

 1

BANCOR
 LIQUIDITYPOOL V2
Smart Contract Security Audit

Prepared by: Halborn

Date of Engagement: 08.16-17.2020
Visit: Halborn.com

http://halborn.com/

 2

Document Revision History & Contacts 3

1 Executive Summary 4

1.1 Introduction 4

1.2 Test Approach and Methodology 5

1.3 SCOPE 6

2 Assessment Summary And Findings Overview 7

3 Findings & Technical Details 8

3.1 Deprecated Pragma Version Of Solc – Medium 9

Description 9

Code Location 9-14

3.2 Block Time Stamp Alias Usage – Low 15

Description 15

Code Location 15

3.3 Divide Before Multiply - Low 15

Description 15

Code Location & Recommendation 16

3.4 External Function Calls Within Loop – Low 16

Description 16

Code Location 16

3.5 Exploitation Of Testnet Deployed Contract – Very Low 17

Description 17

Code Location 18

3.6 Strict Equalities - Very Low 19

Description 19

Code Location 19

3.7 Static Analysis Report - Informational 19

Description 19

Results 20

3.8 Automated Security Scan Report - Informational 26

Description & Results 26

3.9 In Line Assembly Usage - Informational 27

Description & Code Location 28

 3

DOCUMENT REVISION HISTORY

CONTACTS

CONTACT COMPANY EMAIL

Steven Walbroehl Halborn Steven.Walbroehl@halborn.com

Rob Behnke Halborn Rob.Behnke@halborn.com

Gabi Urrutia Halborn Gabi.Urrutia@halborn.com

Nishit Majithia Halborn Nishit.Majithia@halborn.com

VERSION MODIFICATION DATE AUTHOR

0.1 Document Creation 8/16/2020 Steven Walbroehl

0.2 Document Edits 8/17/2020 Steven Walbroehl

1.0 Document Final 8/17/2020 Steven Walbroehl

 4

1.1 INTRODUCTION
Bancor engaged Halborn to conduct a security assessment on their

oracle optimization smart contract beginning on August 14, 2020

and ending August 17th, 2020. The security assessment was scoped

to the contract LiquidityPoolV2Converter.sol , and audit the

security risk and implications regarding the changes introduced

by the development team at Bancor prior to its production release

shortly following the assessments deadline.

The contract scoped in this assessment introduces new

functionality for the Bancor on-chain liquidity protocol, which

is a DeFi platform that enables automated, decentralized exchange

on Ethereum and across blockchains. The entire set of smart

contracts create a protocol that is designed to pool liquidity

and perform peer-to-contract trades in a single transaction with

no counterparty. Users of the Bancor DeFi platform add liquidity

to automated market makers in exchange for trading fees.

In particular, the LiquidityPoolV2Converter smart contract tested

brings changes in the arithmetic and calculation of the

weights/rates and averages in the assets within the liquidity

pool. The formulas are dynamic, and are a composed of elements in

the price oracle’s rate (provided by Chainlink TKN and BNT

price), the arbitrage factor, the effective weight/rate of a

token staked in the liquidity pool, spot price, and target

weight/rate. Arbitrage incentives are intended to drive the price

in the pool to nominal values to allow liquidity providers to get

back tokens they stake at the same levels when originally staked.

Due to the importance of the dynamic arithmetic involved in the

formulas controlling the balancing mechanics and calculations

within the liquidity pool, the Halborn security team spent time

manually reviewing and testing arithmetic properties within the

source code, along with identifying any possible vulnerabilities

EX
EC
UT
IV

E
SU

MM
AR

Y

 5

in the new code due to common exploitation tactics.

Overall, the smart contract code is extremely well documented,

follows a high-quality software development standard, contains

many utilities and automation scripts to support continuous

deployment/testing/integration, and does not contain any obvious

exploitation vectors that Halborn was able to leverage within the

two-day timeframe of testing allotted. The most significant

observation made in the security assessment is in regards to the

current solc version utilized in the Bancor smart contracts

(0.4.26) The pragma version is used as a directive for solidity

the contracts implemented version of solidity code. With the

latest pragma being 0.7 at the time of this audit, the version in

use on the scope of this audit has been superseded, and is

several versions behind the recommended level. When discussing

this with the development team at Bancor, it was stated that a

project is soon underway to upgrade the smart contracts to a

modern level.

Though the outcome of this security audit is satisfactory; due to

time and resource constraints, only testing and verification of

essential properties related to the LiquidityPoolV2Converter was

performed to achieve objectives and deliverables set in the

scope. Halborn recommends performing further testing to validate

extended safety and correctness in context to the whole liquidity

pool set of contracts. External threats, such as economic

attacks, oracle attacks, and inter-contract functions and calls

should be validated for expected logic and state.

1.2 TEST APPROACH & METHODOLOGY
Halborn performed a combination of manual and automated security

testing to balance efficiency, timeliness, practicality, and

accuracy in regards to the scope of the smart contract audit.

While manual testing is recommended to uncover flaws in logic,

process, and implementation; automated testing techniques help

EX
EC
UT
IV

E
SU

MM
AR

Y

 6

enhance coverage of smart contracts, and can quickly identify

items that do not follow security best practices. The following

phases and associated tools were used throughout the term of the

audit:

• Research into architecture, purpose, and use of Bancor and

its implementation of Liquidity Pools.

• Smart Contract manual code read and walkthrough.

• Graphing out functionality and contract

calls/connectivity/functions within the oracle optimization

Github repository. (solgraph)

• Manual Assessment of use and safety for the critical

solidity variables and functions in scope to identify any

arithmetic related vulnerability classes.

