
Date June 2020

Bancor V2 AMM Security Audit

1 Executive Summary

2 Scope
2.1 Objectives

2.2 Key Observations

3 Recommendations

4 System Overview
4.1 Actors

5 Issues
5.1 Oracle updates can be manipulated to perform atomic front-running
attack Critical ✓ Addressed

5.2 Slippage and fees can be manipulated by a trader Major ✓ Addressed

5.3 Loss of the liquidity pool is not equally distributed Major ✓ Addressed

5.4 Oracle front-running could deplete reserves over time Major ✓ Addressed

5.5 Use of external calls with a fixed amount of gas Medium Won't Fix

5.6 Use of assert statement for input validation Minor ✓ Addressed

6 Bytecode Verification
6.1 Results

Appendix 1 - Code Quality Recommendations
A.1.1 Increase test coverage

Appendix 2 - Files in Scope
A.2.1 Contracts Description Table

A.2.2 Legend

Appendix 3 - Disclosure

1 Executive Summary

This report presents the results of our engagement with Bancor to review version 2 of
the Bancor Liquidity pool. The initial review was conducted over the course of two
weeks, from July 15th to July 26th, 2020 by Bernhard Mueller and Sergii Kravchenko.
A total of 15 person-days were spent.

During the first week, the auditors familiarized themselves with the existing Bancor
codebase as well as the novel concepts introduced with version 2 of the liquidity pool.
They assessed the code quality and checked for basic vulnerabilities, such as integer
overflow bugs and improper access permissions, and performed a preliminary analysis
with regards to the business logic. During the second week the auditors focused on the
behavior of the new liquidity pool model and its incentive mechanisms.

Several issues were discovered which were subsequently addressed by the Bancor
team. These fixes were reviewed over the course of two days, July 28th and July 29th
(a total of 4 person-days).

2 Scope

The initial 2-week review was conducted on a private Github repository while the
codebase was still under development. The list of files covered in the audit can be
found in the Appendix.

The review of the fixes occured on a recent commit on the public Bancor contracts
repository.

The total time budget of 3 person-weeks allotted to the main review phase was limited
considering the complexity of the system. Additionally, the code underwent several
changes throughout the audit. The review was performed on a best-effort basis with a
focus on covering as much ground as possible given the time available.

The mitigations provided by the Bancor team were reviewed over the course of 4
person-days, which was sufficient to confirm that the mitigations are somewhat
effective without exhaustively assessing their overall impact on the system. Due to its
high complexity, the system needs to be tested extensively under real-world conditions.

2.1 Objectives

Together with the the Bancor team, we identified the following priorities for our
review:

1. Identify known vulnerabilities particular to smart contract systems, as outlined in
our Smart Contract Best Practices, and the Smart Contract Weakness
Classification Registry;

2. Review the novel AMM mechanisms as well as the correctness of the code
implementing the new formulas;

3. Evaluate whether the system is consistently implements the intended functionality
and identify ways of gaming the system.

2.2 Key Observations

The code is generally of good quality and well-readable. The new formulas introduced
with v2 come with extensive test coverage and have been shown to behave correctly
under regular market conditions. That said, given the complexity of the system it is
difficult to assess whether the results incentives and fee mechanisms will produce the
desired results in a real-world scenario.

In the initial phase of the audit, the auditors demonstrated several ways of extracting
value from the pool. For instance, arbitrageurs could frontrun Oracle updates and
make conversions that took the future rebalancing into account (6.4). In an early
version, this arbitrage could be performed atomically by trading at a stale rate,
triggering the Oracle update and swapping in the same transaction (6.1). Users could
also minimize slippage and fees by atomically adding and removing large amounts of

https://github.com/bancorprotocol/contracts-solidity/tree/4ffec698485bc34128ada6015e76e1b2fdf3a884
https://consensys.github.io/smart-contract-best-practices/
https://swcregistry.io/

liquidity (e.g. provisioned via a flash loan) before and after a conversion (see 6.2 and
6.3).

Several mitigations for these issues were put in place in the final version that make
these attacks more difficult and to perform and riskier for the attackers. However, the
mitigations also increased the complexity of the system.

