
BarnBridge Smart Yield Bonds Audit

FEBRUARY 26, 2021 | IN SECURITY AUDITS | BY OPENZEPPELIN SECURITY

The BarnBridge team asked us to review and audit their Smart Yield Bond smart contracts. We looked at the code and now publish our results.

Scope

We audited commit 943df3a8fcd8dd128af3beb0c85a0480c0e95ead of the BarnBridge/BarnBridge-SmartYieldBonds repository. In scope were the
contracts directly inside the /contracts folder, however the contracts within /contracts/mocks were out of scope. Note: the repository in
question is private at the time of writing, so many hyperlinks will only work for the BarnBridge team.

 Announcements Security Audits Events Perspectives Website

https://blog.openzeppelin.com/category/security-audits/
https://blog.openzeppelin.com/author/openzeppelin-security/
https://barnbridge.com/
https://github.com/BarnBridge/BarnBridge-SmartYieldBonds/tree/943df3a8fcd8dd128af3beb0c85a0480c0e95ead
https://github.com/BarnBridge/BarnBridge-SmartYieldBonds/tree/943df3a8fcd8dd128af3beb0c85a0480c0e95ead
https://blog.openzeppelin.com/announcements/
https://blog.openzeppelin.com/security-audits/
https://blog.openzeppelin.com/ozevents/
https://blog.openzeppelin.com/perspectives/
https://openzeppelin.com/
https://blog.openzeppelin.com/

Overall Health

In general we found the code to be clearly written, easy to follow, with a fair number of comments. All of these points indicated a healthy and
well-written codebase. However, as the audit process progressed, we found that the code, and the continued pace of iteration on the codebase
outside of the commit under audit, suggested that the project was not at the finalized stage we normally look for in a healthy audit.

The code we were provided to audit contained an incomplete set of tests, no event emissions, and a number of TODO statements that outlined
features that had not yet been implemented. During the course of the audit, the team updated features throughout the codebase. The result of
these protocol changes is that at the conclusion of our 3 week audit, our review is no longer of the latest version of BarnBridge’s Smart Yield
protocol.

System Overview

BarnBridge’s protocol of Smart Yield Bonds enables risk-averse ‘Senior Bond Holders’ to protect themselves against the risk of variable rate
annuities, such as Compound, going down. A second group of participants referred to as ‘Juniors’ enable this by providing liquidity and taking on
more risk.

Purchasers of Senior Bonds are given a guaranteed return over a fixed period on their principal. Their principal is invested into a protocol with a
variable rate of return – currently this is Compound. If a Senior’s principal deposit generates a larger return than their guaranteed return, the
excess profit is given to the Juniors who bought the risk. Conversely, if the variable rate goes down, then the Juniors will take a loss to satisfy the
Seniors’ guaranteed return.

An Oracle determines a weighting of Compound’s interest in order to determine the guaranteed return a Senior should receive on a given
deposit.

Privileged Roles

At deployment, the protocol sets addresses for a DAO and Guardian for the protocol. The DAO has the power to change both the DAO and
Guardian addresses.

A number of actions in the protocol are callable by the DAO or the Guardian . These include:

Setting the fee percentage for buying and redeeming tokens

Setting protocol values such as maximum bond length, and maximum bond rate

Pausing the buying of Tokens

Updating the addresses for the oracle, uniswap, bond model, and recipient of protocol fees

Findings

Here we present two client-reported issues, followed by our findings.

Outdated values being used to calculate expected reward

In the harvest function, a call to compRewardExpected is made to calculate the expected amount of COMP to receive from Compound. Any extra
COMP received, above the expected amount, is given to the feeOwner as a fee.

However, the expected amount is calculated using an outdated state, and so the result is incorrect. The call to compRewardExpected should instead
occur after the call to claimComp so that up to date information is used to calculate the expected amount.

Harvest yield not properly accounted for

The protocol updates time-weighted local state variables to track both accumulated yield in Compound, and extra yield resulting from selling
COMP reward tokens. This updating of local variables happens in the accountYield modifier, which is applied to a number of functions in the
CompoundProvider contract.

The protocol mistakenly applies the accountYield modifier within the harvest function, which was causing these rewards to be incorrectly time-
weighted in the state variables.

Critical severity

[C01] Protocol allows non-existent loanable value as Senior Bond gain

When purchasing a new Senior Bond, users call the buyBond function, which performs a number of calculations and checks before it either reverts
or mints a new Senior Bond NFT to the user. One of the checks performed is that the new Senior Bond’s gain is less than the protocol’s loanable
amount.

However, the function that calculates the protocol’s loanable amount – underlyingLoanable – is incorrect and can underflow. This is due to the
fact that the calculation of the Junior Token price via the price function uses abondPaid , which is the total abond.gain accrued so far, whereas
underlyingLoanable subtracts the entire abond.gain . This underflow effectively leads to any amount of Senior Bond gain being approved, as
underlyingLoanable outputs values around 1e77.

https://github.com/BarnBridge/BarnBridge-SmartYieldBonds/blob/943df3a8fcd8dd128af3beb0c85a0480c0e95ead/contracts/providers/CompoundProvider.sol#L132
https://github.com/BarnBridge/BarnBridge-SmartYieldBonds/blob/943df3a8fcd8dd128af3beb0c85a0480c0e95ead/contracts/providers/CompoundProvider.sol#L148
https://github.com/BarnBridge/BarnBridge-SmartYieldBonds/blob/943df3a8fcd8dd128af3beb0c85a0480c0e95ead/contracts/providers/CompoundProvider.sol#L198
https://github.com/BarnBridge/BarnBridge-SmartYieldBonds/blob/943df3a8fcd8dd128af3beb0c85a0480c0e95ead/contracts/providers/CompoundProvider.sol#L148
https://github.com/BarnBridge/BarnBridge-SmartYieldBonds/blob/943df3a8fcd8dd128af3beb0c85a0480c0e95ead/contracts/providers/CompoundProvider.sol#L155
https://github.com/BarnBridge/BarnBridge-SmartYieldBonds/blob/943df3a8fcd8dd128af3beb0c85a0480c0e95ead/contracts/providers/CompoundProvider.sol#L49
https://github.com/BarnBridge/BarnBridge-SmartYieldBonds/blob/943df3a8fcd8dd128af3beb0c85a0480c0e95ead/contracts/providers/CompoundProvider.sol#L40
https://github.com/BarnBridge/BarnBridge-SmartYieldBonds/blob/943df3a8fcd8dd128af3beb0c85a0480c0e95ead/contracts/providers/CompoundProvider.sol#L132
https://github.com/BarnBridge/BarnBridge-SmartYieldBonds/blob/943df3a8fcd8dd128af3beb0c85a0480c0e95ead/contracts/SmartYield.sol#L179
https://github.com/BarnBridge/BarnBridge-SmartYieldBonds/blob/943df3a8fcd8dd128af3beb0c85a0480c0e95ead/contracts/SmartYield.sol#L217
https://github.com/BarnBridge/BarnBridge-SmartYieldBonds/blob/943df3a8fcd8dd128af3beb0c85a0480c0e95ead/contracts/SmartYield.sol#L400
https://github.com/BarnBridge/BarnBridge-SmartYieldBonds/blob/943df3a8fcd8dd128af3beb0c85a0480c0e95ead/contracts/SmartYield.sol#L378
https://github.com/BarnBridge/BarnBridge-SmartYieldBonds/blob/943df3a8fcd8dd128af3beb0c85a0480c0e95ead/contracts/SmartYield.sol#L415

To illustrate this issue empirically, we have provided a test case in this secret gist. This test can be run after pasting it into line 79 of
jbond.test.ts .

Consider updating the calculation within underlyingLoanable , so that the return value aligns with protocol intentions. Additionally, consider this
an excellent example of how utilizing SafeMath could prevent unintentional overflows and underflows that can cause unexpected or undesirable
protocol behavior.

Update: Fixed in PR#42. The referenced PR is based on commits that include various other changes to the codebase which have not been reviewed by
OpenZeppelin.

High severity

[H01] Inconsistent and erroneous handling of ERC20 tokens

The ERC20 token specification defined the required interface of an ERC20 token. This included defining the functions transfer , transferFrom ,
and approve such that they return a bool signalling whether the function was successful or not. The specification goes on to say that functions
should throw on failure, however throwing is not a requirement. This specification has lead to the development of 3 different types of ERC20
tokens:

1. Tokens that throw on failure, and return true on success. One example is DAI.

2. Tokens that return false on failure, and return true on success. One example is ZRX.

3. Tokens that throw on failure, and do not return a boolean. One example is USDT.

Throughout the codebase, ERC20 token transfers and approvals are handled inconsistently. This leads to a variety of different errors when
handling ERC20 tokens. This list is not exhaustive:

Line 94 of _takeUnderlying in the CompoundProvider contract reverts if the transferFrom returns false. While this works with tokens of types
1 and 2, the require statement assumes the transfer is going to return a boolean. This means that for tokens of type 3, the code is trying to
read return data that does not exist. This leads to successful transfers of token type 3 reverting. In turn, this means tokens of this type cannot
be deposited into the protocol at all.

Line 213 of harvest in the CompoundProvider contract does not check the returned result of a transfer call. While tokens of type 1 and type
3 would have thrown if the transfer failed, it is vital to check the return value of tokens of type 2. In this example, the protocol assumes it has
successfully paid the msg.sender of the harvest function, when it may have failed and returned false. This issue is also faced when
CompoundProvider ‘s _sendUnderlying is called.

https://gist.github.com/hensha256/e0799ae33fcab8270714a23f1b0b5a4f
https://github.com/BarnBridge/BarnBridge-SmartYieldBonds/blob/943df3a8fcd8dd128af3beb0c85a0480c0e95ead/test/jbond.test.ts#L79
https://github.com/BarnBridge/BarnBridge-SmartYieldBonds/blob/943df3a8fcd8dd128af3beb0c85a0480c0e95ead/contracts/SmartYield.sol#L400
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/release-v3.4/contracts/math/SafeMath.sol
https://github.com/BarnBridge/BarnBridge-SmartYieldBonds/pull/42
https://eips.ethereum.org/EIPS/eip-20
https://github.com/BarnBridge/BarnBridge-SmartYieldBonds/blob/943df3a8fcd8dd128af3beb0c85a0480c0e95ead/contracts/providers/CompoundProvider.sol#L94
https://github.com/BarnBridge/BarnBridge-SmartYieldBonds/blob/943df3a8fcd8dd128af3beb0c85a0480c0e95ead/contracts/providers/CompoundProvider.sol#L213
https://github.com/BarnBridge/BarnBridge-SmartYieldBonds/blob/943df3a8fcd8dd128af3beb0c85a0480c0e95ead/contracts/providers/CompoundProvider.sol#L100

Due to the complexities of adapting code for all 3 types of ERC20 tokens, consider instead using the safeTransfer , safeTransferFrom , and
safeApprove functions from the OpenZeppelin library SafeERC20 . This library safely handles ERC20 tokens that behave in different ways, and

ensures that all calls revert on failure, whether or not the underlying token does.