• Scanning of solidity files for vulnerabilities, security

hotspots, or bugs. (MythX)

• Static Analysis of security for scoped contract, and

imported functions. (Slither)

• Testnet deployment (Truffle, Ganache)

• Automated exploitation of deployed contract vulnerabilities

(karl)

• Symbolic Execution / EVM bytecode security assessment (limited-

time)

1.3 SCOPE

IN-SCOPE:

New code related to the LiquidityPoolV2Converter smart contract.

OUT-OF-SCOPE:

External contracts, External Oracles, other smart contracts in

the oracle optimization repository or within the Bancor protocol

liquidity pool, economic attacks. EX
EC
UT
IV

E
SU

MM
AR

Y

 7

2. ASSESSMENT SUMMARY & FINDINGS
OVERVIEW

CRITICAL HIGH MEDIUM LOW

0 0 1 5

SECURITY ANALYSIS RISK LEVEL

DEPRECATED PRAGMA VERSION OF SOLC Medium

BLOCK TIME STAMP ALIAS USAGE Low

DIVIDE BEFORE MULTIPLY Low

EXTERNAL FUNCTION CALLS WITHIN LOOP Low

EXPLOITATION OF TESTNET DEPLOYED CONTRACT Very Low

STRICT EQUALITIES Very Low

STATIC ANALYSIS REPORT Informational

AUTOMATED SECURITY SCAN REPORT Informational

IN LINE ASSEMBLY USAGE Informational

 8

FINDINGS &
TECH DETAILS

 9

FI
ND
IN
GS
 &
 T
EC
H

DE
TA
IL
S

FI
ND
IN
GS
 &
 T
EC
H

DE
TA
IL
S

3.1 DEPRICATED PRAGMA VERSION OF
SOLC – MEDIUM

Description

The current version in use for Bancor is pragma 0.4.26 While this

version is still functional, and most security issues safely

implemented by mitigating the Bancor contracts with other utility

contracts such as SafeMath.sol and ReentrancyGuard.sol, the risk to

the long term sustainability and integrity of the solidity code

increases. At the time of this audit, the current version is

already at 0.7 The newer versions provide features that provide

checks and accounting, as well as prevent insecure use of code.

The follow list identifies areas of code improvements, areas in the

contract where it may have been identified, and deprecated

functionality that will need to be refactored into the existing

version in order to come to the latest pragma level.

Deprecated or Upgraded Items

UPDATED OR DEPRECATED FEATURE DETAIL
VERSION

RELEASED
IMPACTED CODE

Functions

Function callcode is now disallowed

(in favor of delegatecall). It is

still possible to use it via inline

assembly.

v0.5.0
None Located in Manual

Audit

suicide is now disallowed (in favor of

selfdestruct).
v0.5.0

None Located in Manual

Audit

sha3 is now disallowed (in favor of

keccak256).
v0.5.0

None Located in Manual

Audit

throw is now disallowed (in favor of

revert, require and assert).
v0.5.0

None Located in Manual

Audit

The try/catch statement allows you to

react on failed external calls.
v0.6.0

None Located in Manual

Audit

Conversions from address to address

payable are now possible via
v0.6.0 z

 10

FI
ND
IN
GS
 &
 T
EC
H

DE
TA
IL
S

payable(x), where x must be of type

address

Yul and Inline Assembly have a new

statement called leave that exits the

current function.

v0.6.0
None Located in Manual

Audit

The state mutability of functions can

now be restricted during inheritance:

Functions with default state

mutability can be overridden by pure

and view functions while view

functions can be overridden by pure

functions

v0.7.0
None Located in Manual

Audit

Disallow virtual for library

functions. This is a new type checker.
v0.7.0

None Located in Manual

Audit

Multiple events with the same name and

parameter types in the same

inheritance hierarchy are disallowed.

v0.7.0
None Located in Manual

Audit

Conversions

Explicit and implicit conversions from

decimal literals to bytesXX types is

now disallowed.

v0.5.0
None Located in Manual

Audit

Explicit and implicit conversions from

hex literals to bytesXX types of

different size is now disallowed.

v0.5.0

None Located in Manual

Audit

Exponentiation and shifts of literals

by non-literals will always use either

the type uint256 (for non-negative

literals) or int256 (for negative

literals) to perform the operation

v0.7.0

None Located in Manual

Audit

Literals and Suffixes

The unit denomination years is now

disallowed due to complications and

confusions about leap years. (since

v0.5.0)

v0.5.0
None Located in Manual

Audit

Trailing dots that are not followed by v0.5.0 None Located in Manual

 11

FI
ND
IN
GS
 &
 T
EC
H

DE
TA
IL
S

a number are now disallowed. (since

v0.5.0)

Audit

Combining hex numbers with unit

denominations (e.g. 0x1e wei) is now

disallowed. (since v0.5.0)

V0.5.0
None Located in Manual

Audit

The prefix 0X for hex numbers is

disallowed, only 0x is possible.

(since v0.5.0)

v0.5.0
None Located in Manual

Audit

Inline Assembly

Disallow . (a period) in user-defined

function and variable names in inline

assembly. It is still valid if you use

Solidity in Yul-only mode.

v0.7.0

None Located in Manual

Audit

Slot and offset of storage pointer

variable x are accessed via x.slot and

x.offset instead of x_slot and

x_offset.

v0.7.0

None Located in Manual

Audit

Explicitness Requirements

Using msg.value in non-payable

functions (or introducing it via a

modifier) is disallowed as a security

feature. Turn the function into

payable or create a new internal

function for the program logic that

uses msg.value.

v0.5.0

Several occurances of

msg.value use.

