

Customer: BarnBridge
Date: May 21st, 2021

SMART CONTRACT CODE
REVIEW AND SECURITY
ANALYSIS REPORT

This document may contain confidential information about IT
systems and the intellectual property of the Customer as well as
information about potential vulnerabilities and methods of their
exploitation.

The report containing confidential information can be used
internally by the Customer, or it can be disclosed publicly after
all vulnerabilities are fixed - upon a decision of the Customer.

Document
Name Smart Contract Code Review and Security Analysis Report for

BarnBridge - Initial Audit

Approved by Andrew Matiukhin | CTO Hacken OU

Type Yield
Platform Ethereum / Solidity
Methods Architecture Review, Functional Testing, Computer-Aided

Verification, Manual Review
Git
Repository

https://github.com/BarnBridge/BarnBridge-SmartYieldBonds

Timeline 19 MAY 2021 – 21 MAY 2021
Changelog 21 MAY 2021 – INITIAL AUDIT

Table of contents

Introduction 4

Scope 4

Executive Summary 6

Severity Definitions 7

Audit overview 8

Conclusion 15

Disclaimers 16

Introduction
Hacken OÜ (Consultant) was contracted by BarnBridge (Customer) to conduct a
Smart Contract Code Review and Security Analysis. This report presents the
findings of the security assessment of Customer's smart contract and its
code review conducted on May 21st, 2021.

Scope
The scope of the project is the list of smart contracts of next Git
Repository:
https://github.com/BarnBridge/BarnBridge-SmartYieldBonds
BarnBridge-SmartYieldBonds-master/contracts/providers/IAaveCumulator.sol
BarnBridge-SmartYieldBonds-master/contracts/providers/ICreamCumulator.sol
BarnBridge-SmartYieldBonds-master/contracts/model/BondModelV2Compounded.sol
BarnBridge-SmartYieldBonds-master/contracts/model/BondModelV2Linear.sol
BarnBridge-SmartYieldBonds-master/contracts/model/ABondModelV2.sol
BarnBridge-SmartYieldBonds-master/contracts/providers/AaveController.sol
BarnBridge-SmartYieldBonds-master/contracts/providers/CreamController.sol
BarnBridge-SmartYieldBonds-master/contracts/providers/AaveProvider.sol
BarnBridge-SmartYieldBonds-master/contracts/providers/CreamProvider.sol

We have scanned these smart contracts for commonly known and more specific
vulnerabilities. Here are some of the commonly known vulnerabilities that
are considered:

Category Check Item
Code review ▪ Reentrancy

▪ Ownership Takeover

▪ Timestamp Dependence

▪ Gas Limit and Loops

▪ DoS with (Unexpected) Throw

▪ DoS with Block Gas Limit

▪ Transaction-Ordering Dependence

▪ Style guide violation

▪ Costly Loop

▪ ERC20 API violation

▪ Unchecked external call

▪ Unchecked math

▪ Unsafe type inference

▪ Implicit visibility level

▪ Deployment Consistency

▪ Repository Consistency

▪ Data Consistency

https://github.com/BarnBridge/BarnBridge-SmartYieldBonds

Functional review ▪ Business Logics Review

▪ Functionality Checks

▪ Access Control & Authorization

▪ Escrow manipulation

▪ Token Supply manipulation

▪ Asset’s integrity

▪ User Balances manipulation

▪ Kill-Switch Mechanism

▪ Operation Trails & Event Generation

Executive Summary
According to the assessment, the Customer's smart contracts are secured but
could be improved

Our team performed an analysis of code functionality, manual audit, and
automated checks with Mythril and Slither. All issues found during automated
analysis were manually reviewed, and important vulnerabilities are presented
in the Audit overview section. All found issues can be found in the Audit
overview section.

Security engineers found 2 low and 5 informational issues during the first
review.

Graph 1. The distribution of vulnerabilities after the first review.

Insecure Poor secured Secured Well-secured

You are here

Severity Definitions
Risk Level Description
Critical Critical vulnerabilities are usually straightforward to

exploit and can lead to assets loss or data
manipulations.

High High-level vulnerabilities are difficult to exploit;
however, they also have a significant impact on smart
contract execution, e.g., public access to crucial
functions

Medium Medium-level vulnerabilities are important to fix;
however, they can't lead to assets loss or data
manipulations.