Fundamentally, the weight rebalancing mechanism creates an incentive to align the
balance of the primary reverve (i.e., the reserve containing an arbitary token we’ll refer
to as “XYZ”) such that deficits in that reserve are compensated at the cost of liqudiity
providers (LPs) who stake in the secondary reserve (which usually contains BNT). A
dynamic fee calculation mechanism has been added in the mitigation phase to
counterbalance the risk of BNT reserve balance permanently falling below the staked
balance. This mechanism charges users additional swap fees whenever the actual BNT
balance is in deficit (assuming the XYZ reserve is balanced). These additional fees are
directed to decrease the deficit. Ultimately however, some risk remains that the pool
contains insufficient reserves and not all LPs can withdraw their stake. This risk
primarily affects BNT LPs, but XYZ reserves may also have insufficient funds if the
total reserves deficit is large enough.

LPs should be adequately informed about the financial risks associated with providing
liquidity to either reserve. It is also recommended to carefully monitor the system in
production with limited liquidity.

3 Recommendations

Carefully review the issues and code quality recommendations described in this
report.

Create an exhaustive threat model describing all edge cases and possible attack
vectors with respect to variants of frontrunning and/or gaming the incentive
structure created by the Bancor V2 formula. Some potential attacks have been
outlined in this report but the analysis is not exhaustive. Clearly inform liquidity
providers about the risks associated with staking tokens in the pool.

Once the code and formula is finalized, it would be ideal to perform a detailed
audit of the overall system architecture in combination with a bug bounty
program. Notably, Bancor is already planning to launch with a beta pilot that
limits the maximum amount of liquidity per pool.

4 System Overview

Existing liquidity pools, including Bancor V1, require liquidity providers to add
determinate amounts of each of the underlying assets to the pool. This exposes
providers to a downside risk called impermanent loss: If the relative external market
price of the assets diverges from the price when liquidity was provided, the value of the
assets the provider can withdraw may be less than the combined value when the
liquidity was added.

Bancor V2 seeks to eliminate the risk of impermanent loss by allowing users to provide
liquidity with up to 100% exposure to a single ERC20 token. This is achieved by
dynamically adjusting the relative weights of the reserves based on an external Oracle.
With every “rebalancing”, the weights are adjusted such that the pool represents the
external price ratio between the token in the primary reserve (which contains an
arbitrary ERC20 token, referred to as XYZ in technical documentation) and the token
in the secondary reserve (usually BNT).

An additional feature of V2 is “Virtual Amplification”, a multiplier that virtually
inflates the staked reserves to allow for lower slippage in conversions. The idea is to
allow for more and larger conversions to occur on the pool, thus generating more fees
for liquidity providers.

4.1 Actors

The relevant actors are listed below with their respective abilities:

Liquidity pool owners can:

Update & enable the conversion whitelist. When enabled, only addresses that are
whitelisted are allowed to use the converter.

Set the conversion fee (bound by the max conversion fee set during construction).

Withdraw any ERC20 tokens held by the anchor. In v2, the anchor is an instance
of PoolTokensContainer that contains the two pool tokens.

In the case of an upgrade, the pool owner temporarily transfers ownership to the
Bancor upgrader smart contract, which - once granted ownership - has the
additional ability to withdraw tokens and Ether from the pool (in order to transfer
it to a new contract account).

Pool users can:

Add or remove liquidity to/from the pool, which results in pool tokens to be
minted or burned. Note that while in v1 there is only a single pool token per pool,
in v2 each pool is anchored to exactly two pool tokens (one per reserve).

Convert between the tokens in reserve. Note that the convert() function is only
callable via the Bancor Network contract which was not within the scope of this
audit.

5 Issues

Each issue has an assigned severity:

Minor issues are subjective in nature. They are typically suggestions around best
practices or readability. Code maintainers should use their own judgment as to
whether to address such issues.

Medium issues are objective in nature but are not security vulnerabilities. These
should be addressed unless there is a clear reason not to.

Major issues are security vulnerabilities that may not be directly exploitable or
may require certain conditions in order to be exploited. All major issues should be
addressed.

Critical issues are directly exploitable security vulnerabilities that need to be
fixed.