 See Diagram A

Slot and offset of storage pointer

variable x are accessed via x.slot and

x.offset instead of x_slot and

x_offset.

v0.5.0
None Located in Manual

Audit

Except for constructors, which uses

abstract explicit function visibility

is now mandatory. Add public to every

function and constructor, and external

to every fallback or interface

function that does not specify its

visibility already.

v0.5.0
None Located in Manual

Audit

 12

FI
ND
IN
GS
 &
 T
EC
H

DE
TA
IL
S

Explicit data location for all

variables of struct, array or mapping

types is now mandatory. This is also

applied to function parameters and

return variables.

v0.5.0
None Located in Manual

Audit

Member-access to length of arrays is

now always read-only, even for storage

arrays. It is no longer possible to

resize storage arrays by assigning a

new value to their length. Use push(),

push(value) or pop() instead, or

assign a full array, which will of

course overwrite the existing content.

The reason behind this is to prevent

storage collisions of gigantic storage

arrays.

v0.6.0
None Located in Manual

Audit

The new keyword abstract can be used

to mark contracts as abstract. It has

to be used if a contract does not

implement all its functions. Abstract

contracts cannot be created using the

new operator, and it is not possible

to generate bytecode for them during

compilation.

v0.6.0
None Located in Manual

Audit

The names of variables declared in

inline assembly may no longer end in

_slot or _offset.

v0.6.0
None Located in Manual

Audit

Variable declarations in inline

assembly may no longer shadow any

declaration outside the inline

assembly block. If the name contains a

dot, its prefix up to the dot may not

conflict with any declaration outside

the inline assembly block.

v0.6.0

None Located in Manual

Audit

Some use outside audit

scope.

State variable shadowing is now

disallowed. A derived contract can

only declare a state variable x, if

there is no visible state variable

with the same name in any of its

bases.

v.0.6.0

None Located in Manual

Audit

 13

FI
ND
IN
GS
 &
 T
EC
H

DE
TA
IL
S

The size must now be adjusted within

the type before the conversion. For

example, you can convert a bytes4 (4

bytes) to a uint64 (8 bytes) by first

converting the bytes4 variable to

bytes8 and then to uint64. You get the

opposite padding when converting

through uint32. (since v0.6.0)

V0.6.0

None Located in Manual

Audit

Diagram A: SEVERAL USES OF THIS IN THE CONTRACT LOCATED: Line
446,448, and 481

Variables

Declaring empty structs is now

disallowed for clarity.
v0.5.0

None Located in Manual

Audit

Removal of unsafe features and

methods. If a struct or array contains

a mapping, it can only be used in

storage. Previously, mapping members

were silently skipped in memory, which

is confusing and error-prone.

v0.7.0
None Located in Manual

Audit

Assignments to structs or arrays in

storage does not work if they contain

mappings. Previously, mappings were

silently skipped during the copy

operation, which is misleading and

error-prone.

v0.7.0
None Located in Manual

Audit

The var keyword is now disallowed to

favor explicitness.

Assignments between tuples with

different number of components is now

disallowed.

v0.5.0
None Located in Manual

Audit

Values for constants that are not v0.5.0 None Located in Manual

 14

FI
ND
IN
GS
 &
 T
EC
H

DE
TA
IL
S

compile-time constants are disallowed. Audit

Assignments between tuples with

different number of components is now

disallowed.

V0.5.0
None Located in Manual

Audit

Multi-variable declarations with

mismatching number of values are now

disallowed.

v0.5.0
None Located in Manual

Audit

Uninitialized storage variables are

now disallowed.
v0.5.0

None Located in Manual

Audit

Empty tuple components are now

disallowed.
v0.5.0

None Located in Manual

Audit

Fixed-size arrays with a length of

zero are now disallowed.
v.0.5.0

None Located in Manual

Audit

struct and enum types can be declared

at file level.
v.0.6.0

None Located in Manual

Audit

The global variable now is deprecated,

block.timestamp should be used

instead. The single identifier now is

too generic for a global variable and

could give the impression that it

changes during transaction processing,

whereas block.timestamp correctly

reflects the fact that it is just a

property of the block.

v.0.6.0
Identified in code:

See Finding 3.2

 15

FI
ND
IN
GS
 &
 T
EC
H

DE
TA

IL
S

3.2 BLOCKTIME STAMP ALIAS USAGE –
LOW

Description:

During a manual static review, the tester noticed the use of "now."

The contract developers should be aware that his does not mean

current time. "now" is an alias for "block.timestamp".

"block.timestamp" can be influenced by miners to a certain degree,

so the testers should be warned that this may have some risk if

miners collude on time manipulation to influence the price oracles.

Please note, while this contract is at version 0.4 in the supported

version 0.6.0. the alias now for block.timestamp has been removed.

(as indicated in the prior section)

Code Location:

\contracts\converter\types\liquidity-pool-

v2\LiquidityPoolV2Converter.sol - Line 1099

Recommendation:

Refactor this from 0.4 in the latest version 0.7.0. to use the
correct time variables that are applicable.

3.3 DIVIDE BEFORE MULTIPLY - LOW
Description:

Solidity integer division might truncate. As a result,

performing multiplication before division might reduce

precision. Due to the sensitivity of precision, and the amount

of detail the development team is putting on the dynamic

balancing mechanics involved in Bancor, this may be a factor in

accuracy of weights/rates.

 16

FI
ND
IN
GS
 &
 T
EC
H

DE
TA

IL
S

Code Location:

LiquidityPoolV2Converter.sol Line #622-633

Recommendation:

Consider ordering multiplication before division.

3.4 EXTERNAL CALLS WITHIN A LOOP
– VERY LOW
Description:

Calls inside a loop might lead to a denial-of-service attack. The

function discovered is a for loop on variable `i` that iterates up to

the reserveCount variable. If this integer is evaluated at extremely

large numbers, or `i` is reset by external calling functions, this can

cause a DoS.