Low Low-level vulnerabilities are mostly related to
outdated, unused, etc. code snippets that can't have
a significant impact on execution

Lowest / Code
Style / Best
Practice

Lowest-level vulnerabilities, code style violations,
and info statements can't affect smart contract
execution and can be ignored.

Audit overview
 Critical

No Critical severity issues were found.

 High

No High severity issues were found.

 Medium

No Medium severity issues were found.

 Low

1. Vulnerability: No event on access control change

methods setDao(address), setGuardian(address), setController(address)
changes important addresses, but have no events, so it is difficult
to track changes off-chain

Recommendation: Please emit an event like DaoTransferred(address
_newDAO), GuardianTransferred(address _newGuardian), etc.

Lines: Governed.sol#32-44

function setDao(address dao_)

 external

 onlyDao

{

 dao = dao_;

}

function setGuardian(address guardian_)

 external

 onlyDao

{

 guardian = guardian_;

}

Lines: providers/CreamProvider.sol#106-111

function setController(address newController_)

 external override

 onlyControllerOrDao

{

 controller = newController_;

}

2. Vulnerability: No event on financials/arithmetic change

methods setHarvestCost(uint256), setBondMaxRatePerDay(uint256)
changes important data, like cost, rate, but have no events, so it is
difficult to track changes off-chain

Recommendation: Please emit an event like HarvestCostUpdated(uint256
_newCost), BondMaxRatePerDayUpdated(uint256 _newRate), etc.

Lines: IController.sol#44-53

function setHarvestCost(uint256 newValue_)

 public

 onlyDao

{

 require(

 HARVEST_COST < EXP_SCALE,

 "IController: HARVEST_COST too large"

);

 HARVEST_COST = newValue_;

}

Lines: IController.sol#55-60

function setBondMaxRatePerDay(uint256 newVal_)

 public

 onlyDao

{

 BOND_MAX_RATE_PER_DAY = newVal_;

}

 Lowest / Code style / Best Practice

1. Vulnerability: Conformance to solidity naming convention

State variable names like MAX_POOL_RATIO are not mixedCase, which is
recommended for state variables. UPPER_CASE_WITH_UNDERSCORES is
recommended for using with constants.

Recommendation: Please follow solidity naming convention.

Lines: model/ABondModelV2.sol#16

uint256 public MAX_POOL_RATIO = 750 * 1e15; // 75%

Lines: IController.sol#26-42

uint256 public HARVEST_COST = 40 * 1e15; // 4%

https://docs.soliditylang.org/en/v0.7.6/style-guide.html#naming-conventions

// fee for buying jTokens

uint256 public FEE_BUY_JUNIOR_TOKEN = 3 * 1e15; // 0.3%

// fee for redeeming a sBond

uint256 public FEE_REDEEM_SENIOR_BOND = 100 * 1e15; // 10%

// max rate per day for sBonds

uint256 public BOND_MAX_RATE_PER_DAY = 719065000000000; // APY 30% /

year

// max duration of a purchased sBond

uint16 public BOND_LIFE_MAX = 90; // in days

bool public PAUSED_BUY_JUNIOR_TOKEN = false;

bool public PAUSED_BUY_SENIOR_BOND = false;

Lines: model/ABondModelV2.sol#16

uint256 public MAX_POOL_RATIO = 750 * 1e15; // 75%

Lines: model/ABondModelV2.sol#16

uint256 public MAX_POOL_RATIO = 750 * 1e15; // 75%

Lines: model/ABondModelV2.sol#16

uint256 public MAX_POOL_RATIO = 750 * 1e15; // 75%

2. Vulnerability: Boolean equality

Boolean constants can be used directly and do not need to be compared
to true or false.

Lines: providers/CreamProvider.sol#93-96

require(

 false == _setup,

 "CrP: already setup"

);

3. Vulnerability: Too many digits

Literals with many digits are difficult to read and review.

Recommendation: Please consider replacing zeros by ether units and/or
scientific notation and/or add dash separators for better readability

Lines: IController.sol#35

uint256 public BOND_MAX_RATE_PER_DAY = 719065000000000; // APY 30% /

year

4. Vulnerability: View function that could be declared pure

View functions that are never access state variables should be
declared pure

Recommendation: It’s okay to define a constant instead of creating
pure function for this. Public constants are callable externally
like functions.

Example:

uint256 public constant spotDailyDistributionRateProvider = 0;

Lines: providers/AaveController.sol#162-167

function spotDailyDistributionRateProvider()

 public view returns (uint256)

{

 // kept for backwards compat

 return 0;

}

5. Vulnerability: Public function that could be declared external

public functions that are never called by the contract should be
declared external to save gas.

