
Boson Protocol

Smart Contract Audit Report

October 31, 2021



Introduction 3
About Boson Protocol 3
About ImmuneBytes 3

Documentation Details 3

Audit Process & Methodology 4

Audit Details 4

Audit Goals 5

Security Level References 5
High Severity Issues 6
Medium severity issues 6
Low severity issues 6

Recommendations 9

Unit Test 10

Coverage Report 12

Fuzz Testing 13
Vulnerability Checks 21

Concluding Remarks 22

Disclaimer 22

This audit does not provide a security or correctness guarantee of the audited smart contract. Securing smart contracts is a multistep process, therefore
running a bug bounty program as a complement to this audit is strongly recommended.

2



Introduction

1. About Boson Protocol
Boson Protocol’s vision is to provide for a decentralized commerce ecosystem by funding and enabling
the development of a stack of specialized applications to disrupt, demonopolize and democratize
commerce. Boson Protocol enables this via an open tokenized economy of Things which:

1. Automates the redemption of digital rights for physical assets using NFTs and
carefully-designed deposit transfers.

2. Disrupts e-commerce platforms by tokenizing Things and their data within a liquid digital market,
built on DeFi.

This is enabled by a design with five modular and substitutable components. The first of these
components is a commitment to perform a future commercial exchange represented as a tokenized
voucher. Second, a core mechanism for autonomous coordination of commercial exchange. Third, a
token model for incentivizing actors, and for capturing and distributing value. Fourth, a Web3 data
marketplace for monetizing data. And finally, an evolving governance system for directing and
controlling the protocol throughout its lifecycle.

Visit https://www.bosonprotocol.io/ to know more about.

2. About ImmuneBytes
ImmuneBytes is a security start-up to provide professional services in the blockchain space. The team
has hands-on experience in conducting smart contract audits, penetration testing, and security
consulting. ImmuneBytes’s security auditors have worked on various A-league projects and have a
great understanding of DeFi projects like AAVE, Compound, 0x Protocol, Uniswap, dydx.

The team has been able to secure 105+ blockchain projects by providing security services on different
frameworks. ImmuneBytes team helps start-up with a detailed analysis of the system ensuring security
and managing the overall project.

Visit http://immunebytes.com/ to know more about the services.

Documentation Details
The TrueFi team has provided the following doc for the purpose of audit:

1. https://docs.bosonprotocol.io/introduction/

This audit does not provide a security or correctness guarantee of the audited smart contract. Securing smart contracts is a multistep process, therefore
running a bug bounty program as a complement to this audit is strongly recommended.

3

https://www.bosonprotocol.io/
http://immunebytes.com/
https://docs.bosonprotocol.io/introduction/


Audit Process & Methodology
ImmuneBytes team has performed thorough testing of the project starting with analyzing the code design
patterns in which we reviewed the smart contract architecture to ensure it is structured and safe use of
third-party smart contracts and libraries.

Our team then performed a formal line-by-line inspection of the Smart Contract in order to find any potential
issues like Signature Replay Attacks, Unchecked External Calls, External Contract Referencing, Variable
Shadowing, Race conditions, Transaction-ordering dependence, timestamp dependence, DoS attacks, and
others.

In the Unit testing phase, we run unit tests written by the developer in order to verify the functions work as
intended. In Automated Testing, we tested the Smart Contract with our in-house developed tools to identify
vulnerabilities and security flaws.

The code was audited by a team of independent auditors which includes -
1. Testing the functionality of the Smart Contract to determine proper logic has been followed throughout.
2. Analyzing the complexity of the code by thorough, manual review of the code, line-by-line.
3. Deploying the code on testnet using multiple clients to run live tests.
4. Analyzing failure preparations to check how the Smart Contract performs in case of bugs and

vulnerabilities.
5. Checking whether all the libraries used in the code are on the latest version.
6. Analyzing the security of the on-chain data.

