Boson Protocol

Smart Contract Audit Report

IMMUNEBYTES @ BOSON

Audits PROTOCOL

October 31, 2021

IMMUNE BYTES

Introduction 3
About Boson Protocol 3
About ImmuneBytes 3
Documentation Details 3
Audit Process & Methodology 4
Audit Details 4
Audit Goals 5
Security Level References 5
High Severity Issues 6
Medium severity issues 6
Low severity issues 6
Recommendations 9
Unit Test 10
Coverage Report 12
Fuzz Testing 13
Vulnerability Checks 21
Concluding Remarks 22
Disclaimer 22

This audit does not provide a security or correctness guarantee of the audited smart contract. Securing smart contracts is a multistep process, therefore
running a bug bounty program as a complement to this audit is strongly recommended.

IMMUNE BYTES

Introduction

1. About Boson Protocol

Boson Protocol’s vision is to provide for a decentralized commerce ecosystem by funding and enabling
the development of a stack of specialized applications to disrupt, demonopolize and democratize
commerce. Boson Protocol enables this via an open tokenized economy of Things which:
1. Automates the redemption of digital rights for physical assets using NFTs and
carefully-designed deposit transfers.
2. Disrupts e-commerce platforms by tokenizing Things and their data within a liquid digital market,
built on DeFi.

This is enabled by a design with five modular and substitutable components. The first of these
components is a commitment to perform a future commercial exchange represented as a tokenized
voucher. Second, a core mechanism for autonomous coordination of commercial exchange. Third, a
token model for incentivizing actors, and for capturing and distributing value. Fourth, a Web3 data
marketplace for monetizing data. And finally, an evolving governance system for directing and
controlling the protocol throughout its lifecycle.

Visit https://www.bosonprotocol.io/ to know more about.

. About ImmuneBytes

ImmuneBytes is a security start-up to provide professional services in the blockchain space. The team
has hands-on experience in conducting smart contract audits, penetration testing, and security
consulting. ImmuneBytes’s security auditors have worked on various A-league projects and have a
great understanding of DeFi projects like AAVE, Compound, 0x Protocol, Uniswap, dydx.

The team has been able to secure 105+ blockchain projects by providing security services on different
frameworks. ImmuneBytes team helps start-up with a detailed analysis of the system ensuring security

and managing the overall project.

Visit http://immunebytes.com/ to know more about the services.

Documentation Details

The TrueFi team has provided the following doc for the purpose of audit:

1.

https://docs.bosonprotocol.io/introduction/

This audit does not provide a security or correctness guarantee of the audited smart contract. Securing smart contracts is a multistep process, therefore
running a bug bounty program as a complement to this audit is strongly recommended.

https://www.bosonprotocol.io/
http://immunebytes.com/
https://docs.bosonprotocol.io/introduction/

IMMUNE BYTES

Audit Process & Methodology

ImmuneBytes team has performed thorough testing of the project starting with analyzing the code design
patterns in which we reviewed the smart contract architecture to ensure it is structured and safe use of
third-party smart contracts and libraries.

Our team then performed a formal line-by-line inspection of the Smart Contract in order to find any potential
issues like Signature Replay Attacks, Unchecked External Calls, External Contract Referencing, Variable
Shadowing, Race conditions, Transaction-ordering dependence, timestamp dependence, DoS attacks, and
others.

In the Unit testing phase, we run unit tests written by the developer in order to verify the functions work as
intended. In Automated Testing, we tested the Smart Contract with our in-house developed tools to identify
vulnerabilities and security flaws.

The code was audited by a team of independent auditors which includes -

Testing the functionality of the Smart Contract to determine proper logic has been followed throughout.
Analyzing the complexity of the code by thorough, manual review of the code, line-by-line.

Deploying the code on testnet using multiple clients to run live tests.

Analyzing failure preparations to check how the Smart Contract performs in case of bugs and
vulnerabilities.

Checking whether all the libraries used in the code are on the latest version.

Analyzing the security of the on-chain data.