Lines: model/ABondModelV2.sol#20-23

function setMaxPoolRatio(uint256 newMaxPoolRatio_)

 public

 onlyDao

{

Lines: model/ABondModelV2.sol#27-32

function maxDailyRate(

 uint256 total_,

 uint256 loanable_,

 uint256 dailyRate_

)

 public view

returns (uint256)

{

Lines: model/BondModelV2Compounded.sol#14-23

function gain(

 uint256 total_,

 uint256 loanable_,

 uint256 dailyRate_,

 uint256 principal_,

 uint16 forDays_

)

 public view override

returns (uint256)

{

Lines: model/BondModelV2Linear.sol#14-23

function gain(

 uint256 total_,

 uint256 loanable_,

 uint256 dailyRate_,

 uint256 principal_,

 uint16 forDays_

)

 public view override

returns (uint256)

{

Lines: IController.sol#44-47

function setHarvestCost(uint256 newValue_)

 public

 onlyDao

{

Lines: IController.sol#55-58

function setBondMaxRatePerDay(uint256 newVal_)

 public

 onlyDao

{

Lines: IController.sol#62-65

function setBondLifeMax(uint16 newVal_)

 public

 onlyDao

{

Lines: IController.sol#69-72

function setFeeBuyJuniorToken(uint256 newVal_)

 public

 onlyDao

{

Lines: IController.sol#76-79

function setFeeRedeemSeniorBond(uint256 newVal_)

 public

 onlyDao

{

Lines: IController.sol#83-86

function setPaused(bool buyJToken_, bool buySBond_)

 public

 onlyDaoOrGuardian

{

Lines: IController.sol#91-94

function setOracle(address newVal_)

 public

 onlyDao

{

Lines: IController.sol#98-101

function setBondModel(address newVal_)

 public

 onlyDao

{

Lines: IController.sol#105-108

function setFeesOwner(address newVal_)

 public

 onlyDao

{

Lines: IController.sol#112-115

function yieldControllTo(address newController_)

 public

 onlyDao

{

Lines: providers/CreamController.sol#72-75

function harvest(uint256)

 public

returns (uint256 rewardAmountGot, uint256 underlyingHarvestReward)

{

Lines: providers/CreamController.sol#96-99

function providerRatePerDay()

 public override virtual

returns (uint256)

{

Lines: providers/CreamController.sol#163-165

function spotDailyDistributionRateProvider()

 public pure returns (uint256)

{

Lines: providers/AaveController.sol#74-77

function harvest(uint256)

 public

returns (uint256 rewardAmountGot, uint256 underlyingHarvestReward)

{

Lines: providers/AaveController.sol#102-105

function providerRatePerDay()

 public override virtual

returns (uint256)

{

Lines: providers/AaveController.sol#162-164

function spotDailyDistributionRateProvider()

 public view returns (uint256)

{

Conclusion
Smart contracts within the scope were manually reviewed and analyzed with
static analysis tools.

Audit report contains all found security vulnerabilities and other issues in
the reviewed code.

Security engineers found 2 low and 5 informational issues during the first
review.

Category Check Items Comments
➔ Code Review ➔ Style guide violation ➔ public function that

could be declared
external

➔ view function that
could be declared
pure

➔ boolean equality
➔ too many digits
➔ solidity naming

convention
➔ Functional review ➔ Operation Trails &

Event Generation
➔ No event on access

control change
➔ No event on

financials/arithmetic
change

Disclaimers
Hacken Disclaimer

The smart contracts given for audit have been analyzed in accordance with
the best industry practices at the date of this report, in relation to
cybersecurity vulnerabilities and issues in smart contract source code, the
details of which are disclosed in this report (Source Code); the Source Code
compilation, deployment, and functionality (performing the intended
functions).

The audit makes no statements or warranties on security of the code. It also
cannot be considered as a sufficient assessment regarding the utility and
safety of the code, bugfree status or any other statements of the contract.
While we have done our best in conducting the analysis and producing this
report, it is important to note that you should not rely on this report only
- we recommend proceeding with several independent audits and a public bug
bounty program to ensure security of smart contracts.

Technical Disclaimer

Smart contracts are deployed and executed on the blockchain platform. The
platform, its programming language, and other software related to the smart
contract can have its vulnerabilities that can lead to hacks. Thus, the audit
can't guarantee the explicit security of the audited smart contracts.