Code Location:

LiquidityPoolV2Converter.sol Line #809-820

Recommendation:

If possible, use pull over push strategy for external calls.

 17

FI
ND
IN
GS
 &
 T
EC
H

DE
TA

IL
S

3.5 EXPLOITATION OF DEPLOYED
CONTRACT – VERY LOW
Description

Today, there exists many threat actors with advanced tools waiting to

prey on vulnerable contracts deployed with weak programming structures,

or flaws in the logic. One such tool used with great success is an

automated solidity exploitation utility called karl

(https://github.com/cleanunicorn/karl)

Karl monitors for new Smart Contracts deployed on the blockchain, checks

for security vulnerabilities, and automatically lets users monitoring

the blockchain if any exploitation vectors are identified through binary

analysis.

Although karl is often used for evil, this tool is a great tool to use

by defenders, auditors, and developers deploying their contract to

trusted local testnets to verify the integrity of the smart contracts

before deploying to production.

To test for automated exploitation in the Bancor Liquidity Pool

contract, Halborn first compiled, and deployed the solidity project

branch on a local Ganache Testnet with truffle. All 70 contracts were

deployed and migrated, including the scoped contract

“LiquidityPoolV2Converter.

To test the correct deployment of karl listening on the locally

hosted blockchain at 127.0.0.1:7545, and intentionally vulnerable

contract with a “suicide” function was uploaded to trigger a

https://github.com/cleanunicorn/karl

 18

FI
ND
IN
GS
 &
 T
EC
H

DE
TA

IL
S

detection. We can see karl correctly discovered the exploit.

Intentionally vulnerable contract posted to local testnet.:

Karl detection trigger on exploitation of vulnerable contract.

The Bancor Contracts were then redeployed to the testnet. We can

see that no Vulnerabilities were triggered, which include several

detections on reentrancy, overflow/underflow, and other security

vectors found in the binaries send to the blockchain.OnlyMinter

conditions correctly work.

 19

FI
ND
IN
GS
 &
 T
EC
H

DE
TA
IL
S

3.6 STRICT EQUALITIES – VERY LOW

Description:

Use of strict equalities that can be easily manipulated by an attacker.

Code Location:

LiquidityPoolV2Converter.sol Line #455

LiquidityPoolV2Converter.sol Line #883

LiquidityPoolV2Converter.sol Line #1023-1028

Recommendation:

While these sections of code use it for time, and weight

adjustments, Don't use strict equality to determine if an account

has enough Ether or tokens.

3.7 STATIC ANALYSIS REPORT -
INFORMATIONAL

Description:

Halborn used automated testing techniques to enhance coverage of certain
areas of the scoped contract. Among the tools used was Slither, a
Solidity static analysis framework. After Halborn verified all the
contracts in the repository and was able to compile them correctly into

 20

FI
ND
IN
GS
 &
 T
EC
H

DE
TA
IL
S

their abi and binary formats, Slither was run on the Bancor Smart
Contract set including the new version of the LiquidityPoolV2Converter.
This tool can statically verify mathematical relationships between
Solidity variables to detect invalid or inconsistent usage of the
contracts' APIs across the entire codebase.

Results:

Slither responded with the majority of detections being Reentrancy

Attacks due to External Calls and the state variables associated being

written after the call is finished. While these are valid conditions of

a reentrancy attack, most of the External calls are within the same

contract, and from a function elsewhere in the codebase.

There are also several variables in regards to what can make a

reentrancy bug benign or exploitable. The worst condition is in the

transfer or change in ether or token balance. These are often bugs in

which a contract can call withdrawBalance two times, and withdraw more

than its initial deposit to the contract. The tester did not see any

direct balance transfers, however, the developers are encouraged to

check the list detected by Slither for any issues.

 21

FI
ND
IN
GS
 &
 T
EC
H

DE
TA
IL
S

Recommendation:

While reentrancy attacks are among the worst classifications of

vulnerabilities, Bancor has implemented mitigating contracts to

help protect the platform from this threat. Among the contracts

compiled in the oracle-optimization repository is

ReentrancyGuard.sol

 (https://github.com/OpenZeppe

lin/openzeppelin-contracts/blob/master/contracts/utils/ReentrancyGuard.sol)

This is a utility contract created by Open-Zeppelin and is a

Contract module that helps prevent reentrant calls to a function.

Inheriting from `ReentrancyGuard.sol` will make the {nonReentrant}

modifier available, which can be applied to functions to make sure

there are no nested (reentrant) calls to them.

Since testing the valid use and implementation of ReentrancyGuard

is not in scope, the tester is marking this as an Informational

Level, and encourages the developers to validate correct use of the

utility contract, as well as checking the list of Reentrancy

Detection output from Slither for true positives. They are listed

below:

Reference Data:

1: Reentrancy in LiquidityPoolV2Converter.removeLiquidity(ISmartToken,uint256,uint256)

(LiquidityPoolV2Converter.sol#556-611):

External calls:
- syncReserveBalances() (LiquidityPoolV2Converter.sol#566)
- reserves[_reserveToken].balance = _reserveToken.balanceOf(this) (ConverterBase.sol#505)
- initialPoolSupply = _poolToken.totalSupply() (LiquidityPoolV2Converter.sol#569)
- (reserveAmount) = removeLiquidityReturnAndFee(_poolToken,_amount)
(LiquidityPoolV2Converter.sol#572)

(https:/github.com/OpenZeppelin/openzeppelin-contracts/blob/master/contracts/utils/ReentrancyGuard.sol