Update: Fixed in PR#41. In the same PR, additional checks were added to verify the transfer amounts of uTokens ; those checks are not compatible
with uTokens that assess fees on transfer. The referenced PR is based on commits that include other changes to the codebase which have not been
reviewed by OpenZeppelin.

[H02] Liquidation of a Junior Bond maturity at the time of purchase always reverts

The protocol attempts to ensure that Junior Bonds are always liquidated in the order of their maturation times. The juniorBondsMaturities array
is used to store the maturity times of Junior Bonds for just this purpose. When a new Junior Bond is added, _accountJuniorBond sorts and stores
the new bond by maturity into the correct slot in the juniorBondsMaturities array.

At the beginning of many function calls, the function _beforeProviderOp iterates through the juniorBondsMaturities array, starting from the
last liquidated maturity, to ensure that all newly matured Junior Bonds are liquidated. The next maturity slot to be liquidated is tracked by the
juniorBondsMaturitiesPrev variable.

However, in buyJuniorBond , if the user mints a Junior Bond that is immediately liquidatable at a previously un-liquidated maturity, then the
contract deviates from the above process. This deviation ultimately causes the function call to result in an error, and revert.

The function buyJuniorBond executes a call to _liquidateJuniorsAt for the maturity slot that corresponds to the newly minted bond, but it does
so without first checking that all previous maturities have been liquidated. The _liquidateJuniorsAt function proceeds to check that the stored
JuniorBondsAt.price is 0, and then sets this price to the current protocol price before liquidating the bonds. _liquidateJuniorsAt never

updates the value of juniorBondsMaturitiesPrev .

Next, buyJuniorBond proceeds to execute redeemJuniorBond with the purpose of burning the Junior Bond that was just purchased. However,
when redeemJuniorBond executes _beforeProviderOp , it begins liquidating all maturities starting at (the never-yet-updated)
juniorBondsMaturitiesPrev . When it reaches the maturity for the bond that was liquidated immediately after being minted, the check that the

stored JuniorBondsAt.price is 0 fails causing the function to revert, because this price was set to a non-0 value earlier when it was liquidated.

Consider updating buyJuniorBond to call _beforeProviderOp at the beginning of execution. With this in place, _liquidateJuniorsAt can then
safely increment the value of juniorBondsMaturitiesPrev to ensure that all maturity liquidations are attempted only once.

Update: Fixed in PR#38. The referenced PR is based on commits that include various other changes to the codebase which have not been reviewed by
OpenZeppelin.

https://github.com/OpenZeppelin/openzeppelin-contracts/blob/release-v3.4/contracts/token/ERC20/SafeERC20.sol
https://github.com/BarnBridge/BarnBridge-SmartYieldBonds/pull/41
https://github.com/BarnBridge/BarnBridge-SmartYieldBonds/blob/943df3a8fcd8dd128af3beb0c85a0480c0e95ead/contracts/SmartYield.sol#L61
https://github.com/BarnBridge/BarnBridge-SmartYieldBonds/blob/943df3a8fcd8dd128af3beb0c85a0480c0e95ead/contracts/SmartYield.sol#L577
https://github.com/BarnBridge/BarnBridge-SmartYieldBonds/blob/943df3a8fcd8dd128af3beb0c85a0480c0e95ead/contracts/SmartYield.sol#L439
https://github.com/BarnBridge/BarnBridge-SmartYieldBonds/blob/943df3a8fcd8dd128af3beb0c85a0480c0e95ead/contracts/SmartYield.sol#L59
https://github.com/BarnBridge/BarnBridge-SmartYieldBonds/blob/943df3a8fcd8dd128af3beb0c85a0480c0e95ead/contracts/SmartYield.sol#L241
https://github.com/BarnBridge/BarnBridge-SmartYieldBonds/blob/943df3a8fcd8dd128af3beb0c85a0480c0e95ead/contracts/SmartYield.sol#L275
https://github.com/BarnBridge/BarnBridge-SmartYieldBonds/blob/943df3a8fcd8dd128af3beb0c85a0480c0e95ead/contracts/SmartYield.sol#L464
https://github.com/BarnBridge/BarnBridge-SmartYieldBonds/blob/943df3a8fcd8dd128af3beb0c85a0480c0e95ead/contracts/SmartYield.sol#L468
https://github.com/BarnBridge/BarnBridge-SmartYieldBonds/blob/943df3a8fcd8dd128af3beb0c85a0480c0e95ead/contracts/SmartYield.sol#L321
https://github.com/BarnBridge/BarnBridge-SmartYieldBonds/blob/943df3a8fcd8dd128af3beb0c85a0480c0e95ead/contracts/SmartYield.sol#L464
https://github.com/BarnBridge/BarnBridge-SmartYieldBonds/pull/38

[H03] Unchecked complex calculations throughout protocol

Throughout the protocol, calculations are performed without verifying that the values have not overflowed or underflowed. Performing
calculations without checking the outputs can lead to severe errors, including the one outlined in the Protocol allows non-existent loanable value
as Senior Bond gain issue. While we did not identify other situations in which the protocol state can lead to similar mathematical errors, the
calculations present are complex, and we cannot be certain that other examples do not exist.

Given the vital importance of accurate calculations in the protocol, please consider instead implementing calculations using SafeMath, so that
underflows and overflows will revert instead of causing cascading errors.

Update: Fixed in PR#39. The referenced PR is based on commits that include various other changes to the codebase which have not been reviewed by
OpenZeppelin.

Medium severity

[M01] _beforeProviderOp susceptible to running out of gas

In SmartYield , the _beforeProviderOp function runs at the very beginning of most essential, state-altering functions of the protocol.
_beforeProviderOp also has the potential to be very gas intensive, using at least 13500 gas per iteration when a junior bond maturity needs to be

liquidated. As the number of pending liquidations mounts, so do the gas costs associated with taking essentially any action within the protocol.
This negative feedback loop could result in the disincentivization of protocol activity, which could, in turn, lead to more time passing and even
more junior bonds maturing.

There exists some number of matured junior bonds, with differing maturities, in need of liquidation, that could effectively freeze the protocol.
Given the fact that currently on Ethereum’s mainnet the block gas limit is 12.5 million, there would need to be roughly 900 junior bond maturities
in queue to be liquidated for the _beforeProviderOp function to consistently run out of gas. While such a scenario is unlikely to ever manifest
itself, if the protocol were to enter such a state, it would currently be unable to recover from it.

To nullify this possibility entirely, consider adding an external function that can effectively call _beforeProviderOp with a subset of junior bonds.

Update: Fixed in PR#37. A publicly callable function to liquidate bonds with only a subset of maturities has been added. The referenced PR is based
on commits that include other changes to the codebase which have not been reviewed by OpenZeppelin.

[M02] Users buying Junior Tokens can bypass paying fees

The calculations of fees, such as the fee for buying Junior Tokens, round down due to Solidity truncation. This means that in the case of very small
purchases, a fee of 0 will be taken by the protocol. Users can repeatedly call buyTokens for small numbers of tokens in each purchase, effectively

https://github.com/OpenZeppelin/openzeppelin-contracts/blob/release-v3.4/contracts/math/SafeMath.sol
https://github.com/BarnBridge/BarnBridge-SmartYieldBonds/pull/39
https://github.com/BarnBridge/BarnBridge-SmartYieldBonds/blob/943df3a8fcd8dd128af3beb0c85a0480c0e95ead/contracts/SmartYield.sol
https://github.com/BarnBridge/BarnBridge-SmartYieldBonds/blob/943df3a8fcd8dd128af3beb0c85a0480c0e95ead/contracts/SmartYield.sol#L439
https://github.com/BarnBridge/BarnBridge-SmartYieldBonds/pull/37
https://github.com/BarnBridge/BarnBridge-SmartYieldBonds/blob/943df3a8fcd8dd128af3beb0c85a0480c0e95ead/contracts/SmartYield.sol#L131

bypassing the fee paying system.

Considering rounding all calculations in the protocol’s favor.

Update: The BarnBridge team did not address this issue.

[M03] Lack of event emissions

The codebase is completely devoid of event definitions or emissions. This makes it very difficult for users or other interested parties to track
important changes that take place in the system.

Consider emitting events after sensitive changes take place to facilitate tracking and notify off-chain clients that may be following the contracts’
activity.

Update: Partially fixed in PR#21. Several critical system functions do now emit events, but there are still contracts that lack event emissions. For
example, no events are emitted by sensitive functions in the Governed contract. The referenced PR is based on commits that include other changes to
the codebase which have not been reviewed by OpenZeppelin.

[M04] Senior bond holders not guaranteed their minimum gain

When purchasing a Senior Bond, using the buyBond function, a user specifies a minGain_ for their principal to appreciate by. This allows them to
ensure that they are getting an interest rate they are happy with in their bond, before locking their money up for the duration of the bond.

However, after the bond matures and the user calls redeemBond to redeem their principal and gain, the user can end up with less gain than their
originally specified minGain_ . This is due to the fact that, at this stage, the protocol takes a percentage of the gain as a fee, and the user ends up
with a smaller gain than their bond specified.

To avoid misleading users of the protocol, consider ensuring that a user will actually receive their specified minGain_ from their Senior Bond after
all fees are accounted for.

Update: The BarnBridge team did not address this issue.