5.1 Oracle updates can be manipulated to perform atomic
front-running attack Critical ✓ Addressed

Resolution

The issue was mitigated by updating the Oracle price only once per block and
consistently only using the old value throughout the block instead of querying the
Oracle when adding or removing liquidity. Arbitrageurs can now no longer do the
profitable trade within a single transaction which also precludes the possibility of
using flash loans to amplify the attack.

Description

It is possible to atomically arbitrage rate changes in a risk-free way by “sandwiching”
the Oracle update between two transactions. The attacker would send the following 2
transactions at the moment the Oracle update appears in the mempool:

The first transaction, which is sent with a higher gas price than the Oracle update
transaction, converts a very small amount. This “locks in” the conversion weights for
the block since handleExternalRateChange() only updates weights once per block. By
doing this, the arbitrageur ensures that the stale Oracle price is initially used when
doing the first conversion in the following transaction.

The second transaction, which is sent at a slightly lower gas price than the transaction
that updates the Oracle, does the following:

1. Perform a large conversion at the old weight;

2. Add a small amount of Liquidity to trigger rebalancing;

3. Convert back at the new rate.

4. The attacker can also leverage the incentive generated by the formula by
converting such that primary reserve balance == primary reserve staked balance.

The attacker can obtain liquidity for step 2 using a flash loan. The attack will deplete
the reserves of the pool. An example is shown in section 5.4.

Recommendation

Do not allow users to trade at a stale Oracle rate and trigger an Oracle price update in
the same transaction.

5.2 Slippage and fees can be manipulated by a trader
Major ✓ Addressed

https://github.com/ConsenSys/bancor-audit-2020-06/issues/2
https://github.com/ConsenSys/bancor-audit-2020-06/issues/8

Resolution

The issue was addressed by introducing an exit fee mechanism. When a liquidity
provider wants to withdraw some liquidity, the smart contract returns fewer
tokens if the primary reserve is not in the balanced state. So in most cases, the
manipulations described in the issue should potentially be non-profitable
anymore. Although, in some cases, the traders still may have some incentive to
add liquidity before making the trade and remove it after to get a part of the fees
(i.e., if the pool is going to be in a balanced state after the trade).

Description

Users are making trades against the liquidity pool (converter) with slippage and fees
defined in the converter contract and Bancor formula. The following steps can be done
to optimize trading costs:

Instead of just making a trade, a user can add a lot of liquidity (of both tokens, or
only one of them) to the pool after taking a flash loan, for example.

Make the trade.

Remove the added liquidity.

Because the liquidity is increased on the first step, slippage is getting smaller for this
trade. Additionally, the trader receives a part of the fees for this trade by providing
liquidity.

One of the reasons why this is possible is described in another issue issue 5.3.

This technique of reducing slippage could be used by the trader to get more profit from
any frontrunning/arbitrage opportunity and can help to deplete the reserves.

Example

Consider the initial state with an amplification factor of 20 and zero fees:

Initial state:

converter TKN balance = 10000000

converter TKN weight = 500000

converter BNT balance = 10000000

converter BNT weight = 500000

Here a user can make a trade with the following rate:

-> Convert 9000000 TKN into 8612440 BNT.

But if the user adds 100% of the liquidity in both tokens before the trade, the slippage
will be lower:

-> Convert 9000000 TKN into 8801955 BNT.

Recommendation

Fixing this issue requires some modification of the algorithm.

5.3 Loss of the liquidity pool is not equally distributed
Major ✓ Addressed

Resolution

The issue was addressed by adding a new fee mechanism called ‘adjusted fees’.
This mechanism aims to decrease the deficit of the reserves over time. If there is a
deficit of reserves, it is usually present on the secondary token side, because there
is a strong incentive to bring the primary token to the balanced state. Roughly
speaking, the idea is that if the secondary token has a deficit in reserves, there are
additional fees for trading that token. These fees are not distributed across the
liquidity providers like the regular fees. Instead, they are just populating the
reserve, decreasing the existing deficit.

Loss is still not distributed across the liquidity providers, and there is a possibility
that there are not enough funds for everyone to withdraw them. In the case of a
run on reserves, LPs will be able to withdraw funds on a first-come-first-serve
basis.