 22

FI
ND
IN
GS
 &

 T
EC
H

DE
TA

IL
S

- totalSupply = _poolToken.totalSupply() (LiquidityPoolV2Converter.sol#623)
- (externalRate.n,externalRate.d,externalRateUpdateTime) =
priceOracle.latestRateAndUpdateTime(primaryReserveToken,secondaryReserveToken)
(LiquidityPoolV2Converter.sol#850)
- IPoolTokensContainer(anchor).burn(_poolToken,msg.sender,_amount)
(LiquidityPoolV2Converter.sol#579)
- rate = rebalanceRate() (LiquidityPoolV2Converter.sol#582)
- (externalRate.n,externalRate.d) =
priceOracle.latestRate(primaryReserveToken,secondaryReserveToken)
(LiquidityPoolV2Converter.sol#937)
- active() (LiquidityPoolV2Converter.sol#559)
- anchor.owner() == address(this) (ConverterBase.sol#265)
External calls sending eth:
- msg.sender.transfer(reserveAmount) (LiquidityPoolV2Converter.sol#591)
State variables written after the call(s):
- rebalance(rate) (LiquidityPoolV2Converter.sol#596)
- reserves[primaryReserveToken].weight = uint32(x) (LiquidityPoolV2Converter.sol#969)
- reserves[secondaryReserveToken].weight = uint32(y) (LiquidityPoolV2Converter.sol#970)

2: Reentrancy in ConverterBase.withdrawETH(address) (ConverterBase.sol#219-233):

External calls:
- converterUpgrader = addressOf(CONVERTER_UPGRADER) (ConverterBase.sol#225)
- registry.addressOf(_contractName) (ContractRegistryClient.sol#101)
- require(bool,string)(! isActive() || owner == converterUpgrader,ERR_ACCESS_DENIED)
(ConverterBase.sol#228)
- anchor.owner() == address(this) (ConverterBase.sol#265)
- syncReserveBalance(IERC20Token(ETH_RESERVE_ADDRESS)) (ConverterBase.sol#232)
- reserves[_reserveToken].balance = _reserveToken.balanceOf(this) (ConverterBase.sol#505)
External calls sending eth:
- _to.transfer(address(this).balance) (ConverterBase.sol#229)
State variables written after the call(s):
- syncReserveBalance(IERC20Token(ETH_RESERVE_ADDRESS)) (ConverterBase.sol#232)
- reserves[_reserveToken].balance = address(this).balance (ConverterBase.sol#503)
- reserves[_reserveToken].balance = _reserveToken.balanceOf(this) (ConverterBase.sol#505)

3. Reentrancy in LiquidityPoolV2Converter.activate(IERC20Token,IChainlinkPriceOracle,IChainlinkPriceOracle)
(LiquidityPoolV2Converter.sol#117-172):

External calls:
- require(bool,string)(anchor.owner() == address(this),ERR_ANCHOR_NOT_OWNED)
(LiquidityPoolV2Converter.sol#131)
- oracleWhitelist = IWhitelist(addressOf(CHAINLINK_ORACLE_WHITELIST))
(LiquidityPoolV2Converter.sol#134)
- registry.addressOf(_contractName) (ContractRegistryClient.sol#101)
- require(bool,string)(oracleWhitelist.isWhitelisted(_primaryReserveOracle) &&
oracleWhitelist.isWhitelisted(_secondaryReserveOracle),ERR_INVALID_ORACLE)
(LiquidityPoolV2Converter.sol#135-136)
- createPoolTokens() (LiquidityPoolV2Converter.sol#139)
- poolTokens = container.poolTokens() (LiquidityPoolV2Converter.sol#822)
- reservePoolToken = container.createToken() (LiquidityPoolV2Converter.sol#829)
- customFactory =
LiquidityPoolV2ConverterCustomFactory(IConverterFactory(addressOf(CONVERTER_FACTORY)).cu
stomFactories(converterType())) (LiquidityPoolV2Converter.sol#149-150)
- registry.addressOf(_contractName) (ContractRegistryClient.sol#101)
- priceOracle =
customFactory.createPriceOracle(_primaryReserveToken,secondaryReserveToken,_primaryReser
veOracle,_secondaryReserveOracle) (LiquidityPoolV2Converter.sol#151-155)
- inactive() (LiquidityPoolV2Converter.sol#122)
- anchor.owner() == address(this) (ConverterBase.sol#265)
State variables written after the call(s):
- priceOracle =
customFactory.createPriceOracle(_primaryReserveToken,secondaryReserveToken,_primaryReser
veOracle,_secondaryReserveOracle) (LiquidityPoolV2Converter.sol#151-155)

4. Reentrancy in LiquidityPoolV2Converter.activate(IERC20Token,IChainlinkPriceOracle,IChainlinkPriceOracle)
(LiquidityPoolV2Converter.sol#117-172):

External calls:
- require(bool,string)(anchor.owner() == address(this),ERR_ANCHOR_NOT_OWNED)
(LiquidityPoolV2Converter.sol#131)
- oracleWhitelist = IWhitelist(addressOf(CHAINLINK_ORACLE_WHITELIST))
(LiquidityPoolV2Converter.sol#134)