[M05] Rounding errors in compound and compound2

Due to the fact that Solidity truncates when dividing, performing a division in the middle of a calculation can result in truncated amounts being
amplified and these amplifications leading to large errors. In the MathUtils contract, the compound function divides at the end of every iteration
of the while loop. The more iterations of the while loop, the more the result diverges from the true value. While the compound2 function is
generally more accurate, it also performs this truncated division in the odd case of the while loop.

https://github.com/BarnBridge/BarnBridge-SmartYieldBonds/pull/21
https://github.com/BarnBridge/BarnBridge-SmartYieldBonds/blob/943df3a8fcd8dd128af3beb0c85a0480c0e95ead/contracts/SmartYield.sol#L179
https://github.com/BarnBridge/BarnBridge-SmartYieldBonds/blob/943df3a8fcd8dd128af3beb0c85a0480c0e95ead/contracts/SmartYield.sol#L287
https://github.com/BarnBridge/BarnBridge-SmartYieldBonds/blob/943df3a8fcd8dd128af3beb0c85a0480c0e95ead/contracts/lib/math/MathUtils.sol#L32
https://github.com/BarnBridge/BarnBridge-SmartYieldBonds/blob/943df3a8fcd8dd128af3beb0c85a0480c0e95ead/contracts/lib/math/MathUtils.sol#L41
https://github.com/BarnBridge/BarnBridge-SmartYieldBonds/blob/943df3a8fcd8dd128af3beb0c85a0480c0e95ead/contracts/lib/math/MathUtils.sol#L47
https://github.com/BarnBridge/BarnBridge-SmartYieldBonds/blob/943df3a8fcd8dd128af3beb0c85a0480c0e95ead/contracts/lib/math/MathUtils.sol#L53

As an example of how significant these errors can be, consider the calculation of compound interest with 100 principal, 1.02e18 rate, and 100
periods. The correct answer for this calculation is 724.46 . compound gives the result 584 , and compound2 gives the result 720 .

Consider updating the calculations to always perform divisions as late as possible, while also ensuring the intermediate results do not overflow.

Update: The BarnBridge team did not address this issue. They stated: “The code uses only the compound2 function, which we consider to have a good
tradeoff between accuracy/gas cost/complexity. Should we decide this is no longer the case, we’ll update the BondModelV1 which uses the compound2
function.”

[M06] Using stale cToken exchange rate

Throughout the CompoundProvider contract, when considering the exchange rate between cTokens and uTokens in a given Compound pool, the
pool’s exchangeRateStored function is used rather than its exchangeRateCurrent function. The result is that the exchange rate used is out of
date, and relies on parties interacting with the Compound pool incredibly regularly. This leads to incorrect calculations of fees, incorrect
calculation of the underlying balance, and incorrect calculation of the expected COMP reward.

Consider using the exchangeRateCurrent function to increase the overall accuracy of the protocol.

Update: Fixed in commit 6a2b956d6b9df4639358368c93e518ea458f5d68 . There are no longer any instances of exchangeRateStored being used in the
revised code. The referenced commit includes other changes to the codebase which have not been reviewed by OpenZeppelin.

Low severity

[L01] BOND_MAX_RATE_PER_DAY doesn’t cap bond rates at 30% as intended

The BOND_MAX_RATE_PER_DAY variable places an upper bound on the daily interest rate that an oracle can report for an underlying pool. The inline
comment alongside this variable states the initial rate assignment should be equal to “APY ~30% / year”. However, the calculation used to set this
initial value, i.e., 3 * 49201150733 * 5760 , translates to approximately 36.4% APY. Even though the second part of that computation, 49201150733
* 5760 , would yield an approximately 10% APY, due to compounding, the relationship between this max rate and the resultant APY is superlinear.
Consider reconciling the code and comment to avoid any confusion and to clarify intent.

Update: Fixed in commit e6ac08cfbe0ab1eb0f682927a11f7e0a5bf20a6b . The referenced commit includes other changes to the codebase which have
not been reviewed by OpenZeppelin.

[L02] Constants not explicitly declared

https://github.com/BarnBridge/BarnBridge-SmartYieldBonds/blob/943df3a8fcd8dd128af3beb0c85a0480c0e95ead/contracts/lib/math/MathUtils.sol#L32
https://github.com/BarnBridge/BarnBridge-SmartYieldBonds/blob/943df3a8fcd8dd128af3beb0c85a0480c0e95ead/contracts/lib/math/MathUtils.sol#L47
https://github.com/BarnBridge/BarnBridge-SmartYieldBonds/blob/943df3a8fcd8dd128af3beb0c85a0480c0e95ead/contracts/providers/CompoundProvider.sol#L305
https://github.com/compound-finance/compound-protocol/blob/c5fcc34222693ad5f547b14ed01ce719b5f4b000/contracts/CToken.sol#L328
https://github.com/compound-finance/compound-protocol/blob/c5fcc34222693ad5f547b14ed01ce719b5f4b000/contracts/CToken.sol#L318
https://github.com/BarnBridge/BarnBridge-SmartYieldBonds/blob/943df3a8fcd8dd128af3beb0c85a0480c0e95ead/contracts/providers/CompoundProvider.sol#L225
https://github.com/BarnBridge/BarnBridge-SmartYieldBonds/blob/943df3a8fcd8dd128af3beb0c85a0480c0e95ead/contracts/providers/CompoundProvider.sol#L273
https://github.com/BarnBridge/BarnBridge-SmartYieldBonds/blob/943df3a8fcd8dd128af3beb0c85a0480c0e95ead/contracts/providers/CompoundProvider.sol#L309
https://github.com/compound-finance/compound-protocol/blob/c5fcc34222693ad5f547b14ed01ce719b5f4b000/contracts/CToken.sol#L318
https://github.com/BarnBridge/BarnBridge-SmartYieldBonds/commit/6a2b956d6b9df4639358368c93e518ea458f5d68
https://github.com/BarnBridge/BarnBridge-SmartYieldBonds/blob/943df3a8fcd8dd128af3beb0c85a0480c0e95ead/contracts/IController.sol#L26
https://github.com/BarnBridge/BarnBridge-SmartYieldBonds/blob/943df3a8fcd8dd128af3beb0c85a0480c0e95ead/contracts/SmartYield.sol#L351
https://github.com/BarnBridge/BarnBridge-SmartYieldBonds/commit/e6ac08cfbe0ab1eb0f682927a11f7e0a5bf20a6b

Throughout the codebase there are many occurrences of literal values being used with unexplained meaning. This makes areas of the code more
difficult to understand. Some examples include:

The literal value 1e18 is used throughout the codebase to add accuracy to calculations. However, the lack of comments and explanation
around this makes it hard to track whether or not a value is correctly scaled at the end of a calculation.

The literal value -1 is often used to represent the maximum integer, but this use is generally something that needs to be inferred.

The literal values 49201150733 , 3 and 5760 used on line 26 of IController.sol . While there are comments above this line that give them
some context, the source of the values remains unclear.

Literal values in the codebase without an explanation as to their meaning make the code harder to read, understand, and maintain for developers,
auditors and external contributors alike.

Consider defining a constant variable for every literal value used and giving it a clear and self-explanatory name. Additionally, for complex
values, inline comments explaining how they were calculated or why they were chosen are highly recommended.

Update: Fixed in PR#43. The referenced PR is based on commits that include other changes to the codebase which have not been reviewed by
OpenZeppelin.

[L03] Duplicated code

Throughout the codebase there are examples of duplicated code. Duplicating code can lead to issues later in the development lifecycle and leaves
the project more prone to the introduction of errors. Errors can inadvertently be introduced when functionality changes are not replicated across
all instances of code that should be identical. Instead of duplicating code, consider having just one function/modifier/contract containing the
duplicated code and using that whenever the duplicated functionality is required. Examples of duplicated code include, but are not limited to:

The SeniorBond and JuniorBond contracts. Consider instead having one common Bond contract.

Conversions from uToken to cToken , and vice versa throughout CompoundProvider . Consider creating helper functions to perform this
conversion.

The check whether msg.sender == smartYield is repeated twice in each of SeniorBond and JuniorBond . Consider having a common
modifier to perform this check.

The majority of the currentCumulatives and _accountYieldInternal functions are identical. Consider factoring out the identical code into a
common helper function.

Update: Not fixed. The second and fourth points are outside the scope of fix review, given the extensive changes to the relevant contract. The first and
third points of this issue were not addressed. In regards to the first point, the BarnBridge team stated: “We decided to keep the two contracts
(SeniorBond, JuniorBond) separate, this should give us flexibility for future developments.”

https://github.com/BarnBridge/BarnBridge-SmartYieldBonds/blob/943df3a8fcd8dd128af3beb0c85a0480c0e95ead/contracts/SmartYield.sol#L494
https://github.com/BarnBridge/BarnBridge-SmartYieldBonds/blob/943df3a8fcd8dd128af3beb0c85a0480c0e95ead/contracts/IController.sol#L26
https://github.com/BarnBridge/BarnBridge-SmartYieldBonds/pull/43
https://github.com/BarnBridge/BarnBridge-SmartYieldBonds/blob/943df3a8fcd8dd128af3beb0c85a0480c0e95ead/contracts/SeniorBond.sol
https://github.com/BarnBridge/BarnBridge-SmartYieldBonds/blob/943df3a8fcd8dd128af3beb0c85a0480c0e95ead/contracts/JuniorBond.sol
https://github.com/BarnBridge/BarnBridge-SmartYieldBonds/blob/943df3a8fcd8dd128af3beb0c85a0480c0e95ead/contracts/providers/CompoundProvider.sol
https://github.com/BarnBridge/BarnBridge-SmartYieldBonds/blob/943df3a8fcd8dd128af3beb0c85a0480c0e95ead/contracts/SeniorBond.sol
https://github.com/BarnBridge/BarnBridge-SmartYieldBonds/blob/943df3a8fcd8dd128af3beb0c85a0480c0e95ead/contracts/JuniorBond.sol
https://github.com/BarnBridge/BarnBridge-SmartYieldBonds/blob/943df3a8fcd8dd128af3beb0c85a0480c0e95ead/contracts/providers/CompoundProvider.sol#L247
https://github.com/BarnBridge/BarnBridge-SmartYieldBonds/blob/943df3a8fcd8dd128af3beb0c85a0480c0e95ead/contracts/providers/CompoundProvider.sol#L333

[L04] Inconsistent deletion of redeemed bonds

When a Senior Bond is redeemed, the NFT is burnt, and then the corresponding seniorBonds mapping entry is deleted. This means that the
details of the Senior Bond can only be found by looking at past blocks. Contrastingly, when Junior Bonds are redeemed, the NFT is burnt, but the
corresponding mapping entry is not deleted.