Audit Details
● Project Name: Boson Protocol
● Contracts Names: BosonRouter, Cashier, VoucherKernel, DaiTokenWrapper, ERC1155ERC721,

ERC1155NonTransferable, Gate, TokenRegistry, VoucherKernel
● Languages: Solidity(Smart contract), Typescript (Unit Testing)
● Github commit hash for audit: 5d175848db1beea65f5e12706684c02c4529ec2d
● Platforms and Tools: Remix IDE, Truffle, Truffle Team, Ganache, Solhint, VScode, Contract Library,

Slither, SmartCheck, SFuzz

This audit does not provide a security or correctness guarantee of the audited smart contract. Securing smart contracts is a multistep process, therefore
running a bug bounty program as a complement to this audit is strongly recommended.

4

https://github.com/bosonprotocol/contracts/tree/v1.0.0-rc.1


Audit Goals
The focus of the audit was to verify that the smart contract system is secure, resilient, and working according to
its specifications. The audit activities can be grouped into the following three categories:

1. Security: Identifying security-related issues within each contract and within the system of contracts.
2. Sound Architecture: Evaluation of the architecture of this system through the lens of established smart

contract best practices and general software best practices.
3. Code Correctness and Quality: A full review of the contract source code. The primary areas of focus

include:
a. Correctness
b. Readability
c. Sections of code with high complexity
d. Quantity and quality of test coverage

Security Level References
Every issue in this report was assigned a severity level from the following:

Admin/Owner Privileges can be misused either intentionally or unintentionally.

High severity issues will bring problems and should be fixed.

Medium severity issues could potentially bring problems and should eventually be fixed.

Low severity issues are minor details and warnings that can remain unfixed but would be better fixed at some

point in the future.

Issues High Medium Low

Open 1 - 4

Closed - - -

This audit does not provide a security or correctness guarantee of the audited smart contract. Securing smart contracts is a multistep process, therefore
running a bug bounty program as a complement to this audit is strongly recommended.

5



High Severity Issues

1. VoucherKernel.sol : cancelOrFault() function includes invalid access control in the function
Line no - 598

Explanation:
The cancelOrFault() function in the contract allows the seller to admit to a fault and stop the deal.
Quite similar to most of the functions in the current architecture of the protocol, this function is also
supposed to be accessed via the BosonRouter contract.

However, no such access control modifier was found to be associated with the cancelOrFault()
function. This allows anyone to trigger this function and leads to an unwanted scenario where the
function can be invoked on behalf of any seller as there is no adequate access control assigned to the
function.

Recommendation:
The function must include an ​​onlyFromRouter() modifier to ensure that it can only be called from the
router contract.

Medium severity issues

No issues were found.

Low severity issues

1. VoucherKernel.sol: Use of Require statements should be preferred over IF-ELSE Statement.
Line: 874-879

Explanation:
The triggerFinalizeVoucher() function in the contract aims to mark a final status to the given voucher
token.
Before assigning the final status to the given voucher Id, the function involves a series of checks to
ensure whether or not the status can be assigned to the given voucher ID. This is done by assigning
TRUE to a local boolean variable (mark), which indicates that the status can be marked as FINAL to
the given voucher ID.

However, as a final step, an IF statement is included to check if the mark variable is TRUE so that the
status of the voucher token can be changed to FINAL.

This audit does not provide a security or correctness guarantee of the audited smart contract. Securing smart contracts is a multistep process, therefore
running a bug bounty program as a complement to this audit is strongly recommended.

6



In such scenarios of strict validations, where the further execution of a function strictly depends on a
value, it’s comparatively effective to use require statements instead of IF statements.

Recommendation:
The validation in the triggerFinalizeVoucher() function, before updating the status of the voucher
token, can be modified with a require statement as follows:

require(mark, “Status cannot be set to FINAL”);

vouchersStatus[_tokenIdVoucher].status = determineStatus(
tStatus,
IDX_FINAL

);
emit LogFinalizeVoucher(_tokenIdVoucher, msg.sender);

2. BosonRouter.sol: Invalid Error message found in require statement
Line no - 598

Explanation:
The requestVoucherTKNTKNSameWithPermit() function in the BosonRouter.
The smart contract includes a require statement to check whether or not the token deposit address and
the token price address are similar.