 23

FI
ND
IN
GS
 &
 T
EC
H

DE
TA
IL
S

- registry.addressOf(_contractName) (ContractRegistryClient.sol#101)
- require(bool,string)(oracleWhitelist.isWhitelisted(_primaryReserveOracle) &&
oracleWhitelist.isWhitelisted(_secondaryReserveOracle),ERR_INVALID_ORACLE)
(LiquidityPoolV2Converter.sol#135-136)
- createPoolTokens() (LiquidityPoolV2Converter.sol#139)
- poolTokens = container.poolTokens() (LiquidityPoolV2Converter.sol#822)
- reservePoolToken = container.createToken() (LiquidityPoolV2Converter.sol#829)
- customFactory =
LiquidityPoolV2ConverterCustomFactory(IConverterFactory(addressOf(CONVERTER_FACTORY)).cu
stomFactories(converterType())) (LiquidityPoolV2Converter.sol#149-150)
- registry.addressOf(_contractName) (ContractRegistryClient.sol#101)
- priceOracle =
customFactory.createPriceOracle(_primaryReserveToken,secondaryReserveToken,_primaryReser
veOracle,_secondaryReserveOracle) (LiquidityPoolV2Converter.sol#151-155)
- rebalance() (LiquidityPoolV2Converter.sol#164)
- (externalRate.n,externalRate.d) =
priceOracle.latestRate(primaryReserveToken,secondaryReserveToken)
(LiquidityPoolV2Converter.sol#951)
- inactive() (LiquidityPoolV2Converter.sol#122)
- anchor.owner() == address(this) (ConverterBase.sol#265)
State variables written after the call(s):
- rebalance() (LiquidityPoolV2Converter.sol#164)
- reserves[primaryReserveToken].weight = uint32(x) (LiquidityPoolV2Converter.sol#969)
- reserves[secondaryReserveToken].weight = uint32(y) (LiquidityPoolV2Converter.sol#970)

5. Reentrancy in LiquidityPoolV2Converter.activate(IERC20Token,IChainlinkPriceOracle,IChainlinkPriceOracle)
(LiquidityPoolV2Converter.sol#117-172):

External calls:
- require(bool,string)(anchor.owner() == address(this),ERR_ANCHOR_NOT_OWNED)
(LiquidityPoolV2Converter.sol#131)
- oracleWhitelist = IWhitelist(addressOf(CHAINLINK_ORACLE_WHITELIST))
(LiquidityPoolV2Converter.sol#134)
- registry.addressOf(_contractName) (ContractRegistryClient.sol#101)
- require(bool,string)(oracleWhitelist.isWhitelisted(_primaryReserveOracle) &&
oracleWhitelist.isWhitelisted(_secondaryReserveOracle),ERR_INVALID_ORACLE)
(LiquidityPoolV2Converter.sol#135-136)
- createPoolTokens() (LiquidityPoolV2Converter.sol#139)
- poolTokens = container.poolTokens() (LiquidityPoolV2Converter.sol#822)
- reservePoolToken = container.createToken() (LiquidityPoolV2Converter.sol#829)
- customFactory =
LiquidityPoolV2ConverterCustomFactory(IConverterFactory(addressOf(CONVERTER_FACTORY)).cu
stomFactories(converterType())) (LiquidityPoolV2Converter.sol#149-150)
- registry.addressOf(_contractName) (ContractRegistryClient.sol#101)
- priceOracle =
customFactory.createPriceOracle(_primaryReserveToken,secondaryReserveToken,_primaryReser
veOracle,_secondaryReserveOracle) (LiquidityPoolV2Converter.sol#151-155)
- rebalance() (LiquidityPoolV2Converter.sol#168)
- (externalRate.n,externalRate.d) =
priceOracle.latestRate(primaryReserveToken,secondaryReserveToken)
(LiquidityPoolV2Converter.sol#951)
- inactive() (LiquidityPoolV2Converter.sol#122)
- anchor.owner() == address(this) (ConverterBase.sol#265)
State variables written after the call(s):
- rebalance() (LiquidityPoolV2Converter.sol#168)
- reserves[primaryReserveToken].weight = uint32(x) (LiquidityPoolV2Converter.sol#969)
- reserves[secondaryReserveToken].weight = uint32(y) (LiquidityPoolV2Converter.sol#970)

6. Reentrancy in LiquidityPoolV2Converter.addLiquidity(IERC20Token,uint256,uint256)
(LiquidityPoolV2Converter.sol#475-545):

External calls:
- syncReserveBalances() (LiquidityPoolV2Converter.sol#489)
- reserves[_reserveToken].balance = _reserveToken.balanceOf(this)
(ConverterBase.sol#505)
- active() (LiquidityPoolV2Converter.sol#479)
- anchor.owner() == address(this) (ConverterBase.sol#265)
State variables written after the call(s):
- reserves[ETH_RESERVE_ADDRESS].balance =

 24

FI
ND
IN
GS
 &
 T
EC
H

DE
TA

IL
S

reserves[ETH_RESERVE_ADDRESS].balance.sub(msg.value) (LiquidityPoolV2Converter.sol#493)
Reentrancy in LiquidityPoolV2Converter.addLiquidity(IERC20Token,uint256,uint256)
(LiquidityPoolV2Converter.sol#475-545):
External calls:
- syncReserveBalances() (LiquidityPoolV2Converter.sol#489)
- reserves[_reserveToken].balance = _reserveToken.balanceOf(this)
(ConverterBase.sol#505)
- poolTokenSupply = reservePoolToken.totalSupply() (LiquidityPoolV2Converter.sol#505)
- rate = rebalanceRate() (LiquidityPoolV2Converter.sol#512)
- (externalRate.n,externalRate.d) =
priceOracle.latestRate(primaryReserveToken,secondaryReserveToken)
(LiquidityPoolV2Converter.sol#937)
- active() (LiquidityPoolV2Converter.sol#479)
- anchor.owner() == address(this) (ConverterBase.sol#265)
State variables written after the call(s):
- reserves[_reserveToken].balance = reserves[_reserveToken].balance.add(_amount)
(LiquidityPoolV2Converter.sol#515)
- stakedBalances[_reserveToken] = initialStakedBalance.add(_amount)
(LiquidityPoolV2Converter.sol#516)

7. Reentrancy in LiquidityPoolV2Converter.addLiquidity(IERC20Token,uint256,uint256)
(LiquidityPoolV2Converter.sol#475-545):