Description

All stakeholders in the liquidity pool should be able to withdraw the same amount as
they staked plus a share of fees that the converter earned during their staking period.

code/contracts/converter/LiquidityPoolV2Converter.sol:L491-L505

 IPoolTokensContainer(anchor).burn(_poolToken, msg.sender,

_amount);

 // calculate how much liquidity to remove
 // if the entire supply is liquidated, the entire staked amount
should be sent, otherwise
 // the price is based on the ratio between the pool token supply
and the staked balance
 uint256 reserveAmount = 0;
 if (_amount == initialPoolSupply)

 reserveAmount = balance;

 else

https://github.com/ConsenSys/bancor-audit-2020-06/issues/7

 reserveAmount = _amount.mul(balance).div(initialPoolSupply);

 // sync the reserve balance / staked balance
 reserves[reserveToken].balance =

reserves[reserveToken].balance.sub(reserveAmount);

 uint256 newStakedBalance =
stakedBalances[reserveToken].sub(reserveAmount);

 stakedBalances[reserveToken] = newStakedBalance;

The problem is that sometimes there might not be enough funds in reserve (for
example, due to this issue issue 5.4). So the first ones who withdraw their stakes
receive all the tokens they own. But the last stakeholders might not be able to get their
funds back because the pool is empty already.

So under some circumstances, there is a chance that users can lose all of their staked
funds.

This issue also has the opposite side: if the liquidity pool makes an extra profit, the
stakers do not owe this profit and cannot withdraw it.

Recommendation

Distribute losses evenly across the liquidity providers.

5.4 Oracle front-running could deplete reserves over time
Major ✓ Addressed

Resolution

To mitigate this issue, the Bancor team has added a mechanism that adjusts the
effective weights once per block based on its internal price feed. The conversion
rate re-anchors to the external oracle price once the next oracle update comes in.
This mechanism should help to cause the weight rebalancing caused by the
external Oracle update to be less pronounced, thereby limiting the profitability of
Oracle frontrunning. It should be noted that it also adds another layer of
complexity to the system. It is difficult to predict the actual effectiveness and
impact of this mitigation measure without simulating the system under real-world
conditions.

Description

Bancor’s weight rebalancing mechanism uses Chainlink price oracles to dynamically
update the weights of the assets in the pool to track the market price. Due to Oracle
price updates being visible in the mempool before they are included in a block, it is

https://github.com/ConsenSys/bancor-audit-2020-06/issues/4

always possible to know about Oracle updates in advance and attempt to make a
favourable conversion which takes the future rebalancing into account, followed by the
reverse conversion after the rebalancing has occurred. This can be done with high
liquidity and medium risk since transaction ordering on the Ethereum blockchain is
largely predictable.

Over time, this could deplete the secondary reserve as the formula compensates by
rebalancing the weights such that the secondary token is sold slightly below its market
rate (this is done to create an incentive to bring the primary reserve back to the
amount staked by liquidity providers).

Example

Consider the initial state with an amplification factor of 20 and zero fees:

converter TKN balance = 100,000,000

converter TKN weight = 500,000

converter BNT balance = 100,000,000

converter BNT weight = 500,000

frontrunner TKN balance = 100,000,000

frontrunner BNT balance = 0

Oracle A rate = 10,000

Oracle B rate - 10,000

The frontrunner sees a Chainlink transaction in the mempool that changes Oracle B
rate to 10,500. He sends a transaction with a slightly higher gas price than the Oracle
update.

Convert 1,000,000 TKN into 999,500 BNT.

The intermediate state:

converter TKN balance = 101,000,000

converter TKN weight = 500,000

converter BNT balance = 99,000,500

converter BNT weight = 500,000

frontrunner TKN balance = 99,000,000

frontrunner BNT balance = 999,500

In the following block, the frontrunner sends another transaction with a high gas price
(the goal is to be first to convert at the new rate set by the Oracle update):

Convert 999,500 BNT back into TKN.

The state is:

converter TKN balance = 99,995,006

converter TKN weight = 498,754

converter BNT balance = 100,000,000

converter BNT weight = 501,246

frontrunner TKN balance = 100,004,994

frontrunner BNT balance = 0

The frontrunner can now leverage the incentive created by the formula to bring back
TKN reserve balance to staked TKN balance by converting TKN back to BNT:

Convert 4,994 TKN to BNT

The final state is:

converter TKN balance = 100,000,000

converter TKN weight = 498,754

converter BNT balance = 99,995,031

converter BNT weight = 501,246

frontrunner TKN balance = 100,000,000

frontrunner BNT balance = 4,969

The pool is now balanced and the frontrunner has gained 4,969 BNT.

Recommendation

This appears to be a fundamental problem caused by the fact that rebalancing is
predictable. It is difficult to assess the actual impact of this issue without also
reviewing components external to the scope of this audit (Chainlink) and extensively
testing the system under real-world conditions.

5.5 Use of external calls with a fixed amount of gas
Medium Won't Fix

Resolution

It was decided to accept this minor risk as the usage of .call() might introduce
other unexpected behavior.

Description

The converter smart contract uses the Solidity transfer() function to transfer Ether.

.transfer() and .send() forward exactly 2,300 gas to the recipient. The goal of this
hardcoded gas stipend was to prevent reentrancy vulnerabilities, but this only makes
sense under the assumption that gas costs are constant. Recently EIP 1884 was
included in the Istanbul hard fork. One of the changes included in EIP 1884 is an
increase to the gas cost of the SLOAD operation, causing a contract’s fallback function
to cost more than 2300 gas.

Examples

code/contracts/converter/ConverterBase.sol:L228

_to.transfer(address(this).balance);

code/contracts/converter/LiquidityPoolV2Converter.sol:L370

if (_targetToken == ETH_RESERVE_ADDRESS)

code/contracts/converter/LiquidityPoolV2Converter.sol:L509

msg.sender.transfer(reserveAmount);

Recommendation

It’s recommended to stop using .transfer() and .send() and instead use .call(). Note
that .call() does nothing to mitigate reentrancy attacks, so other precautions must be
taken. To prevent reentrancy attacks, it is recommended that you use the checks-
effects-interactions pattern.

https://github.com/ConsenSys/bancor-audit-2020-06/issues/5

5.6 Use of assert statement for input validation Minor
✓ Addressed

Resolution

Assertions are no longer used in the final version reviewed.

Description

Solidity assertion should only be used to assert invariants, i.e. statements that are
expected to always hold if the code behaves correctly. Note that all available gas is
consumed when an assert-style exception occurs.

Examples

It appears that assert() is used in one location within the test scope to catch invalid
user inputs:

code/contracts/converter/LiquidityPoolV2Converter.sol:L354

assert(amount < targetReserveBalance);

Recommendation

Using require() instead of assert() .

https://github.com/ConsenSys/bancor-audit-2020-06/issues/6

6 Bytecode Verification

Bytecode-level checking helps to ensure that the code behaves correctly for all input
values. In this audit we used Mythx deep analysis to verify a small number of basic
properties on the weight rebalancing and conversion functions and to detect conditions
that would cause runtime exceptions. MythX uses symbolic execution and input
fuzzing to explore a large amount of possible inputs and program states.

Note that the Bancor formula is compiled with solc-0.4.25 / 20,000 optimization
passes.

We checked whether the following properties hold for all inputs:

[P1] Function balancedWeights: Sum of weights returned by must equal
MAX_WEIGHT

[P2a] Function crossReserveTargetAmount: Output amount must not be greater
than target reserve balance

[P2b] Function crossReserveTargetAmount: If reserve balances are equal and
source weight < target weight, target amount must be lower than input amount

Note that balancedWeights is known to revert when (t * p) / (r * q) * log(s / t) is not
in the range [-1/e, 1/e], where:

t is the primary reserve staked balance

s is the primary reserve current balance

r is the secondary reserve current balance

q is the primary reserve rate

p is the secondary reserve rate

The following preconditions were set on the input to reflect realistic input ranges. For
balancedWeights :

require(_primaryReserveStakedBalance > 0);
require(_primaryReserveBalance > 0);
require(_secondaryReserveBalance > 0);
require(_reserveRateNumerator > 0);
require(_reserveRateDenominator > 0);
require(_reserveRateNumerator < 10 ** 6);
require(_reserveRateDenominator < 10 ** 6);
require(_primaryReserveStakedBalance <= 10**30);
require(_primaryReserveBalance <= 10**30);
require(_secondaryReserveBalance <= 10**30);

For crossReserveTargetAmount :

require(_sourceReserveBalance > 0);
require(_targetReserveBalance > 0);
require(_sourceReserveBalance <= 10**30);

https://mythx.io/

require(_targetReserveBalance <= 10**30);
require(_sourceReserveWeight + _targetReserveWeight == MAX_WEIGHT);
require(_amount > 0);
require(_amount <= 10**30);

6.1 Results

No violations of the properties tested were found. Our tools also did not identify any
cases that would cause the function to revert for the given input ranges.

Appendix 1 - Code Quality Recommendations

A.1.1 Increase test coverage

While test coverage for BancorFormula.sol is high, the tests for ConverterBase.sol and
LiquidityPoolV2Converter.sol only reach ~67% of statements and less than 50% of
branches. In general we recommend aiming for near-100% test coverage.

File
%

Stmts
%

Branch
%

Funcs
%

Lines
Uncovered

Lines

contracts/converter/ 66.67 42.86 47.21 58.94

BancorFormula.sol 94.03 67.65 77.78 90.41
…
4,1147,1159

ConverterBase.sol 69.01 41.67 75 71.05
…
406,432,548

LiquidityPoolV2Converter.sol 66.67 47.92 51.72 66.27
…
548,549,601

PoolTokensContainer.sol 93.33 50 83.33 93.33 86

contracts/utility/ 60 39.29 70.83 61.6

Owned.sol 100 66.67 100 100

PriceOracle.sol 61.9 16.67 66.67 63.64
…
100,114,115

ReentrancyGuard.sol 100 50 100 100

TokenHandler.sol 100 50 100 100

TokenHolder.sol 0 100 0 0 35

Utils.sol 100 66.67 100 100

Whitelist.sol 0 0 0 0
…
74,75,84,85

———————————– ———- ———- ———- ———- —————-

Appendix 2 - Files in Scope

This audit focused on the files related to LiquidityPoolV2Converter as well as newly
added functions in BancorFormula .

A.2.1 Contracts Description Table

File SHA-1 hash

contracts/converter/BancorFormula.sol 097b6424e61614a1b50751287d7c53361816bcf4

contracts/converter/ConverterBase.sol 289a5d5eb28f25bd5ca44874702d2b434633d0ae

contracts/converter/LiquidityPoolV2Converter.sol f321b59217451179cf82fe6a3cad07c5c9415784

contracts/converter/PoolTokensContainer.sol 813b0a091100b56511fe5f78346d99f74aee8ecc

contracts/utility/TokenHandler.sol f0f6f6f2e62bb529270af8c66f7d202ff22f849a

contracts/utility/TokenHolder.sol 91292c475bd34ca893f428e811d366c1b07a0535

contracts/utility/Owned.sol b9732bd40652fac0cbc8d06b02a32b42bdefa358

contracts/utility/PriceOracle.sol 2c0da6b8fe40f42639f29e436b4ef312ef62c628

contracts/utility/ReentrancyGuard.sol dc59150282a9058a974afeb39f7a59ed4cfe3e91

Contract Type

└ Function Name Visibility

LiquidityPoolV2Converter Implementation LiquidityPoolConverter

└ Public

❗

└ _validPoolToken Internal

"

└ converterType Public

❗

└ isActive Public

❗

└ activate Public

❗

└ reserveStakedBalance Public

❗

└ setReserveStakedBalance Public

❗

└ setMaxStakedBalances Public

❗

└ disableMaxStakedBalances Public

❗

└ poolToken Public

❗

└ liquidationLimit Public

❗

└ addReserve Public

❗

└ targetAmountAndFee Public

❗

└ doConvert Internal

"

└ addLiquidity Public

❗

└ removeLiquidity Public

❗

└ adjustedFee Internal

"

└ targetAmountAndFee Private

#

└ handleExternalRateChange Private

#

└ rebalance Public

❗

└ newReserveWeights Private

#

└ dispatchRateEvents Private

#

└ dispatchTokenRateUpdateEvent Private

#

└ dispatchPoolTokenRateUpdateEvent Private

#

BancorFormula Implementation IBancorFormula

└ initMaxExpArray Private

#

└ initLambertArray Private

#

└ init Public

❗

└ purchaseTargetAmount Public

❗

└ saleTargetAmount Public

❗

└ crossReserveTargetAmount Public

❗

└ fundCost Public

❗

└ liquidateReserveAmount Public

❗

└ balancedWeights Public

❗

└ power Internal

"

└ generalLog Internal

"

└ floorLog2 Internal

"

└ findPositionInMaxExpArray Internal

"

└ generalExp Internal

"

└ optimalLog Internal

"

└ optimalExp Internal

"

└ lowerStake Internal

"

└ higherStake Internal

"

└ lambertPos1 Internal

"

└ lambertPos2 Internal

"

└ lambertPos3 Internal

"

└ lambertNeg1 Internal

"

└ balancedWeightsByStake Internal

"

└ normalizedWeights Internal

"

└ accurateWeights Internal

"

└ roundDiv Internal

"

└ calculatePurchaseReturn Public

❗

└ calculateSaleReturn Public

❗

└ calculateCrossReserveReturn Public

❗

└ calculateCrossConnectorReturn Public

❗

└ calculateFundCost Public

❗

└ calculateLiquidateReturn Public

❗

└ purchaseRate Public

❗

└ saleRate Public

❗

└ crossReserveRate Public

❗

A.2.2 Legend

Symbol Meaning

$

Function can modify state

%

Function is payable

└ liquidateRate Public

❗

Appendix 3 - Disclosure

ConsenSys Diligence (“CD”) typically receives compensation from one or more clients
(the “Clients”) for performing the analysis contained in these reports (the “Reports”).
The Reports may be distributed through other means, including via ConsenSys
publications and other distributions.

The Reports are not an endorsement or indictment of any particular project or team,
and the Reports do not guarantee the security of any particular project. This Report
does not consider, and should not be interpreted as considering or having any bearing
on, the potential economics of a token, token sale or any other product, service or other
asset. Cryptographic tokens are emergent technologies and carry with them high levels
of technical risk and uncertainty. No Report provides any warranty or representation
to any Third-Party in any respect, including regarding the bugfree nature of code, the
business model or proprietors of any such business model, and the legal compliance of
any such business. No third party should rely on the Reports in any way, including for
the purpose of making any decisions to buy or sell any token, product, service or other
asset. Specifically, for the avoidance of doubt, this Report does not constitute
investment advice, is not intended to be relied upon as investment advice, is not an
endorsement of this project or team, and it is not a guarantee as to the absolute
security of the project. CD owes no duty to any Third-Party by virtue of publishing
these Reports.

PURPOSE OF REPORTS The Reports and the analysis described therein are created
solely for Clients and published with their consent. The scope of our review is limited
to a review of Solidity code and only the Solidity code we note as being within the scope
of our review within this report. The Solidity language itself remains under
development and is subject to unknown risks and flaws. The review does not extend to
the compiler layer, or any other areas beyond Solidity that could present security risks.
Cryptographic tokens are emergent technologies and carry with them high levels of
technical risk and uncertainty.

CD makes the Reports available to parties other than the Clients (i.e., “third parties”) –
on its website. CD hopes that by making these analyses publicly available, it can help
the blockchain ecosystem develop technical best practices in this rapidly evolving area
of innovation.

LINKS TO OTHER WEB SITES FROM THIS WEB SITE You may, through hypertext
or other computer links, gain access to web sites operated by persons other than
ConsenSys and CD. Such hyperlinks are provided for your reference and convenience
only, and are the exclusive responsibility of such web sites’ owners. You agree that
ConsenSys and CD are not responsible for the content or operation of such Web sites,
and that ConsenSys and CD shall have no liability to you or any other person or entity
for the use of third party Web sites. Except as described below, a hyperlink from this
web Site to another web site does not imply or mean that ConsenSys and CD endorses
the content on that Web site or the operator or operations of that site. You are solely
responsible for determining the extent to which you may use any content at any other

web sites to which you link from the Reports. ConsenSys and CD assumes no
responsibility for the use of third party software on the Web Site and shall have no
liability whatsoever to any person or entity for the accuracy or completeness of any
outcome generated by such software.

TIMELINESS OF CONTENT The content contained in the Reports is current as of the
date appearing on the Report and is subject to change without notice. Unless indicated
otherwise, by ConsenSys and CD.