Consider settling on a consistent approach to data integrity when a bond is redeemed.

Update: Fixed in commit 488eb0b449a56810bb961566f2c828d99959c55c . The fix was to comment out the relevant senior bond delete rather than
remove the code entirely. The referenced commit includes other changes to the codebase which have not been reviewed by OpenZeppelin.

[L05] Inconsistent maturity check

Throughout the majority of the SmartYield contract, a bond is classed as mature when currentTime >= maturesAt . One example of this is at the
beginning of the redeemBond function. However, in the unaccountBonds function, the Senior Bond is only classed as mature if currentTime >
maturesAt , i.e., if the current time is equal to the maturity, then the bond is not processed.

To clarify intent and to reduce possible confusion throughout the codebase, consider using a consistent measure of whether a bond has met
maturity.

Update: Issue fixed in PR#44. The referenced PR includes prior commits that make other changes to the codebase which have not been reviewed by
OpenZeppelin.

[L06] Inconsistent coding style

There are general inconsistencies and deviations from the Solidity Style Guide throughout the codebase. These lead to misconceptions and
confusion when reading the code. Below is a non-exhaustive list of inconsistent coding styles observed.

While most public and external function names do not contain an underscore, some begin with an underscore. This is misleading, as a leading
underscore should be reserved for internal functions that are not accessible from a contract’s public API. For example:

The _depositProvider function

The _sendUnderlying function

Some internal function names start with an underscore, while others do not. For example:

_updateCompState is internal and has a leading underscore.

compound2 is internal and does not have a leading underscore.

https://github.com/BarnBridge/BarnBridge-SmartYieldBonds/blob/943df3a8fcd8dd128af3beb0c85a0480c0e95ead/contracts/SmartYield.sol#L313
https://github.com/BarnBridge/BarnBridge-SmartYieldBonds/blob/943df3a8fcd8dd128af3beb0c85a0480c0e95ead/contracts/SmartYield.sol#L314
https://github.com/BarnBridge/BarnBridge-SmartYieldBonds/blob/943df3a8fcd8dd128af3beb0c85a0480c0e95ead/contracts/SmartYield.sol#L605
https://github.com/BarnBridge/BarnBridge-SmartYieldBonds/commit/488eb0b449a56810bb961566f2c828d99959c55c
https://github.com/BarnBridge/BarnBridge-SmartYieldBonds/blob/943df3a8fcd8dd128af3beb0c85a0480c0e95ead/contracts/SmartYield.sol
https://github.com/BarnBridge/BarnBridge-SmartYieldBonds/blob/943df3a8fcd8dd128af3beb0c85a0480c0e95ead/contracts/SmartYield.sol#L295
https://github.com/BarnBridge/BarnBridge-SmartYieldBonds/blob/943df3a8fcd8dd128af3beb0c85a0480c0e95ead/contracts/SmartYield.sol#L481
https://github.com/BarnBridge/BarnBridge-SmartYieldBonds/pull/44
https://solidity.readthedocs.io/en/latest/style-guide.html
https://github.com/BarnBridge/BarnBridge-SmartYieldBonds/blob/943df3a8fcd8dd128af3beb0c85a0480c0e95ead/contracts/providers/CompoundProvider.sol#L110
https://github.com/BarnBridge/BarnBridge-SmartYieldBonds/blob/943df3a8fcd8dd128af3beb0c85a0480c0e95ead/contracts/providers/CompoundProvider.sol#L100
https://github.com/BarnBridge/BarnBridge-SmartYieldBonds/blob/943df3a8fcd8dd128af3beb0c85a0480c0e95ead/contracts/providers/CompoundProvider.sol#L372
https://github.com/BarnBridge/BarnBridge-SmartYieldBonds/blob/943df3a8fcd8dd128af3beb0c85a0480c0e95ead/contracts/lib/math/MathUtils.sol#L47

Most parameters end with an underscore, while some do not. For example:

The forInterval parameter in the consult function

The yieldCumulativeStart_ parameter in the computeAmountOut function

Some global values are defined in all capitals, however this style should be reserved for constants. This can lead users to believe that certain
values cannot be changed, when in reality they can be. For example:

HARVEST_REWARD is a non-constant defined in capitals.

feesOwner is a non-constant defined in camel case.

In function definitions split across multiple lines:

Some put all visibility modifiers on one line, for example in observationIndexOf .

Others split these across different lines, for example in getUniswapPath .

Furthermore, function ordering deviates from the recommendation in the Solidity Style Guide. While the codebase does generally adhere to some
form of function ordering, it is not always consistently implemented. For example:

In the // internals section of SmartYield contract, there is a public function definition for unaccountBonds .

Consider enforcing a standard coding style, such as that provided by the Solidity Style Guide, to improve the project’s overall legibility. Also
consider using a linter like Solhint to define a style and analyze the codebase for style deviations.

Update: The BarnBridge team did not address this issue.

[L07] Lack of input validation

While many of the functions in the codebase that take external input do verify those inputs, there are some instances of constructors and
functions that lack sufficient input validation. This is especially true of functions that take input from “trusted” parties, such as the setter functions
found in IController and CompoundController , or the constructor of YieldOracle . Even a trusted party may make an error while inputting
values, and many clients pass along 0 values by default for empty fields. Consider implementing require statements where appropriate to
validate all user-controlled input.

Update: The BarnBridge team did not address this issue. They stated: “At this point we prefer not to increase the code complexity by adding validation
for trusted party input.”

https://github.com/BarnBridge/BarnBridge-SmartYieldBonds/blob/943df3a8fcd8dd128af3beb0c85a0480c0e95ead/contracts/oracle/YieldOracle.sol#L114
https://github.com/BarnBridge/BarnBridge-SmartYieldBonds/blob/943df3a8fcd8dd128af3beb0c85a0480c0e95ead/contracts/oracle/YieldOracle.sol#L102
https://github.com/BarnBridge/BarnBridge-SmartYieldBonds/blob/943df3a8fcd8dd128af3beb0c85a0480c0e95ead/contracts/IController.sol#L16
https://github.com/BarnBridge/BarnBridge-SmartYieldBonds/blob/943df3a8fcd8dd128af3beb0c85a0480c0e95ead/contracts/IController.sol#L13
https://github.com/BarnBridge/BarnBridge-SmartYieldBonds/blob/943df3a8fcd8dd128af3beb0c85a0480c0e95ead/contracts/oracle/YieldOracle.sol#L62
https://github.com/BarnBridge/BarnBridge-SmartYieldBonds/blob/943df3a8fcd8dd128af3beb0c85a0480c0e95ead/contracts/providers/CompoundController.sol#L41
https://docs.soliditylang.org/en/v0.5.3/style-guide.html#order-of-functions
https://github.com/BarnBridge/BarnBridge-SmartYieldBonds/blob/943df3a8fcd8dd128af3beb0c85a0480c0e95ead/contracts/SmartYield.sol#L437
https://github.com/BarnBridge/BarnBridge-SmartYieldBonds/blob/943df3a8fcd8dd128af3beb0c85a0480c0e95ead/contracts/SmartYield.sol
https://github.com/BarnBridge/BarnBridge-SmartYieldBonds/blob/943df3a8fcd8dd128af3beb0c85a0480c0e95ead/contracts/SmartYield.sol#L478
https://solidity.readthedocs.io/en/latest/style-guide.html
https://github.com/protofire/solhint
https://github.com/BarnBridge/BarnBridge-SmartYieldBonds/blob/943df3a8fcd8dd128af3beb0c85a0480c0e95ead/contracts/IController.sol
https://github.com/BarnBridge/BarnBridge-SmartYieldBonds/blob/943df3a8fcd8dd128af3beb0c85a0480c0e95ead/contracts/providers/CompoundController.sol
https://github.com/BarnBridge/BarnBridge-SmartYieldBonds/blob/943df3a8fcd8dd128af3beb0c85a0480c0e95ead/contracts/oracle/YieldOracle.sol#L41

[L08] Insufficient inline documentation

Although many functions in the codebase are well documented, there are plenty of other functions that are lacking sufficient inline
documentation. For example:

The initialization loop in the YieldOracle contract sets i to the length of an empty dynamic array rather than to 0 as one might expect.
This is, ostensibly, to support an oracle being deployed with a pre-existing set of yieldObservations . Intent here should be clarified.

The comments above currentCumulatives describe one of the function’s return values, but fail to mention anything about the other return
value.

The internal _accountJuniorBond function is critical to the system, yet it lacks even a single line of inline documentation.

Consider adding additional inline documentation throughout the codebase to further clarify intent and improve overall code readability.

Update: The BarnBridge team did not address this issue.

[L09] Low test coverage on some contracts

Writing tests is a critical part of the development process of a new protocol, as it allows developers to find bugs in their code before launch. While
many of your contracts have 100% test coverage, a number of them have low test coverage, falling as low as 50% in Governed.sol. Consider
adding more tests for the contracts, aiming for at least 95% test coverage across all contracts.

Update: Improved in commit 688c85a966ba7033230608e1682356d0e40ecd23 , but still under 95%. The referenced commit includes other changes to the
codebase which have not been reviewed by OpenZeppelin.

[L10] Junior Token holders can manipulate Junior Bond maturity

When buying a Junior Bond, the maturity time for the bond is set to 1 + abond.maturesAt / 1e18 – the user does not get to choose the duration
of their Junior Bond. The value of abond.maturesAt is updated whenever a user buys or redeems a Senior Bond. This setup means that, by
purchasing a Senior Bond with specific parameters, a user can cause the protocol to set a specific value for abond.maturesAt . They could then
immediately call buyJuniorBond to purchase a Junior Bond with their desired duration.

While we have not found a specific attack vector through this style of manipulation, it is important to consider the consequences of users being
able to manipulate state variables in this way. Consider updating the formulae for abond.maturesAt or JuniorBond.maturesAt so that users
cannot manipulate the state variables in ways that could potentially give them some advantage.