External calls:
- syncReserveBalances() (LiquidityPoolV2Converter.sol#489)
- reserves[_reserveToken].balance = _reserveToken.balanceOf(this)
(ConverterBase.sol#505)
- poolTokenSupply = reservePoolToken.totalSupply() (LiquidityPoolV2Converter.sol#505)
- rate = rebalanceRate() (LiquidityPoolV2Converter.sol#512)
- (externalRate.n,externalRate.d) =
priceOracle.latestRate(primaryReserveToken,secondaryReserveToken)
(LiquidityPoolV2Converter.sol#937)
- IPoolTokensContainer(anchor).mint(reservePoolToken,msg.sender,poolTokenAmount)
(LiquidityPoolV2Converter.sol#529)
- active() (LiquidityPoolV2Converter.sol#479)
- anchor.owner() == address(this) (ConverterBase.sol#265)
State variables written after the call(s):
- rebalance(rate) (LiquidityPoolV2Converter.sol#532)
- reserves[primaryReserveToken].weight = uint32(x) (LiquidityPoolV2Converter.sol#969)
- reserves[secondaryReserveToken].weight = uint32(y) (LiquidityPoolV2Converter.sol#970)

8. Reentrancy in LiquidityPoolV2Converter.doConvert(IERC20Token,IERC20Token,uint256,address,address)
(LiquidityPoolV2Converter.sol#388-420):

External calls:
- (amount,fee) = doConvert(_sourceToken,_targetToken,_amount)
(LiquidityPoolV2Converter.sol#399)
- registry.addressOf(_contractName) (ContractRegistryClient.sol#101)
- (externalRate.n,externalRate.d,externalRateUpdateTime) =
priceOracle.latestRateAndUpdateTime(primaryReserveToken,secondaryReserveToken)
(LiquidityPoolV2Converter.sol#437)
- reserves[_reserveToken].balance = _reserveToken.balanceOf(this)
(ConverterBase.sol#505)
- targetAmount =
IBancorFormula(addressOf(BANCOR_FORMULA)).crossReserveTargetAmount(sourceBalance,_source
Weight,targetBalance,_targetWeight,_amount) (LiquidityPoolV2Converter.sol#681-687)
- require(bool,string)(msg.value == 0 &&
_sourceToken.balanceOf(this).sub(reserves[_sourceToken].balance) >=
_amount,ERR_INVALID_AMOUNT) (LiquidityPoolV2Converter.sol#453)
- active() (LiquidityPoolV2Converter.sol#390)
- anchor.owner() == address(this) (ConverterBase.sol#265)
State variables written after the call(s):
- prevConversionTime = time() (LiquidityPoolV2Converter.sol#402)

9. Reentrancy in LiquidityPoolV2Converter.doConvert(IERC20Token,IERC20Token,uint256)
(LiquidityPoolV2Converter.sol#433-464):
External calls:
- (externalRate.n,externalRate.d,externalRateUpdateTime) =
priceOracle.latestRateAndUpdateTime(primaryReserveToken,secondaryReserveToken)

 25

FI
ND
IN
GS
 &
 T
EC
H

DE
TA
IL
S

(LiquidityPoolV2Converter.sol#437)
- (targetAmount,fee) =
prepareConversion(_sourceToken,_targetToken,_amount,externalRate,externalRateUpdateTime)
(LiquidityPoolV2Converter.sol#440)
- registry.addressOf(_contractName) (ContractRegistryClient.sol#101)
- targetAmount =
IBancorFormula(addressOf(BANCOR_FORMULA)).crossReserveTargetAmount(sourceBalance,_source
Weight,targetBalance,_targetWeight,_amount) (LiquidityPoolV2Converter.sol#681-687)
- require(bool,string)(msg.value == 0 &&
_sourceToken.balanceOf(this).sub(reserves[_sourceToken].balance) >=
_amount,ERR_INVALID_AMOUNT) (LiquidityPoolV2Converter.sol#453)
- syncReserveBalance(_sourceToken) (LiquidityPoolV2Converter.sol#456)
- reserves[_reserveToken].balance = _reserveToken.balanceOf(this)
(ConverterBase.sol#505)
State variables written after the call(s):
- syncReserveBalance(_sourceToken) (LiquidityPoolV2Converter.sol#456)
- reserves[_reserveToken].balance = address(this).balance (ConverterBase.sol#503)
- reserves[_reserveToken].balance = _reserveToken.balanceOf(this)
(ConverterBase.sol#505)
- reserves[_targetToken].balance = targetReserveBalance.sub(targetAmount)
(LiquidityPoolV2Converter.sol#457)
- stakedBalances[_targetToken] = stakedBalances[_targetToken].add(fee)
(LiquidityPoolV2Converter.sol#460)
- stakedBalances[_targetToken] = stakedBalances[_targetToken].add(fee / 2)
(LiquidityPoolV2Converter.sol#460)

10. Reentrancy in LiquidityPoolV2Converter.removeLiquidity(ISmartToken,uint256,uint256)
(LiquidityPoolV2Converter.sol#556-611):

External calls:
- syncReserveBalances() (LiquidityPoolV2Converter.sol#566)
- reserves[_reserveToken].balance = _reserveToken.balanceOf(this)
(ConverterBase.sol#505)
- initialPoolSupply = _poolToken.totalSupply() (LiquidityPoolV2Converter.sol#569)
- (reserveAmount) = removeLiquidityReturnAndFee(_poolToken,_amount)
(LiquidityPoolV2Converter.sol#572)
- totalSupply = _poolToken.totalSupply() (LiquidityPoolV2Converter.sol#623)
- (externalRate.n,externalRate.d,externalRateUpdateTime) =
priceOracle.latestRateAndUpdateTime(primaryReserveToken,secondaryReserveToken)
(LiquidityPoolV2Converter.sol#850)
- IPoolTokensContainer(anchor).burn(_poolToken,msg.sender,_amount)
(LiquidityPoolV2Converter.sol#579)
- rate = rebalanceRate() (LiquidityPoolV2Converter.sol#582)
- (externalRate.n,externalRate.d) =
priceOracle.latestRate(primaryReserveToken,secondaryReserveToken)
(LiquidityPoolV2Converter.sol#937)
- active() (LiquidityPoolV2Converter.sol#559)
- anchor.owner() == address(this) (ConverterBase.sol#265)
State variables written after the call(s):
- reserves[reserveToken].balance = reserves[reserveToken].balance.sub(reserveAmount)
(LiquidityPoolV2Converter.sol#585)
- stakedBalances[reserveToken] = newStakedBalance (LiquidityPoolV2Converter.sol#587)