However, the error message in this statement mentions IC, i.e., Invalid Caller.
This is not an adequate error message as the require statement’s condition doesn’t really involve any
check on the caller of the function.

Recommendation:
It’s recommended to include adequate error messages in the require statements.

This audit does not provide a security or correctness guarantee of the audited smart contract. Securing smart contracts is a multistep process, therefore
running a bug bounty program as a complement to this audit is strongly recommended.

7



3. Absence of Error messages in Require Statements
Line no - 788, 824

Explanation:
The Cashier contract includes a few require statements, at the above-mentioned lines, that don’t
contain any error message.

While this makes it troublesome to detect the reason behind a particular function revert, it also reduces
the readability of the code.

Recommendation:
Error Messages must be included in every require statement in the contract

4. TokenRegistry.sol: Adequate Input or Range validations not found
Line no - 34-37, 44-52

Explanation:
The setETHLimit() and setTokenLimit() in the TokenRegistry contract, do not implement proper input
validations for the uint256 type argument, i.e., _newLimit.

Moreover, the functions do not involve any lower or upper threshold for this value which might result in
an unexpected scenario if an inappropriate argument is mistakenly passed to the function.

Recommendation:
The above-mentioned functions should include effective validations to ensure no invalid uint argument
is passed to the function.

This audit does not provide a security or correctness guarantee of the audited smart contract. Securing smart contracts is a multistep process, therefore
running a bug bounty program as a complement to this audit is strongly recommended.

8



Recommendations
1. Cashier.sol: Redundant initialization of Boolean Variable

Line no - 85

The Cashier smart contract involves the redundant update of the boolean state variable, disasterState
to False in the constructor of the contract.

A boolean variable is by default initialized to FALSE whereas a uint256 is initialized to ZERO. Hence,
such state variables do not need to be initialized explicitly.

Recommendation:
Redundant initialization of state variables should be avoided.

2. Cashier.sol: “emit” keyword not used during event emissions
Line no - 329, 377, 469, 475, 481, 567, 574, 621, 666, 711,117, 132, 152

Explanation:
The events emitted at the line numbers mentioned above do not use the emit keyword.

Recommendation:
It is recommended to include the emit keyword every time an event is emitted in the contract.

3. ERC1155ERC721.sol: Inadequate address validation before approval.
Line no - 231-244

Explanation:
The approve() function at the above-mentioned line number does not include zero address validations
for the address being passed as arguments.

Recommendation:
A require statement should be included in such functions to ensure no zero address is passed in the
arguments.

This audit does not provide a security or correctness guarantee of the audited smart contract. Securing smart contracts is a multistep process, therefore
running a bug bounty program as a complement to this audit is strongly recommended.

9



Unit Test
All unit tests provided by the team are passing without issues.

This audit does not provide a security or correctness guarantee of the audited smart contract. Securing smart contracts is a multistep process, therefore
running a bug bounty program as a complement to this audit is strongly recommended.

10



This audit does not provide a security or correctness guarantee of the audited smart contract. Securing smart contracts is a multistep process, therefore
running a bug bounty program as a complement to this audit is strongly recommended.

11



Coverage Report
Test coverage of smart contracts:

This audit does not provide a security or correctness guarantee of the audited smart contract. Securing smart contracts is a multistep process, therefore
running a bug bounty program as a complement to this audit is strongly recommended.

12



Fuzz Testing
1. Cashier.sol: -

a. Terminal Output
[ With the use of:  “ -g -r 0 -d 600 ” ]

● Excel Sheet of States for the Output of Fuzz Testing
[ With the use of:  “ -g -r 1 -d 600 ” ]

https://drive.google.com/file/d/1OxOk9rtnsdZ4FcqMWbBJqJBp9vEVStux/view?usp=sharing

This audit does not provide a security or correctness guarantee of the audited smart contract. Securing smart contracts is a multistep process, therefore
running a bug bounty program as a complement to this audit is strongly recommended.

13

https://drive.google.com/file/d/1OxOk9rtnsdZ4FcqMWbBJqJBp9vEVStux/view?usp=sharing


2. DAITokenWrapper.sol: -

a. Terminal Output
[ With the use of:  “ -g -r 0 -d 600 ” ]

● Excel Sheet of States for the Output of Fuzz Testing
[ With the use of:  “ -g -r 1 -d 600 ” ]

https://drive.google.com/file/d/1u_tztIIUcCJXPk_5BOJ4tZ4UPiaDoSaM/view?usp=sharing

This audit does not provide a security or correctness guarantee of the audited smart contract. Securing smart contracts is a multistep process, therefore
running a bug bounty program as a complement to this audit is strongly recommended.

14

https://drive.google.com/file/d/1u_tztIIUcCJXPk_5BOJ4tZ4UPiaDoSaM/view?usp=sharing


3. ERC1155ERC721.sol: -

a. Terminal Output
[ With the use of:  “ -g -r 0 -d 600 ” ]

● Excel Sheet of States for the Output of Fuzz Testing
[ With the use of:  “ -g -r 1 -d 600 ” ]

https://drive.google.com/file/d/1ra1WRKwk2RB-gK-QPT9YpC5wMOLd2RoP/view?usp=sharing

This audit does not provide a security or correctness guarantee of the audited smart contract. Securing smart contracts is a multistep process, therefore
running a bug bounty program as a complement to this audit is strongly recommended.

15

https://drive.google.com/file/d/1ra1WRKwk2RB-gK-QPT9YpC5wMOLd2RoP/view?usp=sharing


4. MetaTransactionReceiver.sol: -

a. Terminal Output
[ With the use of:  “ -g -r 0 -d 600 ” ]

● Excel Sheet of States for the Output of Fuzz Testing
[ With the use of:  “ -g -r 1 -d 600 ” ]

https://drive.google.com/file/d/1u6mkf2dMbvbJICLYHneB3RvRu8wR12sL/view?usp=sharing

This audit does not provide a security or correctness guarantee of the audited smart contract. Securing smart contracts is a multistep process, therefore
running a bug bounty program as a complement to this audit is strongly recommended.

16

https://drive.google.com/file/d/1u6mkf2dMbvbJICLYHneB3RvRu8wR12sL/view?usp=sharing


5. Gate.sol: -

a. Terminal Output
[ With the use of:  “ -g -r 0 -d 600 ” ]

● Excel Sheet of States for the Output of Fuzz Testing
[ With the use of:  “ -g -r 1 -d 600 ” ]

https://drive.google.com/file/d/1sWhVwrw2LLmICJujlpnfX1KStW1d3u25/view?usp=sharing

This audit does not provide a security or correctness guarantee of the audited smart contract. Securing smart contracts is a multistep process, therefore
running a bug bounty program as a complement to this audit is strongly recommended.

17

https://drive.google.com/file/d/1sWhVwrw2LLmICJujlpnfX1KStW1d3u25/view?usp=sharing


6. UsingHelpers.sol: -

a. Terminal Output
[ With the use of:  “ -g -r 0 -d 600 ” ]

● Excel Sheet of States for the Output of Fuzz Testing
[ With the use of:  “ -g -r 1 -d 600 ” ]

https://drive.google.com/file/d/16fvn6LUR3UAte4_8miicH9IfBI5DwwTq/view?usp=sharing

This audit does not provide a security or correctness guarantee of the audited smart contract. Securing smart contracts is a multistep process, therefore
running a bug bounty program as a complement to this audit is strongly recommended.

18

https://drive.google.com/file/d/16fvn6LUR3UAte4_8miicH9IfBI5DwwTq/view?usp=sharing


7. TokenRegistry.sol: -

a. Terminal Output
[ With the use of:  “ -g -r 0 -d 600 ” ]

● Excel Sheet of States for the Output of Fuzz Testing
[ With the use of:  “ -g -r 1 -d 600 ” ]

https://drive.google.com/file/d/1DMKwLL7CJiCSbCKxafID3Db-qFw1i66b/view?usp=sharing

This audit does not provide a security or correctness guarantee of the audited smart contract. Securing smart contracts is a multistep process, therefore
running a bug bounty program as a complement to this audit is strongly recommended.

19

https://drive.google.com/file/d/1DMKwLL7CJiCSbCKxafID3Db-qFw1i66b/view?usp=sharing


8. BosonRouter.sol: -

a. Terminal Output
[ With the use of:  “ -g -r 0 -d 600 ” ]

● Excel Sheet of States for the Output of Fuzz Testing
[ With the use of:  “ -g -r 1 -d 600 ” ]

https://drive.google.com/file/d/1SPdOZ5ldV39b4CruEm5LVUzPbzcH371Z/view?usp=sharing

This audit does not provide a security or correctness guarantee of the audited smart contract. Securing smart contracts is a multistep process, therefore
running a bug bounty program as a complement to this audit is strongly recommended.

20

https://drive.google.com/file/d/1SPdOZ5ldV39b4CruEm5LVUzPbzcH371Z/view?usp=sharing


Vulnerability Checks

TYPES ORACLES WHEN A VULNERABILITY IS
DETECTED

WHY IT IS
VULNERABLE

Results

Error Gasless Send Function sends or transfer is called and
receiver has a costly fallback function

RunOufOfGasexception PASSED

Error Exception
Disorder

There is an exception in the call chain
but the. These functions hide exceptions

Root of the call chain
does not throw
exception

PASSED

Error Timestamp
Dependency

The test case evaluates a condition
based on timestamp and then sends
ether

Miners control the
values of timestamp

PASSED

Error Block Number
Dependency

The test case evaluates a condition
based on block number and then sends
ether

Miners control the
values of block number.

PASSED

Error Danger
Delegate Call

delegatecall is executed via msg.data. The attacker can call
any function.

PASSED

Error Reentrancy A contract function is called via fallback
function from another contract and
sends ether.

Refer to the DAO
vulnerability

PASSED

Error Integer
Overflow/Underf
low

If b >0 and a + b < a or b > 0 and a − b >
b or ···

Arithmetic error PASSED

Error Integer
Overflow/Underf
low

If b >0 and a + b < a or b > 0 and a − b >
b or ···

Arithmetic error PASSED

Warning Freezing Ether After all test case, nosend()or transfer()
function is executed

The contract is a
blackhole for ether

PASSED

This audit does not provide a security or correctness guarantee of the audited smart contract. Securing smart contracts is a multistep process, therefore
running a bug bounty program as a complement to this audit is strongly recommended.

21



Concluding Remarks
While conducting the audits of the Boson Protocol smart contracts, it was observed that the contracts
contained High and Low severity issues.

Our auditors suggest that High and Low severity issues should be resolved by the developers. The
recommendations given will improve the operations of the smart contract.

Disclaimer
ImmuneBytes’s audit does not provide a security or correctness guarantee of the audited smart contract.
Securing smart contracts is a multistep process, therefore running a bug bounty program as a complement to
this audit is strongly recommended.

Our team does not endorse the Boson Protocol platform or its product nor this audit is investment advice.
Notes:

● Please make sure contracts deployed on the mainnet are the ones audited.
● Check for the code refactor by the team on critical issues.

ImmuneBytes

This audit does not provide a security or correctness guarantee of the audited smart contract. Securing smart contracts is a multistep process, therefore
running a bug bounty program as a complement to this audit is strongly recommended.

22