Update: The BarnBridge team did not address this issue. They stated: “The ability of new bonds to affect the maturity date of future junior bonds is by
design.”

https://github.com/BarnBridge/BarnBridge-SmartYieldBonds/blob/943df3a8fcd8dd128af3beb0c85a0480c0e95ead/contracts/oracle/YieldOracle.sol#L56
https://github.com/BarnBridge/BarnBridge-SmartYieldBonds/blob/943df3a8fcd8dd128af3beb0c85a0480c0e95ead/contracts/providers/CompoundProvider.sol#L247
https://github.com/BarnBridge/BarnBridge-SmartYieldBonds/blob/943df3a8fcd8dd128af3beb0c85a0480c0e95ead/contracts/SmartYield.sol#L577-L599
https://github.com/BarnBridge/BarnBridge-SmartYieldBonds/blob/943df3a8fcd8dd128af3beb0c85a0480c0e95ead/contracts/Governed.sol#L5
https://github.com/BarnBridge/BarnBridge-SmartYieldBonds/commit/688c85a966ba7033230608e1682356d0e40ecd23mpn
https://github.com/BarnBridge/BarnBridge-SmartYieldBonds/blob/943df3a8fcd8dd128af3beb0c85a0480c0e95ead/contracts/SmartYield.sol#L241
https://github.com/BarnBridge/BarnBridge-SmartYieldBonds/blob/943df3a8fcd8dd128af3beb0c85a0480c0e95ead/contracts/SmartYield.sol#L248
https://github.com/BarnBridge/BarnBridge-SmartYieldBonds/blob/943df3a8fcd8dd128af3beb0c85a0480c0e95ead/contracts/SmartYield.sol#L179
https://github.com/BarnBridge/BarnBridge-SmartYieldBonds/blob/943df3a8fcd8dd128af3beb0c85a0480c0e95ead/contracts/SmartYield.sol#L287

[L11] Unnecessary subtraction obscures past bond state

The juniorBondsMaturingAt mapping is used to track all of the Junior Bonds that will be maturing at a given time. This includes tracking the total
number of Junior Tokens that are in bonds at this maturity. When Junior Bonds mature, and are liquidated, the total number of tokens that mature
at this time is left unchanged. This allows the history of Junior Bonds to be viewed on-chain.

However, when a new Junior Bond is liquidated immediately after minting, as its maturity has already been liquidated, the function
_unaccountJuniorBond is called. This function subtracts this bond’s tokens from the cumulative total stored in the juniorBondsMaturingAt

mapping. This subtraction uses unnecessary gas, and obscures the state of Junior Bond history that is otherwise preserved in
juniorBondsMaturingAt .

Consider removing this subtraction to keep the Junior Bond storage accurate.

Update: The BarnBridge team did not address this issue. They stated: “We process event logs in our backend for historical data.”

Notes & Additional Information

[N01] Assignment in require statement

In the YieldOracle contract, there is a require statement that makes an assignment. This deviates from the standard usage and intention of
require statements and can easily lead to confusion. To avoid unnecessary confusion, consider moving the assignment to its own line before the
require statement and then using the require statement solely for condition checking.

Update: Acknowledged, but not fixed. The BarnBridge team has stated that their YieldOracle contract is inspired by Uniswap’s
ExampleOracleSimple contract and that they wish for their code to remain as “close to the source” as possible in this case.

[N02] Commented code

Throughout the codebase there are lines of code that have been commented out with // . This can lead to confusion and is detrimental to overall
code readability. We have provided a non-exhaustive list of examples below:

Line 538 of SmartYield.sol

Lines 601 and 603 of SmartYield.sol

Consider removing commented out lines of code that are no longer needed.

https://github.com/BarnBridge/BarnBridge-SmartYieldBonds/blob/943df3a8fcd8dd128af3beb0c85a0480c0e95ead/contracts/SmartYield.sol#L65
https://github.com/BarnBridge/BarnBridge-SmartYieldBonds/blob/943df3a8fcd8dd128af3beb0c85a0480c0e95ead/contracts/SmartYield.sol#L453
https://github.com/BarnBridge/BarnBridge-SmartYieldBonds/blob/943df3a8fcd8dd128af3beb0c85a0480c0e95ead/contracts/SmartYield.sol#L280
https://github.com/BarnBridge/BarnBridge-SmartYieldBonds/blob/943df3a8fcd8dd128af3beb0c85a0480c0e95ead/contracts/SmartYield.sol#L65
https://github.com/BarnBridge/BarnBridge-SmartYieldBonds/blob/943df3a8fcd8dd128af3beb0c85a0480c0e95ead/contracts/oracle/YieldOracle.sol
https://github.com/BarnBridge/BarnBridge-SmartYieldBonds/blob/943df3a8fcd8dd128af3beb0c85a0480c0e95ead/contracts/oracle/YieldOracle.sol#L48
https://github.com/BarnBridge/BarnBridge-SmartYieldBonds/blob/943df3a8fcd8dd128af3beb0c85a0480c0e95ead/contracts/oracle/YieldOracle.sol
https://github.com/Uniswap/uniswap-v2-periphery/blob/master/contracts/examples/ExampleOracleSimple.sol
https://github.com/BarnBridge/BarnBridge-SmartYieldBonds/blob/943df3a8fcd8dd128af3beb0c85a0480c0e95ead/contracts/SmartYield.sol#L538
https://github.com/BarnBridge/BarnBridge-SmartYieldBonds/blob/943df3a8fcd8dd128af3beb0c85a0480c0e95ead/contracts/SmartYield.sol#L601-L603

Update: Fixed in commit 025c654d59fcfd290c4730335bc9dd7cdec38048 . Note: The referenced commit includes other changes to the codebase which
have not been reviewed by OpenZeppelin.

[N03] Convoluted conditionals

The codebase contains some convoluted conditionals that could benefit from simplification. Two examples of this are:

if (!(timeElapsed <= windowSize)) could be simplified to if (timeElapsed > windowSize)

if (!(timeElapsed >= windowSize - periodSize * 2)) could be simplified to if (timeElapsed < windowSize - periodSize * 2)

Consider writing conditionals in their simplest form to reduce potential confusion and increase overall code readability.

Update: Acknowledged, but not fixed. The BarnBridge team has stated that their YieldOracle contract is inspired by Uniswap’s
ExampleOracleSimple contract and that they wish for their code to remain as “close to the source” as possible in this case.

[N04] Misleading contract naming

The contracts IProvider , IController , and IComptroller are all named following the convention for naming interfaces, despite all being
contracts. IProvider and IController both contain variable declarations and logic that are integral to the system, meaning the contract names
are misleading and decrease code readabiilty. Conversely, IComptroller does not define any variables or logic, and could be defined as an
interface with external functions.

To increase code readability for future contributors, auditors, and the community, consider renaming IProvider and IController , and consider
making IComptroller an interface as its name implies.

Update: Partially fixed in commit 557395fd0fcf6bc089e10f312b3478b68e08a5ed . IComptroller and IProvider were changed to interfaces as their
names imply, however IController is still a contract. The referenced commit includes other changes to the codebase which have not been reviewed
by OpenZeppelin.

[N05] Unnecessarily convoluted inheritance

There are instances in the codebase where inheritance becomes unnecessarily convoluted. For example, when the abstract contract IProvider
inherits IYieldOraclelizable , it makes the inheritance graph of anything that inherits the former, such as CompoundProvider , much more
convoluted than necessary. Since the abstract contract IProvider isn’t implementing any of the interface functions from IYieldOraclelizable ,
consider just inheriting each parent separately in CompoundProvider .

As a general rule, consider keeping inheritance as straightforward as possible to increase overall code readability and maintainability.

https://github.com/BarnBridge/BarnBridge-SmartYieldBonds/tree/025c654d59fcfd290c4730335bc9dd7cdec38048
https://github.com/BarnBridge/BarnBridge-SmartYieldBonds/blob/943df3a8fcd8dd128af3beb0c85a0480c0e95ead/contracts/oracle/YieldOracle.sol#L125
https://github.com/BarnBridge/BarnBridge-SmartYieldBonds/blob/943df3a8fcd8dd128af3beb0c85a0480c0e95ead/contracts/oracle/YieldOracle.sol#L135
https://github.com/BarnBridge/BarnBridge-SmartYieldBonds/blob/943df3a8fcd8dd128af3beb0c85a0480c0e95ead/contracts/oracle/YieldOracle.sol
https://github.com/Uniswap/uniswap-v2-periphery/blob/master/contracts/examples/ExampleOracleSimple.sol
https://github.com/BarnBridge/BarnBridge-SmartYieldBonds/blob/943df3a8fcd8dd128af3beb0c85a0480c0e95ead/contracts/IProvider.sol
https://github.com/BarnBridge/BarnBridge-SmartYieldBonds/blob/943df3a8fcd8dd128af3beb0c85a0480c0e95ead/contracts/IController.sol
https://github.com/BarnBridge/BarnBridge-SmartYieldBonds/blob/943df3a8fcd8dd128af3beb0c85a0480c0e95ead/contracts/external-interfaces/compound-finance/IComptroller.sol
https://github.com/BarnBridge/BarnBridge-SmartYieldBonds/commit/557395fd0fcf6bc089e10f312b3478b68e08a5ed
https://github.com/BarnBridge/BarnBridge-SmartYieldBonds/blob/943df3a8fcd8dd128af3beb0c85a0480c0e95ead/contracts/IProvider.sol#L7
https://github.com/BarnBridge/BarnBridge-SmartYieldBonds/blob/943df3a8fcd8dd128af3beb0c85a0480c0e95ead/contracts/oracle/IYieldOraclelizable.sol#L5
https://github.com/BarnBridge/BarnBridge-SmartYieldBonds/blob/943df3a8fcd8dd128af3beb0c85a0480c0e95ead/contracts/providers/CompoundProvider.sol#L18

Update: Fixed in commit 557395fd0fcf6bc089e10f312b3478b68e08a5ed . The referenced commit includes other changes to the codebase which have
not been reviewed by OpenZeppelin.

[N06] Gas inefficiencies

Throughout the codebase, there are several opportunities to improve gas efficiency. Below is a lengthy, albeit non-exhaustive, list of such
opportunities.

In CompoundProvider , the _takeUnderlying function has two require statements. The first require is unnecessary however, as the second
require will revert in all cases the first would have.

In CompoundProvider , the harvest function makes repeated calls to ICTokenErc20(cToken).balanceOf(address(this)) . The value could often
be cached.

In CompoundProvider , the harvest function makes an external call to IUniswapV2Router.swapExactTokensForTokens to swap reward tokens
for underlying tokens. The “deadline” provided for the swap is this.currentTime() + 1800 . However, the addition of 1800 is unnecessary
since the swap will necessarily resolve in the current block.

In CompoundProvider , the transferFees function converts an amount of cTokens into uTokens , adds the latter onto underlyingFees , and
then converts that total amount back into cTokens . Converting underlyingFees to cTokens and then adding the two cToken values could
reduce complexity.

In CompoundProvider , the _accountYieldInternal and currentCumulatives functions both cast a current blocktime to a uint32 , but only
after performing an unnecessary mod 2^32 .

In MathUtils , the compound and compound2 functions will use a lot of gas even when ratePerPeriod is 0 . There could be a short-circuit to
return principal in those cases.

In SmartYield , the bondGain function makes an external call to BondModel.gain . As part of the call, SmartYield provides it’s own address as
the pool argument so that BondModel can make calls back to get additional information about the pool . It would be more efficient to pass
along all the pool information that BondModel requires as part of the first call to gain .

In SmartYield , the function _beforeProviderOp has a for loop where this.currentTime() is called every iteration. It could be cached.

Throughout the codebase, there are several instances of external calls made to currentTime functions that only return the current
block.timestamp . Using block.timestamp directly would reduce gas costs.

Throughout the codebase, there are numerous instances of contracts calling local functions via the this keyword, which makes those calls
external. Instead, by removing the this. prefix, these functions can be called internally,. This changes the EVM opcode invocation from CALL
to JUMP and in doing so decreases gas costs. There are times the number of external calls invoked along a call chain are non-trivial. For
instance, a call to buyBond makes no less than 29 unnecessary external calls:

There are 4 unnecessary external calls in the function itself.

https://github.com/BarnBridge/BarnBridge-SmartYieldBonds/commit/557395fd0fcf6bc089e10f312b3478b68e08a5ed
https://github.com/BarnBridge/BarnBridge-SmartYieldBonds/blob/943df3a8fcd8dd128af3beb0c85a0480c0e95ead/contracts/providers/CompoundProvider.sol
https://github.com/BarnBridge/BarnBridge-SmartYieldBonds/blob/943df3a8fcd8dd128af3beb0c85a0480c0e95ead/contracts/providers/CompoundProvider.sol#L85
https://github.com/BarnBridge/BarnBridge-SmartYieldBonds/blob/943df3a8fcd8dd128af3beb0c85a0480c0e95ead/contracts/providers/CompoundProvider.sol#L89
https://github.com/BarnBridge/BarnBridge-SmartYieldBonds/blob/943df3a8fcd8dd128af3beb0c85a0480c0e95ead/contracts/providers/CompoundProvider.sol#L93
https://github.com/BarnBridge/BarnBridge-SmartYieldBonds/blob/943df3a8fcd8dd128af3beb0c85a0480c0e95ead/contracts/providers/CompoundProvider.sol
https://github.com/BarnBridge/BarnBridge-SmartYieldBonds/blob/943df3a8fcd8dd128af3beb0c85a0480c0e95ead/contracts/providers/CompoundProvider.sol#L132
https://github.com/BarnBridge/BarnBridge-SmartYieldBonds/blob/943df3a8fcd8dd128af3beb0c85a0480c0e95ead/contracts/providers/CompoundProvider.sol
https://github.com/BarnBridge/BarnBridge-SmartYieldBonds/blob/943df3a8fcd8dd128af3beb0c85a0480c0e95ead/contracts/providers/CompoundProvider.sol#L132
https://github.com/BarnBridge/BarnBridge-SmartYieldBonds/blob/943df3a8fcd8dd128af3beb0c85a0480c0e95ead/contracts/providers/CompoundProvider.sol#L174
https://github.com/BarnBridge/BarnBridge-SmartYieldBonds/blob/943df3a8fcd8dd128af3beb0c85a0480c0e95ead/contracts/providers/CompoundProvider.sol#L179
https://github.com/BarnBridge/BarnBridge-SmartYieldBonds/blob/943df3a8fcd8dd128af3beb0c85a0480c0e95ead/contracts/providers/CompoundProvider.sol
https://github.com/BarnBridge/BarnBridge-SmartYieldBonds/blob/943df3a8fcd8dd128af3beb0c85a0480c0e95ead/contracts/providers/CompoundProvider.sol#L216
https://github.com/BarnBridge/BarnBridge-SmartYieldBonds/blob/943df3a8fcd8dd128af3beb0c85a0480c0e95ead/contracts/providers/CompoundProvider.sol
https://github.com/BarnBridge/BarnBridge-SmartYieldBonds/blob/943df3a8fcd8dd128af3beb0c85a0480c0e95ead/contracts/providers/CompoundProvider.sol#L333
https://github.com/BarnBridge/BarnBridge-SmartYieldBonds/blob/943df3a8fcd8dd128af3beb0c85a0480c0e95ead/contracts/providers/CompoundProvider.sol#L247
https://github.com/BarnBridge/BarnBridge-SmartYieldBonds/blob/943df3a8fcd8dd128af3beb0c85a0480c0e95ead/contracts/lib/math/MathUtils.sol
https://github.com/BarnBridge/BarnBridge-SmartYieldBonds/blob/943df3a8fcd8dd128af3beb0c85a0480c0e95ead/contracts/lib/math/MathUtils.sol#L32
https://github.com/BarnBridge/BarnBridge-SmartYieldBonds/blob/943df3a8fcd8dd128af3beb0c85a0480c0e95ead/contracts/lib/math/MathUtils.sol#L47
https://github.com/BarnBridge/BarnBridge-SmartYieldBonds/blob/943df3a8fcd8dd128af3beb0c85a0480c0e95ead/contracts/SmartYield.sol
https://github.com/BarnBridge/BarnBridge-SmartYieldBonds/blob/943df3a8fcd8dd128af3beb0c85a0480c0e95ead/contracts/SmartYield.sol#L358
https://github.com/BarnBridge/BarnBridge-SmartYieldBonds/blob/943df3a8fcd8dd128af3beb0c85a0480c0e95ead/contracts/SmartYield.sol#L362
https://github.com/BarnBridge/BarnBridge-SmartYieldBonds/blob/943df3a8fcd8dd128af3beb0c85a0480c0e95ead/contracts/SmartYield.sol
https://github.com/BarnBridge/BarnBridge-SmartYieldBonds/blob/943df3a8fcd8dd128af3beb0c85a0480c0e95ead/contracts/SmartYield.sol#L439
https://github.com/BarnBridge/BarnBridge-SmartYieldBonds/blob/943df3a8fcd8dd128af3beb0c85a0480c0e95ead/contracts/SmartYield.sol#L179

The nested call to _beforeProviderOp performs at least 7 unnecessary external calls.

The nested call to underlyingLoanable results in at least an additional 7 unnecessary external calls.

The nested call to _mintBond calls _accountBond which then makes 11 unnecessary external calls.

Unless msg.sender needs to be changed to the calling contract, making external calls via this inflates gas costs without benefit and should
generally be avoided.

Consider optimizing for gas usage wherever possible to improve overall user experience and generally reduce code complexity.

Update: Partially fixed in commit 025c654d59fcfd290c4730335bc9dd7cdec38048. The CompoundProvider contract has been too extensively modified
since our original audit to properly facilitate the review of relevant fixes. The sixth, seventh, eighth, and ninth bullets were fixed. The tenth bullet point
was partially fixed, with only one unnecessary external call via the this keyword remaining. The referenced commit includes various other changes
to the codebase which have not been reviewed by OpenZeppelin.

[N07] Incomplete interface contracts

There are instances in the codebase of interfaces omitting some of the public or external functions that their corresponding implementation
contracts define. For example:

IYieldOracle contains only two function definitions, but YieldOracle contains an additional function observationIndexOf .

ISmartYield does not list any of the public variable getters from SmartYield . The external function setup is also missing from the
interface.

Incomplete interfaces may introduce confusion for users, developers, and auditors alike. To improve overall code legibility and minimize
confusion, consider modifying the interface contracts to reflect all of the public and external functions from their respective implementation
contracts.

Update: The BarnBridge team did not address this issue.

[N08] Inconsistent use of named return variables

There is an inconsistent use of named return variables across the entire codebase. For instance:

Some functions return named variables.

Some return explicit values.

Some declare a named return variable but override it with an explicit return statement.

https://github.com/BarnBridge/BarnBridge-SmartYieldBonds/tree/025c654d59fcfd290c4730335bc9dd7cdec38048
https://github.com/BarnBridge/BarnBridge-SmartYieldBonds/blob/943df3a8fcd8dd128af3beb0c85a0480c0e95ead/contracts/oracle/IYieldOracle.sol#L5
https://github.com/BarnBridge/BarnBridge-SmartYieldBonds/blob/943df3a8fcd8dd128af3beb0c85a0480c0e95ead/contracts/oracle/YieldOracle.sol#L43
https://github.com/BarnBridge/BarnBridge-SmartYieldBonds/blob/943df3a8fcd8dd128af3beb0c85a0480c0e95ead/contracts/oracle/YieldOracle.sol#L62
https://github.com/BarnBridge/BarnBridge-SmartYieldBonds/blob/943df3a8fcd8dd128af3beb0c85a0480c0e95ead/contracts/ISmartYield.sol
https://github.com/BarnBridge/BarnBridge-SmartYieldBonds/blob/943df3a8fcd8dd128af3beb0c85a0480c0e95ead/contracts/SmartYield.sol
https://github.com/BarnBridge/BarnBridge-SmartYieldBonds/blob/943df3a8fcd8dd128af3beb0c85a0480c0e95ead/contracts/SmartYield.sol#L88
https://github.com/BarnBridge/BarnBridge-SmartYieldBonds/blob/943df3a8fcd8dd128af3beb0c85a0480c0e95ead/contracts/lib/math/MathUtils.sol#L10
https://github.com/BarnBridge/BarnBridge-SmartYieldBonds/blob/943df3a8fcd8dd128af3beb0c85a0480c0e95ead/contracts/lib/math/MathUtils.sol#L38
https://github.com/BarnBridge/BarnBridge-SmartYieldBonds/blob/943df3a8fcd8dd128af3beb0c85a0480c0e95ead/contracts/oracle/YieldOracle.sol#L62

Some have explicit return statements that do not return anything.

Consider adopting a consistent approach to return values by removing all named return variables, explicitly declaring them as local variables, and
adding the necessary return statements where appropriate. This would improve both the explicitness and readability of the code, and it may also
help reduce regressions during future code refactors.

Update: The BarnBridge team did not address this issue.

[N09] Naming issues hinder understanding and clarity of the codebase

To favor explicitness and readability, several parts of the contracts may benefit from better naming. Our suggestions are to rename:

fractionOf to calculatePercentage . The name fractionOf implies calculating a as a fraction of f .

a to amount .

f to percentage .

cumulativeSecondlyYieldLast to latestCumulativeYieldPerSecond .

cumulativeSecondlyYield to cumulativeYieldPerSecond .

yieldCumulative to cumulativeYieldPerSecond .

b_ to seniorBond .

d to abondDuration .

ts to scaledTimestamp .

tmp to temp .

_unaccountBond , _accountBond , _mintBond , unaccountBonds , redeemBond , and buyBond , to all state SeniorBond instead of just Bond .

setPaused to setPausedState .

cTokenBalance to userCTokenBalance .

juniorBondsMaturitiesPrev to nextJuniorBondToLiquidate .

Consider renaming these parts of the contracts to increase overall code clarity.

Update: The BarnBridge team did not address this issue.

[N10] Comments not following NatSpec

https://github.com/BarnBridge/BarnBridge-SmartYieldBonds/blob/943df3a8fcd8dd128af3beb0c85a0480c0e95ead/contracts/SmartYield.sol#L282
https://github.com/BarnBridge/BarnBridge-SmartYieldBonds/blob/943df3a8fcd8dd128af3beb0c85a0480c0e95ead/contracts/lib/math/MathUtils.sol#L67
https://github.com/BarnBridge/BarnBridge-SmartYieldBonds/blob/943df3a8fcd8dd128af3beb0c85a0480c0e95ead/contracts/lib/math/MathUtils.sol#L67
https://github.com/BarnBridge/BarnBridge-SmartYieldBonds/blob/943df3a8fcd8dd128af3beb0c85a0480c0e95ead/contracts/lib/math/MathUtils.sol#L67
https://github.com/BarnBridge/BarnBridge-SmartYieldBonds/blob/943df3a8fcd8dd128af3beb0c85a0480c0e95ead/contracts/IProvider.sol#L21
https://github.com/BarnBridge/BarnBridge-SmartYieldBonds/blob/943df3a8fcd8dd128af3beb0c85a0480c0e95ead/contracts/providers/CompoundProvider.sol#L249
https://github.com/BarnBridge/BarnBridge-SmartYieldBonds/blob/943df3a8fcd8dd128af3beb0c85a0480c0e95ead/contracts/oracle/YieldOracle.sol#L20
https://github.com/BarnBridge/BarnBridge-SmartYieldBonds/blob/943df3a8fcd8dd128af3beb0c85a0480c0e95ead/contracts/SmartYield.sol#L531
https://github.com/BarnBridge/BarnBridge-SmartYieldBonds/blob/943df3a8fcd8dd128af3beb0c85a0480c0e95ead/contracts/SmartYield.sol#L424
https://github.com/BarnBridge/BarnBridge-SmartYieldBonds/blob/943df3a8fcd8dd128af3beb0c85a0480c0e95ead/contracts/SmartYield.sol#L419
https://github.com/BarnBridge/BarnBridge-SmartYieldBonds/blob/943df3a8fcd8dd128af3beb0c85a0480c0e95ead/contracts/SmartYield.sol#L583
https://github.com/BarnBridge/BarnBridge-SmartYieldBonds/blob/943df3a8fcd8dd128af3beb0c85a0480c0e95ead/contracts/SmartYield.sol#L531
https://github.com/BarnBridge/BarnBridge-SmartYieldBonds/blob/943df3a8fcd8dd128af3beb0c85a0480c0e95ead/contracts/SmartYield.sol#L507
https://github.com/BarnBridge/BarnBridge-SmartYieldBonds/blob/943df3a8fcd8dd128af3beb0c85a0480c0e95ead/contracts/SmartYield.sol#L490
https://github.com/BarnBridge/BarnBridge-SmartYieldBonds/blob/943df3a8fcd8dd128af3beb0c85a0480c0e95ead/contracts/SmartYield.sol#L478
https://github.com/BarnBridge/BarnBridge-SmartYieldBonds/blob/943df3a8fcd8dd128af3beb0c85a0480c0e95ead/contracts/SmartYield.sol#L287
https://github.com/BarnBridge/BarnBridge-SmartYieldBonds/blob/943df3a8fcd8dd128af3beb0c85a0480c0e95ead/contracts/SmartYield.sol#L179
https://github.com/BarnBridge/BarnBridge-SmartYieldBonds/blob/943df3a8fcd8dd128af3beb0c85a0480c0e95ead/contracts/IController.sol#L72
https://github.com/BarnBridge/BarnBridge-SmartYieldBonds/blob/943df3a8fcd8dd128af3beb0c85a0480c0e95ead/contracts/providers/CompoundProvider.sol#L34
https://github.com/BarnBridge/BarnBridge-SmartYieldBonds/blob/943df3a8fcd8dd128af3beb0c85a0480c0e95ead/contracts/SmartYield.sol#L59

The docstrings of the contracts are not following the Ethereum Natural Specification Format (NatSpec). Consider following this specification on
everything that is part of the contracts’ public API.

Update: The BarnBridge team did not address this issue.

[N11] Unnecessary public visibility in some functions

Throughout the codebase, there are functions that are defined as public but are never used locally. Some examples are:

In CompoundController , the getUniswapPath function

In IController , the setHarvestReward function

In both JuniorBond and SeniorBond , the mint and burn functions

In SmartYield , the unaccountBonds function

To favor readability and reduce gas costs, consider reducing the visibility of public functions that are not used internally to external .

Update: The BarnBridge team did not address this issue.

[N12] TODOs in code

There are “TODO” comments in the code base that should be tracked in the project’s issues backlog. For instance, on line 615 of SmartYield.sol ,
on line 171 of CompoundProvider.sol , and elsewhere. During development, having well described “TODO” comments will make the process of
tracking and solving them easier. Without that information, these comments might age, and important information for the security of the system
might be forgotten by the time it is released to production.

Consider removing all instances of TODO comments and instead tracking them in the issues backlog. Alternatively, consider linking each inline
TODO to the corresponding issues backlog entry.

Update: Fixed in commit 025c654d59fcfd290c4730335bc9dd7cdec38048 . The referenced commit includes other changes to the codebase which have
not been reviewed by OpenZeppelin.

[N13] Typos

The codebase contains the following typos:

curent should be current .

totalUndwerlying should be totalUnderlying .

https://solidity.readthedocs.io/en/latest/natspec-format.html
https://github.com/BarnBridge/BarnBridge-SmartYieldBonds/blob/943df3a8fcd8dd128af3beb0c85a0480c0e95ead/contracts/providers/CompoundController.sol
https://github.com/BarnBridge/BarnBridge-SmartYieldBonds/blob/943df3a8fcd8dd128af3beb0c85a0480c0e95ead/contracts/providers/CompoundController.sol#L41
https://github.com/BarnBridge/BarnBridge-SmartYieldBonds/blob/943df3a8fcd8dd128af3beb0c85a0480c0e95ead/contracts/IController.sol
https://github.com/BarnBridge/BarnBridge-SmartYieldBonds/blob/943df3a8fcd8dd128af3beb0c85a0480c0e95ead/contracts/IController.sol#L37
https://github.com/BarnBridge/BarnBridge-SmartYieldBonds/blob/943df3a8fcd8dd128af3beb0c85a0480c0e95ead/contracts/IController.sol
https://github.com/BarnBridge/BarnBridge-SmartYieldBonds/blob/943df3a8fcd8dd128af3beb0c85a0480c0e95ead/contracts/SeniorBond.sol#L9
https://github.com/BarnBridge/BarnBridge-SmartYieldBonds/blob/943df3a8fcd8dd128af3beb0c85a0480c0e95ead/contracts/SmartYield.sol
https://github.com/BarnBridge/BarnBridge-SmartYieldBonds/blob/943df3a8fcd8dd128af3beb0c85a0480c0e95ead/contracts/SmartYield.sol#L478
https://github.com/BarnBridge/BarnBridge-SmartYieldBonds/blob/943df3a8fcd8dd128af3beb0c85a0480c0e95ead/contracts/SmartYield.sol#L615
https://github.com/BarnBridge/BarnBridge-SmartYieldBonds/blob/943df3a8fcd8dd128af3beb0c85a0480c0e95ead/contracts/providers/CompoundProvider.sol#L171
https://github.com/BarnBridge/BarnBridge-SmartYieldBonds/tree/025c654d59fcfd290c4730335bc9dd7cdec38048
https://github.com/BarnBridge/BarnBridge-SmartYieldBonds/blob/943df3a8fcd8dd128af3beb0c85a0480c0e95ead/contracts/model/BondModelV1.sol#L9
https://github.com/BarnBridge/BarnBridge-SmartYieldBonds/blob/943df3a8fcd8dd128af3beb0c85a0480c0e95ead/contracts/model/BondModelV1.sol#L9

withdrawl should be withdrawal .

dirrect should be direct .

moar should be more .

substract should be subtract .

colected should be collected .

cummulates should be cumulates .

IProviderPool should be IProvider .

matureing should be maturing .

withdrawls should be withdrawals .

begginging should be beginning .

should start with rewardCToken and with uToken should be should start with rewardCToken and end with uToken .

last index of juniorBondsMaturities that was liquidated should be next index of juniorBondsMaturities to be liquidated .

Additionally the protocol specification (out of scope of the audit) contains many typos. Consider correcting these typos to improve code
readability.

Update: Partially fixed in commit 025c654d59fcfd290c4730335bc9dd7cdec38048 . Many of the above typos still exist in the codebase. The referenced
commit includes other changes to the codebase which have not been reviewed by OpenZeppelin.

[N14] Uninformative revert messages in require statements

There are several instances in the codebase where require statements have ambiguous or imprecise error messages. Below is a non-exhaustive
list of identified instances.

Line 42 of BondModelV1.sol

Line 366 of CompoundProvider.sol

Line 329 of SmartYield.sol

Line 495 of SmartYield.sol

Line 46 of YieldOracle.sol

Error messages are intended to notify users about failing conditions, so they should provide enough information so that appropriate corrections
can be made to interact with the system. Uninformative error messages greatly damage the overall user experience, thus lowering the system’s

https://github.com/BarnBridge/BarnBridge-SmartYieldBonds/blob/943df3a8fcd8dd128af3beb0c85a0480c0e95ead/contracts/model/BondModelV1.sol#L9
https://github.com/BarnBridge/BarnBridge-SmartYieldBonds/blob/943df3a8fcd8dd128af3beb0c85a0480c0e95ead/contracts/providers/CompoundProvider.sol#L33
https://github.com/BarnBridge/BarnBridge-SmartYieldBonds/blob/943df3a8fcd8dd128af3beb0c85a0480c0e95ead/contracts/providers/CompoundProvider.sol#L199
https://github.com/BarnBridge/BarnBridge-SmartYieldBonds/blob/943df3a8fcd8dd128af3beb0c85a0480c0e95ead/contracts/providers/CompoundProvider.sol#L117
https://github.com/BarnBridge/BarnBridge-SmartYieldBonds/blob/943df3a8fcd8dd128af3beb0c85a0480c0e95ead/contracts/IProvider.sol#L13
https://github.com/BarnBridge/BarnBridge-SmartYieldBonds/blob/943df3a8fcd8dd128af3beb0c85a0480c0e95ead/contracts/IProvider.sol#L22
https://github.com/BarnBridge/BarnBridge-SmartYieldBonds/blob/943df3a8fcd8dd128af3beb0c85a0480c0e95ead/contracts/SmartYield.sol#L37
https://github.com/BarnBridge/BarnBridge-SmartYieldBonds/blob/943df3a8fcd8dd128af3beb0c85a0480c0e95ead/contracts/SmartYield.sol#L63
https://github.com/BarnBridge/BarnBridge-SmartYieldBonds/blob/943df3a8fcd8dd128af3beb0c85a0480c0e95ead/contracts/SmartYield.sol#L404
https://github.com/BarnBridge/BarnBridge-SmartYieldBonds/blob/943df3a8fcd8dd128af3beb0c85a0480c0e95ead/contracts/SmartYield.sol#L440
https://github.com/BarnBridge/BarnBridge-SmartYieldBonds/blob/943df3a8fcd8dd128af3beb0c85a0480c0e95ead/contracts/providers/CompoundController.sol#L30
https://github.com/BarnBridge/BarnBridge-SmartYieldBonds/blob/943df3a8fcd8dd128af3beb0c85a0480c0e95ead/contracts/SmartYield.sol#L58
https://github.com/BarnBridge/BarnBridge-SmartYieldBonds/blob/943df3a8fcd8dd128af3beb0c85a0480c0e95ead/SPEC.md
https://github.com/BarnBridge/BarnBridge-SmartYieldBonds/tree/025c654d59fcfd290c4730335bc9dd7cdec38048
https://github.com/BarnBridge/BarnBridge-SmartYieldBonds/blob/943df3a8fcd8dd128af3beb0c85a0480c0e95ead/contracts/model/BondModelV1.sol#L42
https://github.com/BarnBridge/BarnBridge-SmartYieldBonds/blob/943df3a8fcd8dd128af3beb0c85a0480c0e95ead/contracts/providers/CompoundProvider.sol#L366
https://github.com/BarnBridge/BarnBridge-SmartYieldBonds/blob/943df3a8fcd8dd128af3beb0c85a0480c0e95ead/contracts/SmartYield.sol#L329
https://github.com/BarnBridge/BarnBridge-SmartYieldBonds/blob/943df3a8fcd8dd128af3beb0c85a0480c0e95ead/contracts/SmartYield.sol#L495
https://github.com/BarnBridge/BarnBridge-SmartYieldBonds/blob/943df3a8fcd8dd128af3beb0c85a0480c0e95ead/contracts/oracle/YieldOracle.sol#L46

quality. Therefore, consider not only fixing the specific instances mentioned above, but also reviewing the entire codebase to make sure every
error message is informative and user-friendly.

Update: The BarnBridge team did not address this issue.

[N15] Unnecessary empty constructor

On line 35 of IController.sol there is an unnecessary empty constructor. In the absence of the empty constructor, the Governed constructor
will still be invoked because of inheritance.

Consider removing empty constructors to improve overall code readability.

Update: Fixed in commit 025c654d59fcfd290c4730335bc9dd7cdec38048 . The referenced commit includes other changes to the codebase which have
not been reviewed by OpenZeppelin.

[N16] Unused functions

The sqrt and compound functions of the MathUtils library are defined, but they are not used in the codebase.

Consider removing all unused functions to improve the overall maintainabilty and readability of the code.

Update: The BarnBridge team did not address this issue.

[N17] Unnecessary imports

The below list outlines contract imports that are unused and are therefore unnecessary.

SmartYield.sol imports console.sol

SmartYield.sol imports IERC20.sol

SmartYield.sol imports Governed.sol

SmartYield.sol imports IYieldOraclelizable.sol

Consider removing unused import statements to simplify the codebase and increase overall readability.

Update: Partially fixed as of commit 025c654d59fcfd290c4730335bc9dd7cdec38048 . The IERC20 import still remains. The referenced commit includes
other changes to the codebase which have not been reviewed by OpenZeppelin.

https://github.com/BarnBridge/BarnBridge-SmartYieldBonds/blob/943df3a8fcd8dd128af3beb0c85a0480c0e95ead/contracts/IController.sol#L35
https://github.com/BarnBridge/BarnBridge-SmartYieldBonds/tree/025c654d59fcfd290c4730335bc9dd7cdec38048
https://github.com/BarnBridge/BarnBridge-SmartYieldBonds/blob/943df3a8fcd8dd128af3beb0c85a0480c0e95ead/contracts/lib/math/MathUtils.sol#L19
https://github.com/BarnBridge/BarnBridge-SmartYieldBonds/blob/943df3a8fcd8dd128af3beb0c85a0480c0e95ead/contracts/lib/math/MathUtils.sol#L32
https://github.com/BarnBridge/BarnBridge-SmartYieldBonds/blob/943df3a8fcd8dd128af3beb0c85a0480c0e95ead/contracts/lib/math/MathUtils.sol
https://github.com/BarnBridge/BarnBridge-SmartYieldBonds/blob/943df3a8fcd8dd128af3beb0c85a0480c0e95ead/contracts/SmartYield.sol#L5
https://github.com/BarnBridge/BarnBridge-SmartYieldBonds/blob/943df3a8fcd8dd128af3beb0c85a0480c0e95ead/contracts/SmartYield.sol#L12
https://github.com/BarnBridge/BarnBridge-SmartYieldBonds/blob/943df3a8fcd8dd128af3beb0c85a0480c0e95ead/contracts/SmartYield.sol#L16
https://github.com/BarnBridge/BarnBridge-SmartYieldBonds/blob/943df3a8fcd8dd128af3beb0c85a0480c0e95ead/contracts/SmartYield.sol#L18
https://github.com/BarnBridge/BarnBridge-SmartYieldBonds/tree/025c654d59fcfd290c4730335bc9dd7cdec38048

Conclusions

1 critical and 3 high severity issues were found. Some changes were proposed to follow best practices and reduce the potential attack surface.

Security Audits

If you are interested in smart contract security, you can continue the discussion in our forum, or even better, join the team

If you are building a project of your own and would like to request a security audit, please do so here.

RELATED POSTS

UMA Continuous Audit

In this audit we are taking an iterative
approach where we will review individual
pull requests as…

READ MORE

SECURITY AUDITS

Celo Contracts Audit –

Phase 7

After a seventh phase of auditing, the cLabs
team asked us to review and audit the
recent changes…

READ MORE

SECURITY AUDITS

Compound Governor

Bravo Audit

The Compound team engaged us to audit a
new governance mechanism called
Governor Bravo.

READ MORE

SECURITY AUDITS

http://forum.openzeppelin.com/
http://openzeppelin.com/jobs
http://openzeppelin.com/security-audits
https://blog.openzeppelin.com/uma-continuous-audit/
https://blog.openzeppelin.com/uma-continuous-audit/
https://blog.openzeppelin.com/uma-continuous-audit/
https://blog.openzeppelin.com/category/security-audits/
https://blog.openzeppelin.com/author/openzeppelin-security/
https://blog.openzeppelin.com/celo-contracts-audit-phase-7/
https://blog.openzeppelin.com/celo-contracts-audit-phase-7/
https://blog.openzeppelin.com/celo-contracts-audit-phase-7/
https://blog.openzeppelin.com/category/security-audits/
https://blog.openzeppelin.com/author/openzeppelin-security/
https://blog.openzeppelin.com/compound-governor-bravo-audit/
https://blog.openzeppelin.com/compound-governor-bravo-audit/
https://blog.openzeppelin.com/compound-governor-bravo-audit/
https://blog.openzeppelin.com/category/security-audits/
https://blog.openzeppelin.com/author/openzeppelin-security/

by OpenZeppelin Security by OpenZeppelin Security by OpenZeppelin Security

© OpenZeppelin 2017-2019 | Privacy | Terms of Service

Products

Contracts

Defender

Security

Security Audits

Learn

Docs

Forum

Ethernaut

Company

Website

About

Jobs

Logo Kit

https://blog.openzeppelin.com/author/openzeppelin-security/
https://blog.openzeppelin.com/author/openzeppelin-security/
https://blog.openzeppelin.com/author/openzeppelin-security/
http://openzeppelin.com/
http://openzeppelin.com/privacy
http://openzeppelin.com/tos
http://openzeppelin.com/contracts
https://openzeppelin.com/defender
http://openzeppelin.com/security-audits
http://docs.openzeppelin.com/
http://forum.openzeppelin.com/
http://ethernaut.openzeppelin.com/
http://openzeppelin.com/
http://openzeppelin.com/about
http://openzeppelin.com/jobs
https://openzeppelin.com/images/OpenZeppelin_brand.zip
http://github.com/openzeppelin
http://twitter.com/openzeppelin
https://zpl.in/discord
https://blog.openzeppelin.com/feed/