11. Reentrancy in ContractRegistryClient.updateRegistry() (ContractRegistryClient.sol#55-73):

External calls:
- newRegistry = IContractRegistry(addressOf(CONTRACT_REGISTRY))
(ContractRegistryClient.sol#60)
- registry.addressOf(_contractName) (ContractRegistryClient.sol#101)
- require(bool,string)(newRegistry.addressOf(CONTRACT_REGISTRY) !=
address(0),ERR_INVALID_REGISTRY) (ContractRegistryClient.sol#66)
State variables written after the call(s):
- registry = newRegistry (ContractRegistryClient.sol#72)
Reentrancy in ConverterBase.upgrade() (ConverterBase.sol#349-358):
External calls:
- converterUpgrader = IConverterUpgrader(addressOf(CONVERTER_UPGRADER))
(ConverterBase.sol#350)
- registry.addressOf(_contractName) (ContractRegistryClient.sol#101)
- converterUpgrader.upgrade(version) (ConverterBase.sol#356)

 26

FI
ND
IN
GS
 &
 T
EC
H

DE
TA
IL
S

State variables written after the call(s):
- acceptOwnership() (ConverterBase.sol#357)
- owner = newOwner (Owned.sol#55)

12. Reentrancy in ConverterBase.withdrawTokens(IERC20Token,address,uint256) (ConverterBase.sol#331-342):

External calls:
- converterUpgrader = addressOf(CONVERTER_UPGRADER) (ConverterBase.sol#332)
- registry.addressOf(_contractName) (ContractRegistryClient.sol#101)
- require(bool,string)(! reserves[_token].isSet || ! isActive() || owner ==
converterUpgrader,ERR_ACCESS_DENIED) (ConverterBase.sol#336)
- anchor.owner() == address(this) (ConverterBase.sol#265)
- syncReserveBalance(_token) (ConverterBase.sol#341)
- reserves[_reserveToken].balance = _reserveToken.balanceOf(this)
(ConverterBase.sol#505)
State variables written after the call(s):
- syncReserveBalance(_token) (ConverterBase.sol#341)
- reserves[_reserveToken].balance = address(this).balance (ConverterBase.sol#503)
- reserves[_reserveToken].balance = _reserveToken.balanceOf(this)
(ConverterBase.sol#505)

3.8 AUTOMATED SECURITY SCAN -
INFORMATIONAL
Description:

Halborn used automated security scanners to assist with

detection of well known security issues, and identify low-

hanging fruit on the scoped contract targeted for this

engagement. Among the tools used was MythX, a security analysis

service for Ethereum smart contracts. MythX performed a scan on

the testers machine, and sent the compiled results to MythX to

locate any vulnerabilities. Security Detections are only in

scope, and the analysis was pointed towards issues with the

LiquidityPoolV2Converter.sol

Results:

MythX detected 0 High findings, 1 Medium, and 4 Low.

The Medium Finding is detected on a Contract outside the scope of the

assessment. (IConverterUpgrader.sol)

One of the Low findings is also identified by Halborn in the Manual

review process with detailed recommendations specific to Bancor, and the

upgraded smart contract in scope. The others are detailing the use of

hard-coded gas amounts.

 27

FI
ND
IN
GS
 &
 T
EC
H

DE
TA
IL
S

3.9 INLINE ASSEMBLY USAGE -
INFORMATIONAL
Description:

Inline assembly is a way to access the Ethereum Virtual Machine

at a low level. This discards several important safety features

of Solidity, and the static compiler. Due to the fact that the

EVM is a stack machine, it is often hard to address the correct

stack slot and provide arguments to opcodes at the correct point

on the stack. Solidity’s inline assembly tries to facilitate

that and other issues arising when writing manual assembly.

Assembly is much more difficult to write because the compiler

does not perform checks, so the developer of the contract should

be aware of this warning.

This wasn’t detected on the scoped contract, but the tester

wanted to make it aware to the development team.

 28

FI
ND
IN
GS
 &
 T
EC
H

DE
TA

IL
S

Code Location:

\contracts\utility\TokenHandler.sol - Line 60

 29

THANK YOU FOR CHOOSING

	Description: During a manual static review, the tester noticed the use of "now." The contract developers should be aware that his does not mean current time. "now" is an alias for "block.timestamp". "block.timestamp" can be influenced by miners to a ...
	Code Location: \contracts\converter\types\liquidity-pool-v2\LiquidityPoolV2Converter.sol - Line 1099
	Recommendation:
	Description:
	Description:
	Code Location:
	Description
	Intentionally vulnerable contract posted to local testnet.:
	Karl detection trigger on exploitation of vulnerable contract.
	Description: Use of strict equalities that can be easily manipulated by an attacker.
	Code Location: LiquidityPoolV2Converter.sol Line #455
	LiquidityPoolV2Converter.sol Line #883
	LiquidityPoolV2Converter.sol Line #1023-1028
	Recommendation:
	Description:
	Recommendation:
	Description:
	Description:

