e690/contracts/AuraClaimZap.sol#L143

https://github.com/code-423n4/2022-05-

aura/blob/4989a2077546a5394e3650bf3c224669a0f7e690/contracts/AuraLock

er.sol#L696

https://github.com/code-423n4/2022-05-

aura/blob/4989a2077546a5394e3650bf3c224669a0f7e690/contracts/AuraVest

edEscrow.sol#L100

https://github.com/code-423n4/2022-05-

aura/blob/4989a2077546a5394e3650bf3c224669a0f7e690/convex-

platform/contracts/contracts/ArbitartorVault.sol#L49

https://github.com/code-423n4/2022-05-

aura/blob/4989a2077546a5394e3650bf3c224669a0f7e690/convex-

platform/contracts/contracts/PoolManagerSecondaryProxy.sol#L69

File: contracts/AuraVestedEscrow.sol

100: for (uint256 i = 0; i < _recipient.length; i++) {

File: convex-platform/contracts/contracts/ArbitartorVault.sol

49: for(uint256 i = 0; i < _toPids.length; i++){

File: convex-platform/contracts/contracts/PoolManagerSecondaryProxy.so

69: for(uint i=0; i < usedList.length; i++){

File: convex-platform/contracts/contracts/BaseRewardPool.sol

214: for(uint i=0; i < extraRewards.length; i++){

230: for(uint i=0; i < extraRewards.length; i++){

262: for(uint i=0; i < extraRewards.length; i++){

https://github.com/code-423n4/2022-05-aura/blob/4989a2077546a5394e3650bf3c224669a0f7e690/contracts/AuraLocker.sol#L696
https://github.com/code-423n4/2022-05-aura/blob/4989a2077546a5394e3650bf3c224669a0f7e690/contracts/AuraVestedEscrow.sol#L100
https://github.com/code-423n4/2022-05-aura/blob/4989a2077546a5394e3650bf3c224669a0f7e690/convex-platform/contracts/contracts/ArbitartorVault.sol#L49
https://github.com/code-423n4/2022-05-aura/blob/4989a2077546a5394e3650bf3c224669a0f7e690/convex-platform/contracts/contracts/PoolManagerSecondaryProxy.sol#L69

https://github.com/code-423n4/2022-05-

aura/blob/4989a2077546a5394e3650bf3c224669a0f7e690/convex-

platform/contracts/contracts/BaseRewardPool.sol#L214

https://github.com/code-423n4/2022-05-

aura/blob/4989a2077546a5394e3650bf3c224669a0f7e690/convex-

platform/contracts/contracts/Booster.sol#L379

The unchecked keyword is new in solidity version 0.8.0, so this only applies to that

version or higher, which these instances are. This saves 30-40 gas PER LOOP

There are 13 instances of this issue:

https://github.com/code-423n4/2022-05-

aura/blob/4989a2077546a5394e3650bf3c224669a0f7e690/contracts/AuraClai

296: for(uint i=0; i < extraRewards.length; i++){

File: convex-platform/contracts/contracts/Booster.sol

379: for(uint i=0; i < poolInfo.length; i++){

538: for(uint256 i = 0; i < _gauge.length; i++){

[G-10] ++i / i++ should be unchecked{++i} / unchecked{i++}
when it is not possible for them to overflow, as is the case
when used in for - and while -loops

File: contracts/AuraClaimZap.sol

143: for (uint256 i = 0; i < rewardContracts.length; i++) {

147: for (uint256 i = 0; i < extraRewardContracts.length; i++

151: for (uint256 i = 0; i < tokenRewardContracts.length; i++

https://github.com/code-423n4/2022-05-aura/blob/4989a2077546a5394e3650bf3c224669a0f7e690/convex-platform/contracts/contracts/BaseRewardPool.sol#L214
https://github.com/code-423n4/2022-05-aura/blob/4989a2077546a5394e3650bf3c224669a0f7e690/convex-platform/contracts/contracts/Booster.sol#L379
https://gist.github.com/hrkrshnn/ee8fabd532058307229d65dcd5836ddc#the-increment-in-for-loop-post-condition-can-be-made-unchecked
https://github.com/code-423n4/2022-05-aura/blob/4989a2077546a5394e3650bf3c224669a0f7e690/contracts/AuraClaimZap.sol#L143

mZap.sol#L143

https://github.com/code-423n4/2022-05-

aura/blob/4989a2077546a5394e3650bf3c224669a0f7e690/contracts/ExtraRew

ardsDistributor.sol#L233

https://github.com/code-423n4/2022-05-

aura/blob/4989a2077546a5394e3650bf3c224669a0f7e690/contracts/AuraLock

er.sol#L174

https://github.com/code-423n4/2022-05-

aura/blob/4989a2077546a5394e3650bf3c224669a0f7e690/contracts/AuraVest

File: contracts/ExtraRewardsDistributor.sol

233: for (uint256 i = epochIndex; i < tokenEpochs; i++) {

File: contracts/AuraLocker.sol

174: for (uint256 i = 0; i < rewardTokensLength; i++) {

306: for (uint256 i; i < rewardTokensLength; i++) {

410: for (uint256 i = nextUnlockIndex; i < length; i++)

664: for (uint256 i = locksLength; i > 0; i--) {

696: for (uint256 i = nextUnlockIndex; i < locks.length; i++

726: for (uint256 i = epochIndex + 1; i > 0; i--) {

773: for (uint256 i = 0; i < userRewardsLength; i++) {

File: contracts/AuraVestedEscrow.sol

100: for (uint256 i = 0; i < _recipient.length; i++) {

https://github.com/code-423n4/2022-05-aura/blob/4989a2077546a5394e3650bf3c224669a0f7e690/contracts/AuraClaimZap.sol#L143
https://github.com/code-423n4/2022-05-aura/blob/4989a2077546a5394e3650bf3c224669a0f7e690/contracts/ExtraRewardsDistributor.sol#L233
https://github.com/code-423n4/2022-05-aura/blob/4989a2077546a5394e3650bf3c224669a0f7e690/contracts/AuraLocker.sol#L174
https://github.com/code-423n4/2022-05-aura/blob/4989a2077546a5394e3650bf3c224669a0f7e690/contracts/AuraVestedEscrow.sol#L100

edEscrow.sol#L100

https://github.com/code-423n4/2022-05-

aura/blob/4989a2077546a5394e3650bf3c224669a0f7e690/contracts/BalLiquid

ityProvider.sol#L51

There is 1 instance of this issue:

https://github.com/code-423n4/2022-05-

aura/blob/4989a2077546a5394e3650bf3c224669a0f7e690/contracts/AuraLock

er.sol#L197

It should be saved to an immutable variable, and the variable used instead. If the

hash is being used as a part of a function selector, the cast to bytes4 should also

only be done once

There is 1 instance of this issue:

File: contracts/BalLiquidityProvider.sol

51: for (uint256 i = 0; i < 2; i++) {

[G-11] require() / revert() strings longer than 32 bytes cost
extra gas

File: contracts/AuraLocker.sol #1

197: require(_rewardsToken != address(stakingToken), "Cannot

[G-12] keccak256() should only need to be called on a
specific string literal once

File: convex-platform/contracts/contracts/Booster.sol #1

562: bytes memory data = abi.encodeWithSelector(bytes4(kecca

https://github.com/code-423n4/2022-05-aura/blob/4989a2077546a5394e3650bf3c224669a0f7e690/contracts/AuraVestedEscrow.sol#L100
https://github.com/code-423n4/2022-05-aura/blob/4989a2077546a5394e3650bf3c224669a0f7e690/contracts/BalLiquidityProvider.sol#L51
https://github.com/code-423n4/2022-05-aura/blob/4989a2077546a5394e3650bf3c224669a0f7e690/contracts/AuraLocker.sol#L197

https://github.com/code-423n4/2022-05-

aura/blob/4989a2077546a5394e3650bf3c224669a0f7e690/convex-

platform/contracts/contracts/Booster.sol#L562

There are 10 instances of this issue:

https://github.com/code-423n4/2022-05-

aura/blob/4989a2077546a5394e3650bf3c224669a0f7e690/contracts/AuraLock

er.sol#L603

https://github.com/code-423n4/2022-05-

aura/blob/4989a2077546a5394e3650bf3c224669a0f7e690/contracts/AuraVest

edEscrow.sol#L159

[G-13] Not using the named return variables when a function
returns, wastes deployment gas

File: contracts/AuraLocker.sol

603: return 0;

649: return balanceAtEpochOf(findEpochId(block.timestamp), _

708: return (userBalance.locked, unlockable, locked, lockData

708: return (userBalance.locked, unlockable, locked, lockData

708: return (userBalance.locked, unlockable, locked, lockData

708: return (userBalance.locked, unlockable, locked, lockData

713: return totalSupplyAtEpoch(findEpochId(block.timestamp))

740: return _time.sub(epochs[0].date).div(rewardsDuration);

File: contracts/AuraVestedEscrow.sol

159: return 0;

https://github.com/code-423n4/2022-05-aura/blob/4989a2077546a5394e3650bf3c224669a0f7e690/convex-platform/contracts/contracts/Booster.sol#L562
https://github.com/code-423n4/2022-05-aura/blob/4989a2077546a5394e3650bf3c224669a0f7e690/contracts/AuraLocker.sol#L603
https://github.com/code-423n4/2022-05-aura/blob/4989a2077546a5394e3650bf3c224669a0f7e690/contracts/AuraVestedEscrow.sol#L159

https://github.com/code-423n4/2022-05-

aura/blob/4989a2077546a5394e3650bf3c224669a0f7e690/convex-

platform/contracts/contracts/BaseRewardPool4626.sol#L180

https://github.com/OpenZeppelin/openzeppelin-

contracts/blob/58f635312aa21f947cae5f8578638a85aa2519f5/contracts/security

/ReentrancyGuard.sol#L23-L27 Use uint256(1) and uint256(2) for true/false

There are 18 instances of this issue:

https://github.com/code-423n4/2022-05-

aura/blob/4989a2077546a5394e3650bf3c224669a0f7e690/contracts/AuraMer

kleDrop.sol#L34

File: convex-platform/contracts/contracts/BaseRewardPool4626.sol

180: return convertToShares(assets);

[G-14] Using bool s for storage incurs overhead

 // Booleans are more expensive than uint256 or any type that take
 // word because each write operation emits an extra SLOAD to first
 // slot's contents, replace the bits taken up by the boolean, and
 // back. This is the compiler's defense against contract upgrades
 // pointer aliasing, and it cannot be disabled.

File: contracts/AuraMerkleDrop.sol

34: mapping(address => bool) public hasClaimed;

File: contracts/AuraLocker.sol

77: mapping(address => mapping(address => bool)) public rewardD

https://github.com/code-423n4/2022-05-aura/blob/4989a2077546a5394e3650bf3c224669a0f7e690/convex-platform/contracts/contracts/BaseRewardPool4626.sol#L180
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/58f635312aa21f947cae5f8578638a85aa2519f5/contracts/security/ReentrancyGuard.sol#L23-L27
https://github.com/code-423n4/2022-05-aura/blob/4989a2077546a5394e3650bf3c224669a0f7e690/contracts/AuraMerkleDrop.sol#L34

https://github.com/code-423n4/2022-05-

aura/blob/4989a2077546a5394e3650bf3c224669a0f7e690/contracts/AuraLock

er.sol#L77

https://github.com/code-423n4/2022-05-

aura/blob/4989a2077546a5394e3650bf3c224669a0f7e690/contracts/AuraVest

edEscrow.sol#L33

https://github.com/code-423n4/2022-05-

aura/blob/4989a2077546a5394e3650bf3c224669a0f7e690/convex-

platform/contracts/contracts/PoolManagerV3.sol#L22

https://github.com/code-423n4/2022-05-

aura/blob/4989a2077546a5394e3650bf3c224669a0f7e690/convex-

platform/contracts/contracts/CrvDepositor.sol#L39

114: bool public isShutdown = false;

File: contracts/AuraVestedEscrow.sol

33: bool public initialised = false;

File: convex-platform/contracts/contracts/PoolManagerV3.sol

22: bool public protectAddPool;

File: convex-platform/contracts/contracts/CrvDepositor.sol

39: bool public cooldown;

File: convex-platform/contracts/contracts/PoolManagerSecondaryProxy.so

24: bool public isShutdown;

https://github.com/code-423n4/2022-05-aura/blob/4989a2077546a5394e3650bf3c224669a0f7e690/contracts/AuraLocker.sol#L77
https://github.com/code-423n4/2022-05-aura/blob/4989a2077546a5394e3650bf3c224669a0f7e690/contracts/AuraVestedEscrow.sol#L33
https://github.com/code-423n4/2022-05-aura/blob/4989a2077546a5394e3650bf3c224669a0f7e690/convex-platform/contracts/contracts/PoolManagerV3.sol#L22
https://github.com/code-423n4/2022-05-aura/blob/4989a2077546a5394e3650bf3c224669a0f7e690/convex-platform/contracts/contracts/CrvDepositor.sol#L39

https://github.com/code-423n4/2022-05-

aura/blob/4989a2077546a5394e3650bf3c224669a0f7e690/convex-

platform/contracts/contracts/PoolManagerSecondaryProxy.sol#L24

https://github.com/code-423n4/2022-05-

aura/blob/4989a2077546a5394e3650bf3c224669a0f7e690/convex-

platform/contracts/contracts/VoterProxy.sol#L35

https://github.com/code-423n4/2022-05-

aura/blob/4989a2077546a5394e3650bf3c224669a0f7e690/convex-

platform/contracts/contracts/BoosterOwner.sol#L49

26: mapping(address => bool) public usedMap;

File: convex-platform/contracts/contracts/VoterProxy.sol

35: mapping (address => bool) private stashPool;

36: mapping (address => bool) private protectedTokens;

37: mapping (bytes32 => bool) private votes;

File: convex-platform/contracts/contracts/BoosterOwner.sol

49: bool public isSealed;

53: bool public isForceTimerStarted;

File: convex-platform/contracts/contracts/ExtraRewardStashV3.sol

40: bool public hasRedirected;

41: bool public hasCurveRewards;

https://github.com/code-423n4/2022-05-aura/blob/4989a2077546a5394e3650bf3c224669a0f7e690/convex-platform/contracts/contracts/PoolManagerSecondaryProxy.sol#L24
https://github.com/code-423n4/2022-05-aura/blob/4989a2077546a5394e3650bf3c224669a0f7e690/convex-platform/contracts/contracts/VoterProxy.sol#L35
https://github.com/code-423n4/2022-05-aura/blob/4989a2077546a5394e3650bf3c224669a0f7e690/convex-platform/contracts/contracts/BoosterOwner.sol#L49

https://github.com/code-423n4/2022-05-

aura/blob/4989a2077546a5394e3650bf3c224669a0f7e690/convex-

platform/contracts/contracts/ExtraRewardStashV3.sol#L40

https://github.com/code-423n4/2022-05-

aura/blob/4989a2077546a5394e3650bf3c224669a0f7e690/convex-

platform/contracts/contracts/Booster.sol#L54

https://github.com/code-423n4/2022-05-

aura/blob/4989a2077546a5394e3650bf3c224669a0f7e690/convex-

platform/contracts/contracts/RewardFactory.sol#L27

Use a solidity version of at least 0.8.0 to get overflow protection without SafeMath

Use a solidity version of at least 0.8.2 to get compiler automatic inlining Use a

solidity version of at least 0.8.3 to get better struct packing and cheaper multiple

storage reads Use a solidity version of at least 0.8.4 to get custom errors, which are

cheaper at deployment than revert()/require() strings Use a solidity version of at

least 0.8.10 to have external calls skip contract existence checks if the external call

has a return value

There are 28 instances of this issue. For details, see the warden’s full report.

File: convex-platform/contracts/contracts/Booster.sol

54: bool public isShutdown;

67: mapping(address => bool) public gaugeMap;

File: convex-platform/contracts/contracts/RewardFactory.sol

27: mapping (address => bool) private rewardAccess;

[G-15] Use a more recent version of solidity

[G-16] Using > 0 costs more gas than != 0 when used on a
uint in a require() statement

https://github.com/code-423n4/2022-05-aura/blob/4989a2077546a5394e3650bf3c224669a0f7e690/convex-platform/contracts/contracts/ExtraRewardStashV3.sol#L40
https://github.com/code-423n4/2022-05-aura/blob/4989a2077546a5394e3650bf3c224669a0f7e690/convex-platform/contracts/contracts/Booster.sol#L54
https://github.com/code-423n4/2022-05-aura/blob/4989a2077546a5394e3650bf3c224669a0f7e690/convex-platform/contracts/contracts/RewardFactory.sol#L27
https://github.com/code-423n4/2022-05-aura-findings/issues/33

This change saves 6 gas per instance

There are 23 instances of this issue:

https://github.com/code-423n4/2022-05-

aura/blob/4989a2077546a5394e3650bf3c224669a0f7e690/contracts/AuraMer

kleDrop.sol#L122

https://github.com/code-423n4/2022-05-

aura/blob/4989a2077546a5394e3650bf3c224669a0f7e690/contracts/AuraPena

ltyForwarder.sol#L52

https://github.com/code-423n4/2022-05-

aura/blob/4989a2077546a5394e3650bf3c224669a0f7e690/contracts/AuraBalR

ewardPool.sol#L121

File: contracts/AuraMerkleDrop.sol

122: require(_amount > 0, "!amount");

File: contracts/AuraPenaltyForwarder.sol

52: require(bal > 0, "!empty");

File: contracts/AuraBalRewardPool.sol

121: require(_amount > 0, "RewardPool : Cannot stake 0");

139: require(_amount > 0, "RewardPool : Cannot stake 0");

157: require(amount > 0, "RewardPool : Cannot withdraw 0");

210: require(rewardsAvailable > 0, "!balance");

File: contracts/AuraLocker.sol

https://aws1.discourse-cdn.com/business6/uploads/zeppelin/original/2X/3/363a367d6d68851f27d2679d10706cd16d788b96.png
https://github.com/code-423n4/2022-05-aura/blob/4989a2077546a5394e3650bf3c224669a0f7e690/contracts/AuraMerkleDrop.sol#L122
https://github.com/code-423n4/2022-05-aura/blob/4989a2077546a5394e3650bf3c224669a0f7e690/contracts/AuraPenaltyForwarder.sol#L52
https://github.com/code-423n4/2022-05-aura/blob/4989a2077546a5394e3650bf3c224669a0f7e690/contracts/AuraBalRewardPool.sol#L121

https://github.com/code-423n4/2022-05-

aura/blob/4989a2077546a5394e3650bf3c224669a0f7e690/contracts/AuraLock

er.sol#L259

https://github.com/code-423n4/2022-05-

aura/blob/4989a2077546a5394e3650bf3c224669a0f7e690/contracts/Aura.sol#

L68

https://github.com/code-423n4/2022-05-

aura/blob/4989a2077546a5394e3650bf3c224669a0f7e690/contracts/BalLiquid

ityProvider.sol#L70

259: require(_amount > 0, "Cannot stake 0");

359: require(amt > 0, "Nothing locked");

385: require(length > 0, "no locks");

431: require(locked > 0, "no exp locks");

471: require(len > 0, "Nothing to delegate");

822: require(_rewards > 0, "No reward");

851: require(_reward > 0, "No reward");

File: contracts/Aura.sol

68: require(_amount > 0, "Must mint something");

File: contracts/BalLiquidityProvider.sol

70: require(balAfter > 0, "!mint");

File: convex-platform/contracts/contracts/CrvDepositor.sol

https://github.com/code-423n4/2022-05-aura/blob/4989a2077546a5394e3650bf3c224669a0f7e690/contracts/AuraLocker.sol#L259
https://github.com/code-423n4/2022-05-aura/blob/4989a2077546a5394e3650bf3c224669a0f7e690/contracts/Aura.sol#L68
https://github.com/code-423n4/2022-05-aura/blob/4989a2077546a5394e3650bf3c224669a0f7e690/contracts/BalLiquidityProvider.sol#L70

https://github.com/code-423n4/2022-05-

aura/blob/4989a2077546a5394e3650bf3c224669a0f7e690/convex-

platform/contracts/contracts/CrvDepositor.sol#L169

https://github.com/code-423n4/2022-05-

aura/blob/4989a2077546a5394e3650bf3c224669a0f7e690/convex-

platform/contracts/contracts/PoolManagerSecondaryProxy.sol#L104

https://github.com/code-423n4/2022-05-

aura/blob/4989a2077546a5394e3650bf3c224669a0f7e690/convex-

platform/contracts/contracts/interfaces/BoringMath.sol#L20

169: require(_amount > 0,"!>0");

File: convex-platform/contracts/contracts/PoolManagerSecondaryProxy.so

104: require(weight > 0, "must have weight");

File: convex-platform/contracts/contracts/interfaces/BoringMath.sol

20: require(b > 0, "BoringMath: division by zero");

102: require(b > 0, "BoringMath: division by zero");

123: require(b > 0, "BoringMath: division by zero");

143: require(b > 0, "BoringMath: division by zero");

File: convex-platform/contracts/contracts/BaseRewardPool.sol

211: require(_amount > 0, 'RewardPool : Cannot stake 0');

227: require(amount > 0, 'RewardPool : Cannot withdraw 0');

https://github.com/code-423n4/2022-05-aura/blob/4989a2077546a5394e3650bf3c224669a0f7e690/convex-platform/contracts/contracts/CrvDepositor.sol#L169
https://github.com/code-423n4/2022-05-aura/blob/4989a2077546a5394e3650bf3c224669a0f7e690/convex-platform/contracts/contracts/PoolManagerSecondaryProxy.sol#L104
https://github.com/code-423n4/2022-05-aura/blob/4989a2077546a5394e3650bf3c224669a0f7e690/convex-platform/contracts/contracts/interfaces/BoringMath.sol#L20

https://github.com/code-423n4/2022-05-

aura/blob/4989a2077546a5394e3650bf3c224669a0f7e690/convex-

platform/contracts/contracts/BaseRewardPool.sol#L211

There are 26 instances of this issue. For details, see the warden’s full report.

Saves 6 gas PER LOOP

There are 24 instances of this issue:

https://github.com/code-423n4/2022-05-

aura/blob/4989a2077546a5394e3650bf3c224669a0f7e690/contracts/AuraClai

mZap.sol#L143

https://github.com/code-423n4/2022-05-

aura/blob/4989a2077546a5394e3650bf3c224669a0f7e690/contracts/ExtraRew

ardsDistributor.sol#L233

[G-17] It costs more gas to initialize variables to zero than to
let the default of zero be applied

[G-18] ++i costs less gas than i++ , especially when it’s used
in for -loops (--i / i-- too)

File: contracts/AuraClaimZap.sol

143: for (uint256 i = 0; i < rewardContracts.length; i++) {

147: for (uint256 i = 0; i < extraRewardContracts.length; i++

151: for (uint256 i = 0; i < tokenRewardContracts.length; i++

File: contracts/ExtraRewardsDistributor.sol

233: for (uint256 i = epochIndex; i < tokenEpochs; i++) {

https://github.com/code-423n4/2022-05-aura/blob/4989a2077546a5394e3650bf3c224669a0f7e690/convex-platform/contracts/contracts/BaseRewardPool.sol#L211
https://github.com/code-423n4/2022-05-aura-findings/issues/33
https://github.com/code-423n4/2022-05-aura/blob/4989a2077546a5394e3650bf3c224669a0f7e690/contracts/AuraClaimZap.sol#L143
https://github.com/code-423n4/2022-05-aura/blob/4989a2077546a5394e3650bf3c224669a0f7e690/contracts/ExtraRewardsDistributor.sol#L233

https://github.com/code-423n4/2022-05-

aura/blob/4989a2077546a5394e3650bf3c224669a0f7e690/contracts/AuraLock

er.sol#L174

https://github.com/code-423n4/2022-05-

aura/blob/4989a2077546a5394e3650bf3c224669a0f7e690/contracts/AuraVest

edEscrow.sol#L100

https://github.com/code-423n4/2022-05-

aura/blob/4989a2077546a5394e3650bf3c224669a0f7e690/contracts/BalLiquid

ityProvider.sol#L51

File: contracts/AuraLocker.sol

174: for (uint256 i = 0; i < rewardTokensLength; i++) {

306: for (uint256 i; i < rewardTokensLength; i++) {

410: for (uint256 i = nextUnlockIndex; i < length; i++)

664: for (uint256 i = locksLength; i > 0; i--) {

696: for (uint256 i = nextUnlockIndex; i < locks.length; i++

726: for (uint256 i = epochIndex + 1; i > 0; i--) {

773: for (uint256 i = 0; i < userRewardsLength; i++) {

File: contracts/AuraVestedEscrow.sol

100: for (uint256 i = 0; i < _recipient.length; i++) {

File: contracts/BalLiquidityProvider.sol

51: for (uint256 i = 0; i < 2; i++) {

https://github.com/code-423n4/2022-05-aura/blob/4989a2077546a5394e3650bf3c224669a0f7e690/contracts/AuraLocker.sol#L174
https://github.com/code-423n4/2022-05-aura/blob/4989a2077546a5394e3650bf3c224669a0f7e690/contracts/AuraVestedEscrow.sol#L100
https://github.com/code-423n4/2022-05-aura/blob/4989a2077546a5394e3650bf3c224669a0f7e690/contracts/BalLiquidityProvider.sol#L51

https://github.com/code-423n4/2022-05-

aura/blob/4989a2077546a5394e3650bf3c224669a0f7e690/convex-

platform/contracts/contracts/ArbitartorVault.sol#L49

https://github.com/code-423n4/2022-05-

aura/blob/4989a2077546a5394e3650bf3c224669a0f7e690/convex-

platform/contracts/contracts/PoolManagerSecondaryProxy.sol#L69

https://github.com/code-423n4/2022-05-

aura/blob/4989a2077546a5394e3650bf3c224669a0f7e690/convex-

platform/contracts/contracts/BoosterOwner.sol#L144

https://github.com/code-423n4/2022-05-

aura/blob/4989a2077546a5394e3650bf3c224669a0f7e690/convex-

platform/contracts/contracts/ExtraRewardStashV3.sol#L125

File: convex-platform/contracts/contracts/ArbitartorVault.sol

49: for(uint256 i = 0; i < _toPids.length; i++){

File: convex-platform/contracts/contracts/PoolManagerSecondaryProxy.so

69: for(uint i=0; i < usedList.length; i++){

File: convex-platform/contracts/contracts/BoosterOwner.sol

144: for(uint256 i = 0; i < poolCount; i++){

File: convex-platform/contracts/contracts/ExtraRewardStashV3.sol

125: for(uint256 i = 0; i < maxRewards; i++){

199: for(uint i=0; i < tCount; i++){

https://github.com/code-423n4/2022-05-aura/blob/4989a2077546a5394e3650bf3c224669a0f7e690/convex-platform/contracts/contracts/ArbitartorVault.sol#L49
https://github.com/code-423n4/2022-05-aura/blob/4989a2077546a5394e3650bf3c224669a0f7e690/convex-platform/contracts/contracts/PoolManagerSecondaryProxy.sol#L69
https://github.com/code-423n4/2022-05-aura/blob/4989a2077546a5394e3650bf3c224669a0f7e690/convex-platform/contracts/contracts/BoosterOwner.sol#L144
https://github.com/code-423n4/2022-05-aura/blob/4989a2077546a5394e3650bf3c224669a0f7e690/convex-platform/contracts/contracts/ExtraRewardStashV3.sol#L125

https://github.com/code-423n4/2022-05-

aura/blob/4989a2077546a5394e3650bf3c224669a0f7e690/convex-

platform/contracts/contracts/BaseRewardPool.sol#L214

https://github.com/code-423n4/2022-05-

aura/blob/4989a2077546a5394e3650bf3c224669a0f7e690/convex-

platform/contracts/contracts/Booster.sol#L379

See this issue which describes the fact that there is a larger deployment gas cost,

but with enough runtime calls, the change ends up being cheaper

There are 15 instances of this issue:

File: convex-platform/contracts/contracts/BaseRewardPool.sol

214: for(uint i=0; i < extraRewards.length; i++){

230: for(uint i=0; i < extraRewards.length; i++){

262: for(uint i=0; i < extraRewards.length; i++){

296: for(uint i=0; i < extraRewards.length; i++){

File: convex-platform/contracts/contracts/Booster.sol

379: for(uint i=0; i < poolInfo.length; i++){

538: for(uint256 i = 0; i < _gauge.length; i++){

[G-19] Splitting require() statements that use && saves gas

File: contracts/ExtraRewardsDistributor.sol

171: require(_index > 0 && _index < rewardEpochs[_token].leng

https://github.com/code-423n4/2022-05-aura/blob/4989a2077546a5394e3650bf3c224669a0f7e690/convex-platform/contracts/contracts/BaseRewardPool.sol#L214
https://github.com/code-423n4/2022-05-aura/blob/4989a2077546a5394e3650bf3c224669a0f7e690/convex-platform/contracts/contracts/Booster.sol#L379
https://github.com/code-423n4/2022-01-xdefi-findings/issues/128

https://github.com/code-423n4/2022-05-

aura/blob/4989a2077546a5394e3650bf3c224669a0f7e690/contracts/ExtraRew

ardsDistributor.sol#L171

https://github.com/code-423n4/2022-05-

aura/blob/4989a2077546a5394e3650bf3c224669a0f7e690/contracts/AuraStaki

ngProxy.sol#L90

https://github.com/code-423n4/2022-05-

aura/blob/4989a2077546a5394e3650bf3c224669a0f7e690/contracts/BalLiquid

ityProvider.sol#L48

https://github.com/code-423n4/2022-05-

aura/blob/4989a2077546a5394e3650bf3c224669a0f7e690/convex-

platform/contracts/contracts/StashFactoryV2.sol#L83

File: contracts/AuraStakingProxy.sol

90: require(_outputBps > 9000 && _outputBps < 10000, "Inval

159: require(_token != crv && _token != cvx && _token != cvxC

203: require(address(_token) != crv && address(_token) != cvx

File: contracts/BalLiquidityProvider.sol

48: require(_request.assets.length == 2 && _request.maxAmou

57: require(bal > 0 && bal == _request.maxAmountsIn[i],

File: convex-platform/contracts/contracts/StashFactoryV2.sol

83: require(!isV1 && !isV2 && !isV3,"stash version mismatch

https://github.com/code-423n4/2022-05-aura/blob/4989a2077546a5394e3650bf3c224669a0f7e690/contracts/ExtraRewardsDistributor.sol#L171
https://github.com/code-423n4/2022-05-aura/blob/4989a2077546a5394e3650bf3c224669a0f7e690/contracts/AuraStakingProxy.sol#L90
https://github.com/code-423n4/2022-05-aura/blob/4989a2077546a5394e3650bf3c224669a0f7e690/contracts/BalLiquidityProvider.sol#L48
https://github.com/code-423n4/2022-05-aura/blob/4989a2077546a5394e3650bf3c224669a0f7e690/convex-platform/contracts/contracts/StashFactoryV2.sol#L83

https://github.com/code-423n4/2022-05-

aura/blob/4989a2077546a5394e3650bf3c224669a0f7e690/convex-

platform/contracts/contracts/PoolManagerSecondaryProxy.sol#L111

https://github.com/code-423n4/2022-05-

aura/blob/4989a2077546a5394e3650bf3c224669a0f7e690/convex-

platform/contracts/contracts/Booster.sol#L220

When using elements that are smaller than 32 bytes, your contract’s gas usage may

be higher. This is because the EVM operates on 32 bytes at a time. Therefore, if the

element is smaller than that, the EVM must use more operations in order to reduce

the size of the element from 32 bytes to the desired size.

File: convex-platform/contracts/contracts/PoolManagerSecondaryProxy.so

111: require(!usedMap[_lptoken] && !usedMap[_gauge], "cant fo

File: convex-platform/contracts/contracts/Booster.sol

220: require(lockRewards != address(0) && rewardFactory != ad

222: require(_feeToken != address(0) && _feeDistro != addres

278: require(_lockFees >= 300 && _lockFees <= 1500, "!lockFee

279: require(_stakerFees >= 300 && _stakerFees <= 1500, "!sta

280: require(_callerFees >= 10 && _callerFees <= 100, "!calle

313: require(msg.sender==poolManager && !isShutdown, "!add")

314: require(_gauge != address(0) && _lptoken != address(0),

[G-20] Usage of uints / ints smaller than 32 bytes (256 bits)
incurs overhead

https://github.com/code-423n4/2022-05-aura/blob/4989a2077546a5394e3650bf3c224669a0f7e690/convex-platform/contracts/contracts/PoolManagerSecondaryProxy.sol#L111
https://github.com/code-423n4/2022-05-aura/blob/4989a2077546a5394e3650bf3c224669a0f7e690/convex-platform/contracts/contracts/Booster.sol#L220

https://docs.soliditylang.org/en/v0.8.11/internals/layout_in_storage.html Use a

larger size then downcast where needed

There are 99 instances of this issue. For details, see the warden’s full report.

There are 2 instances of this issue:

https://github.com/code-423n4/2022-05-

aura/blob/4989a2077546a5394e3650bf3c224669a0f7e690/contracts/CrvDepo

sitorWrapper.sol#L93

https://github.com/code-423n4/2022-05-

aura/blob/4989a2077546a5394e3650bf3c224669a0f7e690/convex-

platform/contracts/contracts/StashFactoryV2.sol#L88

If needed, the value can be read from the verified contract source code. Savings are

due to the compiler not having to create non-payable getter functions for

deployment calldata, and not adding another entry to the method ID table

There are 30 instances of this issue. For details, see the warden’s full report.

[G-21] abi.encode() is less efficient than
abi.encodePacked()

File: contracts/CrvDepositorWrapper.sol #1

93: abi.encode(IVault.JoinKind.EXACT_TOKENS_IN_FOR_

File: convex-platform/contracts/contracts/StashFactoryV2.sol #2

88: bytes memory data = abi.encode(rewarded_token);

[G-22] Using private rather than public for constants,
saves gas

[G-23] Don’t compare boolean expressions to boolean literals

https://docs.soliditylang.org/en/v0.8.11/internals/layout_in_storage.html
https://github.com/code-423n4/2022-05-aura-findings/issues/33
https://github.com/code-423n4/2022-05-aura/blob/4989a2077546a5394e3650bf3c224669a0f7e690/contracts/CrvDepositorWrapper.sol#L93
https://github.com/code-423n4/2022-05-aura/blob/4989a2077546a5394e3650bf3c224669a0f7e690/convex-platform/contracts/contracts/StashFactoryV2.sol#L88
https://github.com/code-423n4/2022-05-aura-findings/issues/33

if (<x> == true) => if (<x>) , if (<x> == false) => if (!<x>)

There are 9 instances of this issue:

https://github.com/code-423n4/2022-05-

aura/blob/4989a2077546a5394e3650bf3c224669a0f7e690/contracts/AuraMer

kleDrop.sol#L123

https://github.com/code-423n4/2022-05-

aura/blob/4989a2077546a5394e3650bf3c224669a0f7e690/convex-

platform/contracts/contracts/ArbitartorVault.sol#L54

https://github.com/code-423n4/2022-05-

aura/blob/4989a2077546a5394e3650bf3c224669a0f7e690/convex-

platform/contracts/contracts/VoterProxy.sol#L107

File: contracts/AuraMerkleDrop.sol

123: require(hasClaimed[msg.sender] == false, "already claime

File: convex-platform/contracts/contracts/ArbitartorVault.sol

54: require(shutdown==false,"pool closed");

File: convex-platform/contracts/contracts/VoterProxy.sol

107: require(operator == address(0) || IDeposit(operator).isS

168: if(protectedTokens[_token] == false){

171: if(protectedTokens[_gauge] == false){

190: require(protectedTokens[address(_asset)] == false, "prot

https://github.com/code-423n4/2022-05-aura/blob/4989a2077546a5394e3650bf3c224669a0f7e690/contracts/AuraMerkleDrop.sol#L123
https://github.com/code-423n4/2022-05-aura/blob/4989a2077546a5394e3650bf3c224669a0f7e690/convex-platform/contracts/contracts/ArbitartorVault.sol#L54
https://github.com/code-423n4/2022-05-aura/blob/4989a2077546a5394e3650bf3c224669a0f7e690/convex-platform/contracts/contracts/VoterProxy.sol#L107

https://github.com/code-423n4/2022-05-

aura/blob/4989a2077546a5394e3650bf3c224669a0f7e690/convex-

platform/contracts/contracts/Booster.sol#L400

https://github.com/code-423n4/2022-05-

aura/blob/4989a2077546a5394e3650bf3c224669a0f7e690/convex-

platform/contracts/contracts/RewardFactory.sol#L72

Version 0.8.0 introduces internal overflow checks, so using SafeMath is redundant

and adds overhead

There are 2 instances of this issue:

https://github.com/code-423n4/2022-05-

aura/blob/4989a2077546a5394e3650bf3c224669a0f7e690/contracts/AuraBalR

ewardPool.sol#L5

File: convex-platform/contracts/contracts/Booster.sol

400: require(pool.shutdown == false, "pool is closed");

574: require(pool.shutdown == false, "pool is closed");

File: convex-platform/contracts/contracts/RewardFactory.sol

72: require(msg.sender == operator || rewardAccess[msg.sende

[G-24] Don’t use SafeMath once the solidity version is 0.8.0
or greater

File: contracts/AuraBalRewardPool.sol #1

5: import { SafeMath } from "@openzeppelin/contracts-0.8/utils/math

https://github.com/code-423n4/2022-05-aura/blob/4989a2077546a5394e3650bf3c224669a0f7e690/convex-platform/contracts/contracts/Booster.sol#L400
https://github.com/code-423n4/2022-05-aura/blob/4989a2077546a5394e3650bf3c224669a0f7e690/convex-platform/contracts/contracts/RewardFactory.sol#L72
https://github.com/code-423n4/2022-05-aura/blob/4989a2077546a5394e3650bf3c224669a0f7e690/contracts/AuraBalRewardPool.sol#L5

https://github.com/code-423n4/2022-05-

aura/blob/4989a2077546a5394e3650bf3c224669a0f7e690/contracts/AuraStaki

ngProxy.sol#L7

Saves deployment costs

There are 32 instances of this issue. For details, see the warden’s full report.

<x> * 2 is equivalent to <x> << 1 and <x> / 2 is the same as <x> >> 1 . The MUL

and DIV opcodes cost 5 gas, whereas SHL and SHR only cost 3 gas

There are 5 instances of this issue:

https://github.com/code-423n4/2022-05-

aura/blob/4989a2077546a5394e3650bf3c224669a0f7e690/contracts/AuraMer

kleDrop.sol#L136

File: contracts/AuraStakingProxy.sol #2

7: import { SafeMath } from "@openzeppelin/contracts-0.8/utils/math

[G-25] Duplicated require() / revert() checks should be
refactored to a modifier or function

[G-26] Multiplication/division by two should use bit shi�ing

File: contracts/AuraMerkleDrop.sol

136: uint256 penalty = address(auraLocker) == address(0)

File: contracts/AuraBalRewardPool.sol

183: uint256 penalty = (reward * 2) / 10;

https://github.com/code-423n4/2022-05-aura/blob/4989a2077546a5394e3650bf3c224669a0f7e690/contracts/AuraStakingProxy.sol#L7
https://github.com/code-423n4/2022-05-aura-findings/issues/33
https://github.com/code-423n4/2022-05-aura/blob/4989a2077546a5394e3650bf3c224669a0f7e690/contracts/AuraMerkleDrop.sol#L136

https://github.com/code-423n4/2022-05-

aura/blob/4989a2077546a5394e3650bf3c224669a0f7e690/contracts/AuraBalR

ewardPool.sol#L183

https://github.com/code-423n4/2022-05-

aura/blob/4989a2077546a5394e3650bf3c224669a0f7e690/contracts/AuraMat

h.sol#L36

If the variable is only accessed once, it’s cheaper to use the state variable directly

that one time

There is 1 instance of this issue:

https://github.com/code-423n4/2022-05-

aura/blob/4989a2077546a5394e3650bf3c224669a0f7e690/contracts/AuraLock

er.sol#L328

Checks that involve constants should come before checks that involve state

variables

File: contracts/AuraMath.sol

36: return (a / 2) + (b / 2) + (((a % 2) + (b % 2)) / 2);

36: return (a / 2) + (b / 2) + (((a % 2) + (b % 2)) / 2);

36: return (a / 2) + (b / 2) + (((a % 2) + (b % 2)) / 2);

[G-27] Stack variable used as a cheaper cache for a state
variable is only used once

File: contracts/AuraLocker.sol #1

328: uint256 epochindex = epochs.length;

[G-28] require() or revert() statements that check input
arguments should be at the top of the function

https://github.com/code-423n4/2022-05-aura/blob/4989a2077546a5394e3650bf3c224669a0f7e690/contracts/AuraBalRewardPool.sol#L183
https://github.com/code-423n4/2022-05-aura/blob/4989a2077546a5394e3650bf3c224669a0f7e690/contracts/AuraMath.sol#L36
https://github.com/code-423n4/2022-05-aura/blob/4989a2077546a5394e3650bf3c224669a0f7e690/contracts/AuraLocker.sol#L328

There are 11 instances of this issue:

https://github.com/code-423n4/2022-05-

aura/blob/4989a2077546a5394e3650bf3c224669a0f7e690/contracts/AuraMer

kleDrop.sol#L69

https://github.com/code-423n4/2022-05-

aura/blob/4989a2077546a5394e3650bf3c224669a0f7e690/contracts/AuraBalR

ewardPool.sol#L77

https://github.com/code-423n4/2022-05-

aura/blob/4989a2077546a5394e3650bf3c224669a0f7e690/contracts/AuraLock

er.sol#L472

File: contracts/AuraMerkleDrop.sol

69: require(_expiresAfter > 2 weeks, "!expiry");

122: require(_amount > 0, "!amount");

File: contracts/AuraBalRewardPool.sol

77: require(_startDelay < 2 weeks, "!delay");

File: contracts/AuraLocker.sol

472: require(newDelegatee != address(0), "Must delegate to so

822: require(_rewards > 0, "No reward");

851: require(_reward > 0, "No reward");

File: contracts/Aura.sol

68: require(_amount > 0, "Must mint something");

https://github.com/code-423n4/2022-05-aura/blob/4989a2077546a5394e3650bf3c224669a0f7e690/contracts/AuraMerkleDrop.sol#L69
https://github.com/code-423n4/2022-05-aura/blob/4989a2077546a5394e3650bf3c224669a0f7e690/contracts/AuraBalRewardPool.sol#L77
https://github.com/code-423n4/2022-05-aura/blob/4989a2077546a5394e3650bf3c224669a0f7e690/contracts/AuraLocker.sol#L472

https://github.com/code-423n4/2022-05-

aura/blob/4989a2077546a5394e3650bf3c224669a0f7e690/contracts/Aura.sol#

L68

https://github.com/code-423n4/2022-05-

aura/blob/4989a2077546a5394e3650bf3c224669a0f7e690/contracts/AuraStaki

ngProxy.sol#L129

https://github.com/code-423n4/2022-05-

aura/blob/4989a2077546a5394e3650bf3c224669a0f7e690/convex-

platform/contracts/contracts/BaseRewardPool.sol#L127

https://github.com/code-423n4/2022-05-

aura/blob/4989a2077546a5394e3650bf3c224669a0f7e690/convex-

platform/contracts/contracts/Booster.sol#L281

The code should be refactored such that they no longer exist, or the block should do

something useful, such as emitting an event or reverting. If the block is an empty if-

69: require(_minter != address(0), "Invalid minter");

File: contracts/AuraStakingProxy.sol

129: require(_incentive <= 100, "too high");

File: convex-platform/contracts/contracts/BaseRewardPool.sol

127: require(_reward != address(0),"!reward setting");

File: convex-platform/contracts/contracts/Booster.sol

281: require(_platform <= 200, "!platform");

[G-29] Empty blocks should be removed or emit something

https://github.com/code-423n4/2022-05-aura/blob/4989a2077546a5394e3650bf3c224669a0f7e690/contracts/Aura.sol#L68
https://github.com/code-423n4/2022-05-aura/blob/4989a2077546a5394e3650bf3c224669a0f7e690/contracts/AuraStakingProxy.sol#L129
https://github.com/code-423n4/2022-05-aura/blob/4989a2077546a5394e3650bf3c224669a0f7e690/convex-platform/contracts/contracts/BaseRewardPool.sol#L127
https://github.com/code-423n4/2022-05-aura/blob/4989a2077546a5394e3650bf3c224669a0f7e690/convex-platform/contracts/contracts/Booster.sol#L281

statement block to avoid doing subsequent checks in the else-if/else conditions, the

else-if/else conditions should be nested under the negation of the if-statement,

because they involve different classes of checks, which may lead to the introduction

of errors when the code is later modified (if(x){}else if(y){...}else{...} =>

if(!x){if(y){...}else{...}})

There are 6 instances of this issue:

https://github.com/code-423n4/2022-05-

aura/blob/4989a2077546a5394e3650bf3c224669a0f7e690/convex-

platform/contracts/contracts/VoterProxy.sol#L312

https://github.com/code-423n4/2022-05-

aura/blob/4989a2077546a5394e3650bf3c224669a0f7e690/convex-

platform/contracts/contracts/ExtraRewardStashV3.sol#L116-L117

File: convex-platform/contracts/contracts/VoterProxy.sol

312: }catch{}

File: convex-platform/contracts/contracts/ExtraRewardStashV3.sol

116 try IRewardHook(rewardHook).onRewardClaim(){
117: }catch{}

117: }catch{}

File: convex-platform/contracts/contracts/Booster.sol

361 try IStaker(staker).withdrawAll(pool.lptoken,pool.gauge
362: }catch{}

362: }catch{}

389: }catch{}

https://github.com/code-423n4/2022-05-aura/blob/4989a2077546a5394e3650bf3c224669a0f7e690/convex-platform/contracts/contracts/VoterProxy.sol#L312
https://github.com/code-423n4/2022-05-aura/blob/4989a2077546a5394e3650bf3c224669a0f7e690/convex-platform/contracts/contracts/ExtraRewardStashV3.sol#L116-L117

https://github.com/code-423n4/2022-05-

aura/blob/4989a2077546a5394e3650bf3c224669a0f7e690/convex-

platform/contracts/contracts/Booster.sol#L361-L362

Custom errors are available from solidity version 0.8.4. The instances below match

or exceed that version

There are 101 instances of this issue. For details, see the warden’s full report.

If a function modifier such as onlyOwner is used, the function will revert if a normal

user tries to pay the function. Marking the function as payable will lower the gas

cost for legitimate callers because the compiler will not include checks for whether a

payment was provided. The extra opcodes avoided are

CALLVALUE (2), DUP1 (3), ISZERO (3), PUSH2 (3), JUMPI (10), PUSH1 (3), DUP1 (3), REVERT

(0), JUMPDEST (1), POP (2), which costs an average of about 21 gas per call to the

function, in addition to the extra deployment cost

There are 37 instances of this issue. For details, see the warden’s full report.

Contracts are allowed to override their parents’ functions and change the visibility

from external to public and can save gas by doing so.

There are 18 instances of this issue:

[G-30] Use custom errors rather than revert() / require()
strings to save deployment gas

[G-31] Functions guaranteed to revert when called by normal
users can be marked payable

[G-32] public functions not called by the contract should be
declared external instead

File: contracts/ExtraRewardsDistributor.sol

117: function getReward(address _account, address _token) public

127 function getReward(
128 address _account,

https://github.com/code-423n4/2022-05-aura/blob/4989a2077546a5394e3650bf3c224669a0f7e690/convex-platform/contracts/contracts/Booster.sol#L361-L362
https://github.com/code-423n4/2022-05-aura-findings/issues/33
https://github.com/code-423n4/2022-05-aura-findings/issues/33
https://docs.soliditylang.org/en/latest/contracts.html#function-overriding

https://github.com/code-423n4/2022-05-

aura/blob/4989a2077546a5394e3650bf3c224669a0f7e690/contracts/ExtraRew

ardsDistributor.sol#L117

https://github.com/code-423n4/2022-05-

aura/blob/4989a2077546a5394e3650bf3c224669a0f7e690/contracts/AuraMer

kleDrop.sol#L114-L118

https://github.com/code-423n4/2022-05-

aura/blob/4989a2077546a5394e3650bf3c224669a0f7e690/contracts/AuraPena

ltyForwarder.sol#L47-L48

129 address _token,
130: uint256 _startIndex

File: contracts/AuraMerkleDrop.sol

114 function claim(
115 bytes32[] calldata _proof,
116 uint256 _amount,
117 bool _lock
118:) public returns (bool) {

149 function forwardPenalty() public {
150: uint256 toForward = pendingPenalty;

File: contracts/AuraPenaltyForwarder.sol

47 function forward() public {
48: require(block.timestamp > lastDistribution + distributio

File: contracts/AuraBalRewardPool.sol

138: function stakeFor(address _for, uint256 _amount) public upda

152 function withdraw(

https://github.com/code-423n4/2022-05-aura/blob/4989a2077546a5394e3650bf3c224669a0f7e690/contracts/ExtraRewardsDistributor.sol#L117
https://github.com/code-423n4/2022-05-aura/blob/4989a2077546a5394e3650bf3c224669a0f7e690/contracts/AuraMerkleDrop.sol#L114-L118
https://github.com/code-423n4/2022-05-aura/blob/4989a2077546a5394e3650bf3c224669a0f7e690/contracts/AuraPenaltyForwarder.sol#L47-L48

https://github.com/code-423n4/2022-05-

aura/blob/4989a2077546a5394e3650bf3c224669a0f7e690/contracts/AuraBalR

ewardPool.sol#L138

https://github.com/code-423n4/2022-05-

aura/blob/4989a2077546a5394e3650bf3c224669a0f7e690/contracts/BalLiquid

ityProvider.sol#L46

153 uint256 amount,
154 bool claim,
155 bool lock
156:) public updateReward(msg.sender) returns (bool) {

195 function forwardPenalty() public {
196: uint256 toForward = pendingPenalty;

File: contracts/BalLiquidityProvider.sol

46: function provideLiquidity(bytes32 _poolId, IVault.JoinPoolRe

File: convex-platform/contracts/contracts/ConvexMasterChef.sol

96 function add(
97 uint256 _allocPoint,
98 IERC20 _lpToken,
99 IRewarder _rewarder,
100 bool _withUpdate
101:) public onlyOwner {

121 function set(
122 uint256 _pid,
123 uint256 _allocPoint,
124 IRewarder _rewarder,
125 bool _withUpdate,
126 bool _updateRewarder
127:) public onlyOwner {

209: function deposit(uint256 _pid, uint256 _amount) public {

https://github.com/code-423n4/2022-05-aura/blob/4989a2077546a5394e3650bf3c224669a0f7e690/contracts/AuraBalRewardPool.sol#L138
https://github.com/code-423n4/2022-05-aura/blob/4989a2077546a5394e3650bf3c224669a0f7e690/contracts/BalLiquidityProvider.sol#L46

https://github.com/code-423n4/2022-05-

aura/blob/4989a2077546a5394e3650bf3c224669a0f7e690/convex-

platform/contracts/contracts/ConvexMasterChef.sol#L96-L101

https://github.com/code-423n4/2022-05-

aura/blob/4989a2077546a5394e3650bf3c224669a0f7e690/convex-

platform/contracts/contracts/VoterProxy.sol#L151

https://github.com/code-423n4/2022-05-

aura/blob/4989a2077546a5394e3650bf3c224669a0f7e690/convex-

platform/contracts/contracts/BaseRewardPool.sol#L191-L193

239: function withdraw(uint256 _pid, uint256 _amount) public {

283: function emergencyWithdraw(uint256 _pid) public {

File: convex-platform/contracts/contracts/VoterProxy.sol

151: function isValidSignature(bytes32 _hash, bytes memory) publ

File: convex-platform/contracts/contracts/BaseRewardPool.sol

191 function stakeFor(address _for, uint256 _amount)
192 public
193: returns(bool)

File: convex-platform/contracts/contracts/VirtualBalanceRewardPool.so

178 function withdraw(address _account, uint256 amount)
179 public
180: updateReward(_account)

https://github.com/code-423n4/2022-05-aura/blob/4989a2077546a5394e3650bf3c224669a0f7e690/convex-platform/contracts/contracts/ConvexMasterChef.sol#L96-L101
https://github.com/code-423n4/2022-05-aura/blob/4989a2077546a5394e3650bf3c224669a0f7e690/convex-platform/contracts/contracts/VoterProxy.sol#L151
https://github.com/code-423n4/2022-05-aura/blob/4989a2077546a5394e3650bf3c224669a0f7e690/convex-platform/contracts/contracts/BaseRewardPool.sol#L191-L193

https://github.com/code-423n4/2022-05-

aura/blob/4989a2077546a5394e3650bf3c224669a0f7e690/convex-

platform/contracts/contracts/VirtualBalanceRewardPool.sol#L178-L180

https://github.com/code-423n4/2022-05-

aura/blob/4989a2077546a5394e3650bf3c224669a0f7e690/convex-

platform/contracts/contracts/Booster.sol#L493

C4 is an open organization governed by participants in the community.

C4 Contests incentivize the discovery of exploits, vulnerabilities, and bugs in smart

contracts. Security researchers are rewarded at an increasing rate for finding higher-

risk issues. Contest submissions are judged by a knowledgeable security researcher

and solidity developer and disclosed to sponsoring developers. C4 does not

conduct formal verification regarding the provided code but instead provides final

verification.

C4 does not provide any guarantee or warranty regarding the security of this

project. All smart contract so�ware should be used at the sole risk and responsibility

of users.

Top

An open organization | Twitter | Discord | GitHub | Medium | Newsletter | Media kit |

code4rena.eth

File: convex-platform/contracts/contracts/Booster.sol

493: function withdrawAll(uint256 _pid) public returns(bool){

Disclosures

https://github.com/code-423n4/2022-05-aura/blob/4989a2077546a5394e3650bf3c224669a0f7e690/convex-platform/contracts/contracts/VirtualBalanceRewardPool.sol#L178-L180
https://github.com/code-423n4/2022-05-aura/blob/4989a2077546a5394e3650bf3c224669a0f7e690/convex-platform/contracts/contracts/Booster.sol#L493
https://twitter.com/code4rena
https://discord.gg/code4rena
https://github.com/code-423n4/
https://medium.com/code4rena
https://code4rena.com/newsletter-signup
https://github.com/code-423n4/media-kit
https://etherscan.io/address/0xC2BC2F890067C511215F9463A064221577A53E10