Pobh -~

o o

Audit Details

Project Name: Boson Protocol

Contracts Names: BosonRouter, Cashier, VoucherKernel, DaiTokenWrapper, ERC1155ERC721,
ERC1155NonTransferable, Gate, TokenRegistry, VoucherKernel

Languages: Solidity(Smart contract), Typescript (Unit Testing)

Github commit hash for audit: 5d175848db1beeab5f5e12706684c02c4529ec2d

Platforms and Tools: Remix IDE, Truffle, Truffle Team, Ganache, Solhint, VScode, Contract Library,
Slither, SmartCheck, SFuzz

This audit does not provide a security or correctness guarantee of the audited smart contract. Securing smart contracts is a multistep process, therefore
running a bug bounty program as a complement to this audit is strongly recommended.

https://github.com/bosonprotocol/contracts/tree/v1.0.0-rc.1

IMMUNE BYTES

Audit Goals

The focus of the audit was to verify that the smart contract system is secure, resilient, and working according to
its specifications. The audit activities can be grouped into the following three categories:

1. Security: Identifying security-related issues within each contract and within the system of contracts.

2. Sound Architecture: Evaluation of the architecture of this system through the lens of established smart
contract best practices and general software best practices.

3. Code Correctness and Quality: A full review of the contract source code. The primary areas of focus

include:
a. Correctness
b. Readability

c. Sections of code with high complexity
d. Quantity and quality of test coverage

Security Level References

Every issue in this report was assigned a severity level from the following:

Admin/Owner Privileges can be misused either intentionally or unintentionally.
High severity issues will bring problems and should be fixed.
Medium severity issues could potentially bring problems and should eventually be fixed.

are minor details and warnings that can remain unfixed but would be better fixed at some
point in the future.

Issues High Medium
Open 1 - 4
Closed - - -

This audit does not provide a security or correctness guarantee of the audited smart contract. Securing smart contracts is a multistep process, therefore
running a bug bounty program as a complement to this audit is strongly recommended.

IMMUNE BYTES

High Severity Issues

1.

VoucherKernel.sol : cancelOrFault() function includes invalid access control in the function
Line no - 598

Explanation:

The cancelOrFault() function in the contract allows the seller to admit to a fault and stop the deal.
Quite similar to most of the functions in the current architecture of the protocol, this function is also
supposed to be accessed via the BosonRouter contract.

However, no such access control modifier was found to be associated with the cancelOrFault()
function. This allows anyone to trigger this function and leads to an unwanted scenario where the
function can be invoked on behalf of any seller as there is no adequate access control assigned to the
function.

Recommendation:
The function must include an onlyFromRouter() modifier to ensure that it can only be called from the
router contract.

Medium severity issues

No issues were found.

1.

VoucherKernel.sol: Use of Require statements should be preferred over IF-ELSE Statement.
Line: 874-879

Explanation:

The triggerFinalizeVoucher() function in the contract aims to mark a final status to the given voucher
token.

Before assigning the final status to the given voucher Id, the function involves a series of checks to
ensure whether or not the status can be assigned to the given voucher ID. This is done by assigning
TRUE to a local boolean variable (mark), which indicates that the status can be marked as FINAL to
the given voucher ID.

However, as a final step, an IF statement is included to check if the mark variable is TRUE so that the
status of the voucher token can be changed to FINAL.

This audit does not provide a security or correctness guarantee of the audited smart contract. Securing smart contracts is a multistep process, therefore
running a bug bounty program as a complement to this audit is strongly recommended.

IMMUNE BYTES

if (mark)| {
vouchersStatus [_tokenIdVoucher].status = determineStatus(
tStatus,
IDX_FINAL

);
emit LogFinalizeVoucher(_tokenIdVoucher, msg.sender);

In such scenarios of strict validations, where the further execution of a function strictly depends on a
value, it's comparatively effective to use require statements instead of IF statements.

Recommendation:
The validation in the triggerFinalizeVoucher() function, before updating the status of the voucher
token, can be modified with a require statement as follows:

require(mark, “Status cannot be set to FINAL”);

vouchersStatus[tokenldVoucher].status = determineStatus(
tStatus,

IDX_FINAL
);

emit LogFinalizeVoucher(_tokenldVoucher, msg.sender);

2. BosonRouter.sol: Invalid Error message found in require statement
Line no - 598

Explanation:

The requestVoucherTKNTKNSameWithPermit() function in the BosonRouter.

The smart contract includes a require statement to check whether or not the token deposit address and
the token price address are similar.

However, the error message in this statement mentions IC, i.e., Invalid Caller.
This is not an adequate error message as the require statement’s condition doesn'’t really involve any
check on the caller of the function.

Recommendation:
It's recommended to include adequate error messages in the require statements.

This audit does not provide a security or correctness guarantee of the audited smart contract. Securing smart contracts is a multistep process, therefore
running a bug bounty program as a complement to this audit is strongly recommended.

IMMUNE BYTES

3. Absence of Error messages in Require Statements
Line no - 788, 824

Explanation:
The Cashier contract includes a few require statements, at the above-mentioned lines, that don’t
contain any error message.

While this makes it troublesome to detect the reason behind a particular function revert, it also reduces
the readability of the code.

Recommendation:
Error Messages must be included in every require statement in the contract

4. TokenRegistry.sol: Adequate Input or Range validations not found
Line no - 34-37, 44-52

Explanation:
The setETHLimit() and setTokenLimit() in the TokenRegistry contract, do not implement proper input
validations for the uint256 type argument, i.e., _newLimit.

Moreover, the functions do not involve any lower or upper threshold for this value which might result in
an unexpected scenario if an inappropriate argument is mistakenly passed to the function.

Recommendation:
The above-mentioned functions should include effective validations to ensure no invalid uint argument
is passed to the function.

This audit does not provide a security or correctness guarantee of the audited smart contract. Securing smart contracts is a multistep process, therefore
running a bug bounty program as a complement to this audit is strongly recommended.

IMMUNE BYTES

Recommendations

1. Cashier.sol: Redundant initialization of Boolean Variable
Line no -85

The Cashier smart contract involves the redundant update of the boolean state variable, disasterState
to False in the constructor of the contract.

A boolean variable is by default initialized to FALSE whereas a uint256 is initialized to ZERO. Hence,
such state variables do not need to be initialized explicitly.

Recommendation:
Redundant initialization of state variables should be avoided.

2. Cashier.sol: “emit” keyword not used during event emissions
Line no - 329, 377, 469, 475, 481, 567, 574, 621, 666, 711,117, 132, 152

Explanation:
The events emitted at the line numbers mentioned above do not use the emit keyword.

Recommendation:
It is recommended to include the emit keyword every time an event is emitted in the contract.

3. ERC1155ERC721.sol: Inadequate address validation before approval.
Line no - 231-244

Explanation:
The approve() function at the above-mentioned line number does not include zero address validations
for the address being passed as arguments.

Recommendation:
A require statement should be included in such functions to ensure no zero address is passed in the
arguments.

This audit does not provide a security or correctness guarantee of the audited smart contract. Securing smart contracts is a multistep process, therefore
running a bug bounty program as a complement to this audit is strongly recommended.

Unit Test

All unit tests provided by the team are passing without issues.

Voucher tests
Contract Addresses Getters
¥ Should have set contract addresses
¥ Should have set contract addresses
¥ Should have set contract addresses
¥ Should have set contract addresses
Direct minting

properly for Boson Router (48nms)
properly for ERC1155ERC721
properly for VoucherKernel
properly for Cashier

Create Voucher Sor (EREHSS)
adding one new order / promise (148ms)

Vv must fail unauthayued minting ERC-1155 (87ms)
or 1

minting ERC-721

¥ adding two new orders / promises (198ms)
Commit to buy a voucher (ERC1155)

one order (aka commit to buy a voucher) (76ms)
second order (aka commit to buy a voucher) (69ms)
fail: adding new order with incorrect value sent

il: adding new order with incorrect payment method (87ms)

Vouchers (ERC721)
¥ redeeming one voucher (54ms)

¥ mark non-redeemed voucher as expired (55ms)

¥ mark voucher as finalized (82ms
¥ must fail: un rized redemption
Withdrawals

¥ withdraw the escrowed payment from one redeemed voucher (88ms)
TransferFrom: It is safe to interact with older ERC20 tokens
v [Negative] safeTransferFrom will revert the transaction if it fails (41ms)
V safeTransferFrom will NOT revert the transaction if it succe
Crsates unique Promise keys for every chcherKernal mstance

romise key is DIFFERENT for different

Voucher tests — UNHAPFY PATH
Wait periods
e complain period

f VoucherKernal contract (132ms)

¥ must fail: thorized change of complain period
s)

] i TN T period (zan:

V must fail: up change of cancelOrFault period

Refunds ...
¥ refunding one voucher (53ns)

7 refunding one voucher, then complain (98ms)
7 refunding one voucher, then complain, then cancel/fault (115ms)
V must fail: refund then try to redeem (66ms)

Cancel/Fault by the seller ...

¥ canceling one voucher (66ms)

v must fail: cancel/fault then try to
Expirations (one universal test)

redeen (59ns)

v Expired, then complain, then Cancel/Fault, then try to redeem (160ms)

ERC1155 non transferable functionality
Basic operations
¥ Owner should be able to mint (41ms)

¥ Ouner should be able to mint batch (39ms)

¥ Owner should be able to burn (69ms)

m:
¥ Owner should be able to burn batch (75ms)

v Owner should be able to set URL
V Tokens are non-transferable (73ms)

v [NEGATIVE] [mint] Should revert if executed by attacker

¥ [NEGATIVE] [mintBatch] Should revert if executed by attacker

¥ [NEGATIVE] [burn] Should revert if executed by attacker (5ims)

V. [NEGATIVE] [burnBatch] Should revert if executed by attacker (67ms)
v [NEGATIVE] [setUri] Should revert if executed by attacker

7 [NEGATIVE] [setUri] Should revert if
v Owner should be able to pause (38ms)

is empty string

¥ Ovner should be able to unpause (54ms)

v [NEGATIVE] During the pause mint and burn does not wnrk (64ms)
¥ [NEGATIVE] [pause] Should revert if executed by attac

v [NEGATIVE] [unpause] Should revert if executed by attacker

Metatransaction

Metatransaction
Self should be able to mint (

66ms)
V Self should be able to mint batch (89ms)

V Self should be able to burn (92ms)

V Self should be able to burn batch (76ms)
V Self should be able to set URI (63ms)

v/ Self should be able to pause (43ms)

7 Self should be able to unpause (76ms)

v INegative] [mint] Attacker should not be able to mint

¥ Nesativel [nint] Quner should not be able to replay (sas)

7 [Negative] [XXXX] Owner should fail to cal t method

Gate contract
Basic operations

v Owner should be able set ERC1155 contract address

V One should be able get ERC1155 contract address

v Owner should be able to register voucher set id

¥ One should be able to look up on which NFT depends voucher set

V check function works correctly (87ms)

v Owner should be able to pause
v Ovner should be able to unpause

¥ During the pause, register and deactivate does not work (54ms)

¥ [NEGATIVE] [setNonTransferableTokenContract] Should revert if supplied wrong boson router address
v [NEGATIVE] [setNonTransferableTokenContract] Should revert if executed by attacker

v [NEGATIVE] [registerVoucherSetId] Should revert if executed by attacker

v [NEGATIVE] [registerVoucherSetId] Should revert if nftTokenID id is zero

v [NEGATIVE] [registerVoucherSetId] Should revert if constants.VOUCHER_SET_ID id is zel

v [NEGATIVE] [check] Should return false if constants.VOUCHER SET_ID is not registered "Teoms)

¥ [NEGATIVE] [pause] Should revert if executed by attacker

v [NEGATIVE] [unpause] Should revert if executed by attacker (44ms)

Boson router operations
Setting a boson router address

7 Owner should be able set boson router address

Vv [NEGATIVE] [constructor] Should revert if supplied wrong boson router address

v [NEGATIVE] [setBosonRouterAddress] Should revert if supplied wrong boson router address
v [NEGATIVE] [setBosonRouterAddress] Should revert if executed by attacker

Voucher set registered by Boson protocol

V Boson router should be able to deactivate voucher set id (514ms)

Create Voucher sets and commit to vouchers with token conditional commit
TOKEN SUPPLY CREATION WITH TOKEN CONDITIONAL COMMIT (Create Voucher Set)
ETHETH

¥ Should be able to create Voucher with gate address (83ms)
¥ One should get the gate address that handles conditional commit (64ms)
¥ Non conditional voucher set should have zero address gate contract (67ms)
V_[NEGATIVE]Supplying invalid gate address should revert
Flow with automatic gate. registerVoucherSetId
 Should be able to create Voucher with gate address and non empty nft token id (77ms)
4 [NEGATIVE] Should revert if non empty nft token id and wrong gate address (80ms)

¥ Should be able to create Voucher with gate address (151ns)
7 One should get the gate address that handles conditional commit (117ms)
7 Non conditional voucher set should have zero address gate contract (119ms)
V_[NEGATIVE]Supplying invalid gate address should revert
Flow with automatic gate.registerVoucherSetId
V Should be able to create Voucher with gate address and non empty nft token id (112ms)

v [NEGATIVE] Should revert if non empty nft

token id and wrong gate address (124ms)

TKN
¥ Should be able to create Voucher with gate address (127ms)
¥ One should get the gate address that handles conditional commit (118ms)
¥ Non conditional voucher set should have zero address gate contract (119ms)
V_[NEGATIVE]Supplying invalid gate address should revert (42ms)
Flow with automatic gate.registerVoucherSetId
¥ Should be able to create Voucher with gate address and non empty nft token id (11ims)

v [NEGATIVE] Should revert if non empty nft token id and wrong gate address (98ms)

KNETH

V Should be able to create Voucher with gate address (103ms)

V One should get the gate address that handles conditional commit (53ms)

v Non conditional voucher set should have zero address gate contract (59ms)

IMMUNE BYTES

This audit does not provide a security or correctness guarantee of the audited smart contract. Securing smart contracts is a multistep process, therefore

running a bug bounty program as a complement to this audit is strongly recommended.

10

IMMUNE BYTES

Cashier & VK
Pausing Scenarios
BOSON ROUTER

COMMON PAUSING
¥ Should not be paused on deployment
¥ Owner should pause the contract
¥ Owner should unpause the contract (69ms)
7 INEGATIVE] Attacker should not be able to pause the contract
V_[NEGATIVE] Attacker should not be able to unpause the contract (46ms)

E

v [NEGATIVE] Should not create voucher supply when contract is paused (54ms)
 Should create voucher supply when contract is unpaused (83ms
V_[NEGATIVE] Should not create voucherID from Buyer when paused (131ms)
[WITH PERMIT]

¥ INEGATIVE] Should not: create voucher supply vhen contract is paused (64ns)
Should create voucher supply when contract is unpaused (101ms)
V_[NEGATIVE] Should not create voucherID for Buyer when paused (180ms)

H

v [NEGATIVE] Should not create voucher supply when contract is paused (48ms)
Should create voucher supply when contract is unpaused (100ms)

V_[NEGATIVE] Should not create voucherID for Buyer when paused (159ms)

TKN
\/ [NEGATIVE] Should not create voucher supply when contract is paused (66ms)

¥ Should create voucher supply when contract is unpaused (95ms
v [NEGATIVE] Should not create voucherID for Buyer when paused (205ms)
VOUCHER KERNEL

COMMON PAUSING
¥ Should not be paused on deployment
 Should be paused from BR (44ms)
Vv Should be unpaused from BR (84ms)
¥ [NEGATIVE] Pause should not be called directly
v _[NEGATIVE] Unpause should not be called directly
ETHETH
v [NEGATIVE] Should not process refund when paused (124ns)
¥ [NEGATIVE] Should not process complain when paused (173ms)
7 [NEGATIVE] Should not process redeem when paused (136ms)
Y [NEGATIVE] Should not process cancel when paused (140ms)
[WITH PERMIT]

V' [NEGATIVE] Should not process refund when paused (173ms)
v [NEGATIVE] Should not process complain when paused (202ms)
Vv [NEGATIVE] Should not process redeem when paused (180ms)
V_[NEGATIVE] Should not process cancel when paused (208nms)

TKNETH
v [NEGATIVE] Should not process refund when paused (162ms)
v [NEGATIVE] Should not process complain when paused (187ms)
v [NEGATIVE] Should not process redeem when paused (116ms)
V_[NEGATIVE] Should not process cancel when paused (164ms)
i

v [NEGATIVE] Should not process refund when paused (185ms)
¥ [NEGATIVE] Should not process complain when paused (256ms)
v [NEGATIVE] Should not process redeem when paused (191ms)
V_[NEGATIVE] Should not process cancel when paused (225ms)
k(.

¥ [NEGATIVE] Should not process refund when paused (173ms)
v [NEGATIVE] Should not process complain when paused (19ems)
v [NEGATIVE] Should not process redeem when paused (161ms)
v [NEGATIVE] Should not process cancel when paused (178ms)
CASHIER
COMMON PAUSING
Should not be paused on deployment
¢ Should be paused from BR (44ms)
V Should be unpaused from BR (85ms)
v [NEGATIVE] Pause should not be called directly
¥ [NEGATIVE] Unpause should not be called directly
Y Owner should set the Cashier to disaster state (55ms)
¥ Should not be unpaused after disaster
ETHETH

ERC1155721
¥ Owner should be the deployer
Y Owner should be able to set VK address
¥ [NEGATIVE] [setVoucherKernelAddress] Should revert if executed by attacker
V. [NEGATIVE] [setVoucherKernelAddress] Should revert if ZERO address is provided
Y Ouner should be able to set Cashier address
V. [NEGATIVE] [setCashierAddress] Attacker should not be able to set Cashier address

Vv [NEGATIVE] [setCashierAddress] Owner should not be able to set ZERO Cashier address
VoucherKernel

V Owner should be the deployer

V Owner should be able to set Cashier address

¥ [NEGATIVE] [setCashierAddress] Attacker should not be able to set Cashier address

V [NEGATIVE] [setCashierAddress] Owner should not be able to set ZERO Cashier address

v Owner should be able to set BR address

V [NEGATIVE] [setBosonRouterAddress] Should revert if executed by attacker

¥ [NEGATIVE] [setBosonRouterAddress] Should revert if ZERO address is prov:

¥ [NEGATIVE] [setBosonRouterAddress] Should revert if ZERO address is Drovlded at deployment

Token Wrappers
DAT Token Wrapper
¥ Should allow owner to set the token address
7 Should call permit on the DAI token (262ms
7 Should call permit on the DAI token if deadline is zero (217ms)
7 Should revert if token address is zero when contract is deployed (68ns)
7 Should revert if owner sets token address to zero address
7 Should revert if attacker tries to set token address (55ms)
7 Should revert when token owner address is zero address (191ms)
7 Should revert when token spender address is zero address (188ms)
V Should revert if deadline has expired (192ms)
V Should revert if signatue portion r is invalid (203ns)
V Should revert if sign ion s is invalid (208ns)
V Should revert if the DAI token reverts (173ms)

Create Voucher sets and commit to vouchers with token wrapper
TOKEN SUPPLY CREATION WITH TOKEN WRAPPER (Create Voucher Set)
[WITH PERMIT]
ETHTKN

¥ Should enit the correct events and set correct state (57ms)
¥ Should update escrow correctly

7 Should create payment method ETHTKN

V INEGATIVE] Should revert if token doesn not have a registered token wrapper (226ms)
v [NEGATIVE] Should revert if token wrapper reverts because of invalid deadline (266ms)
V_[NEGATIVE] Should revert if token wrapper reverts because of invalid signature (258ms)

¥ Should emit the correct events and set correct state (54ms)
¥ Should update escrow correctly
Should create payment method TKNTKN
VOUCHER CREATION (Commit to buy)
[WITH PERMIT]

¥ Should enit the correct events and set correct state
V Should update escrow correct
TKNTKN
¥ Should eit the correct events and set correct state
¥ Should update Cashier contract's token balance correctly
Y Should | D G Gy
TKNTKN Sam
¥ Should enit the correct events and set correct state
¥ Should update escrow correctl
V_[NEGATIVE] Should revert if Price Token and Deposit Token are diff contracts (348ms)
TKNETH

v Should emit the correct events and set correct state
7 Should update escrow correctly

537 passing (6m)

This audit does not provide a security or correctness guarantee of the audited smart contract. Securing smart contracts is a multistep process, therefore
running a bug bounty program as a complement to this audit is strongly recommended.

11

IMMUNE BYTES

Coverage Report
Test coverage of smart contracts:

Uncovered Lines

contracts\
BosonRouter.sol
Cashier.sol
DAITokenwrapper.sol
ERC1155ERC721.s0]1
ERC1155NonTransferable.sol
Gate.sol
MetaTransactionReceiver.sol
TokenRegistry.sol
UsingHelpers.sol
VoucherKernel.sol
contracts\interfaces\
IBosonRouter.sol
ICashier.sol
IDAI.sol
IERC1155ERC721.s0]1
IERC1155NonTransferable.sol
IERC20WithPermit.sol
IGate.sol
ITokenRegistry.sol
ITokenWrapper.sol
IvVoucherKernel.sol
contracts\1ibs}\
SafeERC20wWithPermit.so]l
contracts\mocks\
ERC20wWithPermit.sol
MockBosonRouter.sol
MockERC20Permit.sol

.. 7,1170,1171
. 0,1114,1129
.. 64,77,78,91
. 850,863,876
136,137,138

. 145,152,159
.. 60,67,74,75
. 5,89,90,104
.. 0,88,97,110
. 0,1314,1327

w
OO0 O0O0COoOO0COoO~Noow
. (8]
OOoOuVOoOOoOO0OO0OO0OO0OO0oOuWw
w
CoOwoOoOoOwoO~NOOOMm

=
(=]
=

EFRRERERERERRERRR
OO0 00000000
OO0 00000000

26,50,55,58

.. 147,148,153
. 9,1201,1202
28,32,36,40

This audit does not provide a security or correctness guarantee of the audited smart contract. Securing smart contracts is a multistep process, therefore
running a bug bounty program as a complement to this audit is strongly recommended.

12

Fuzz Testing

1. Cashier.sol: -

a. Terminal Output

[With the use of: “-g-r0-d 600 "]

Fuzz Cashier

run time

last new path :

now trying
stage execs
total execs
exec speed
cycle prog

bit flips
byte flips
arithmetics
known ints
dictionary :
havoc
random

call order

: 0 days, 0 hrs,
0 days, O hrs,

: bitflip 1/1

1965/6656 (29%)

: 47178
1 78

1 (100%)

: 6fe,
: 6fe,
: 6fe,
: 6fe,

e/e,

: 0/0
: 0/0
: 45195

gasless send
exception disorder

reentrancy :

timestamp dependency :
block number dependency :

** Write stats:

642.031

16 min, 0@ sec
16 min, 0@ sec

cycles done :
tuples
branches :
bit/tuples : 3328 bits
coverage : 0 %

pending :
pending fav :
max depth :
except type :
unig except :
predicates

dangerous delegatecall
freezing ether

integer overflow
integer underflow

e Excel Sheet of States for the Output of Fuzz Testing
[With the use of: “-g-r1-d 600 "]

IMMUNE BYTES

https://drive.google.com/file/d/10x0Ok9rtnsdZ4FcaMWbBJqJBp9VvEV Stux/view?usp=sharing

This audit does not provide a security or correctness guarantee of the audited smart contract. Securing smart contracts is a multistep process, therefore
running a bug bounty program as a complement to this audit is strongly recommended.

13

https://drive.google.com/file/d/1OxOk9rtnsdZ4FcqMWbBJqJBp9vEVStux/view?usp=sharing

IMMUNE BYTES
2. DAITokenWrapper.sol: -

a. Terminal Output
[With the use of: “-g-r0-d 600 "]

run time , ® hrs, 9 min, 57 sec
last new path , ® hrs, 9 min, 57 sec

now trying heuristic cycles done
stage execs 100/112 (89%) tuples
total execs 404917 branches
exec speed 677 bit/tuples
cycle prog 1 (100%) coverage

bit flips : ©/3328, 0/3327, 0/3325
byte flips e/416, ©/32, 8/32 pending fav

arithmetics e/1792, 0/2032, 0,/1088 max depth
known ints 6/96, 8/544, 6/848 except type
dictionary 6/3024, 0/12 unig except
havoc /285540 predicates
random a/e
call order 99480

gasless send : dangerous delegatecall

exception disorder : freezing ether

reentrancy : integer overflow

timestamp dependency : integer underflow
block number dependency :

** Write stats: 605.444

e Excel Sheet of States for the Output of Fuzz Testing
[With the use of: “-g-r1-d 600 "]

https://drive.google.com/file/d/1u_tztllUcCJXPk 5B0OJ4tZ4UPiaDoSaM/view?usp=sharing

This audit does not provide a security or correctness guarantee of the audited smart contract. Securing smart contracts is a multistep process, therefore
running a bug bounty program as a complement to this audit is strongly recommended.

14

https://drive.google.com/file/d/1u_tztIIUcCJXPk_5BOJ4tZ4UPiaDoSaM/view?usp=sharing

IMMUNE BYTES
3. ERC1155ERC721.sol: -

a. Terminal Output
[With the use of: “-g-r0-d 600 "]

Fuzz ERC1155ERC721

run time : @ days, © hrs, 1 min, 43 sec
last new path : @ days, ©® hrs, 1 min, 43 sec

now trying : bitflip 1/1 cycles done :

stage execs : 34/238B08 (0%) tuples

total execs : 1136 branches :

exec speed : 11 bit/tuples : 23808 bits
cycle prog : 1 (1600%) coverage : 0 %

bit flips : 6/0, pending :
byte flips : 6/a, pending fav :

arithmetics : 8/eo, max depth :
known ints : @/e@, except type :
dictionary : 6/@, uniq except :
havoc : @/e predicates
random : 8/@
call order : 1088

gasless send : dangerous delegatecall

exception disorder : freezing ether

reentrancy : integer overflow

timestamp dependency : integer underflow
block number dependency :

** Write stats: 103.675

e Excel Sheet of States for the Output of Fuzz Testing
[With the use of: “-g-r1-d 600 "]

https://drive.google.com/file/d/1ra1WRKwk2RB-gK-QPT9YpC5wMOLd2RoP/view?usp=sharing

This audit does not provide a security or correctness guarantee of the audited smart contract. Securing smart contracts is a multistep process, therefore
running a bug bounty program as a complement to this audit is strongly recommended.

15

https://drive.google.com/file/d/1ra1WRKwk2RB-gK-QPT9YpC5wMOLd2RoP/view?usp=sharing

IMMUNE BYTES

4. MetaTransactionReceiver.sol: -

a. Terminal Output
[With the use of: “-g-r0-d 600 "]

MetaTransactionReceiver

® days, ©® hrs, 1 min, 18 sec
® days, ® hrs, 1 min, 17 sec

run time
last new path

now trying havoc cycles done
stage execs 6/16 (0%) tuples
total execs 356432 branches

exec speed 4569 bit/tuples 2560 bits
cycle prog 1 (100%) coverage 0 %

bit flips 6/2560, 02559, 0/2557 pending
byte flips e/32e, ©/32, a/32 pending fav
arithmetics e/1792, 0/2032, 0,/1088 max depth
known ints 6/96, 8/544, 6/848 except type
dictionary e/5072, 0/9 unig except
havoc 6/239184 predicates
random a/e
call order 97705

gasless send : dangerous delegatecall

exception disorder : freezing ether

reentrancy : integer overflow

timestamp dependency : integer underflow
block number dependency

e Excel Sheet of States for the Output of Fuzz Testing
[With the use of: “-g-r1-d 600 "]

https://drive.google.com/file/d/1uémkf2dMbvbJICLYHneB3RVRu8wR12sL/view?usp=sharing

This audit does not provide a security or correctness guarantee of the audited smart contract. Securing smart contracts is a multistep process, therefore
running a bug bounty program as a complement to this audit is strongly recommended.

16

https://drive.google.com/file/d/1u6mkf2dMbvbJICLYHneB3RvRu8wR12sL/view?usp=sharing

IMMUNE BYTES

5. Gate.sol: -

a. Terminal Output
[With the use of: “-g-r0-d 600 "]

>> Fuzz Gate

run time : © days, @ hrs, 10 min, © sec
last new path : © days, ® hrs, 9 min, 59 sec

now trying heuristic cycles done
stage execs 50/64 (78%) tuples
total execs 551800 branches
exec speed 919 bit/tuples
cycle prog 1 (100%) coverage

bit flips ®/3584, ©6/3583, 0/3581

byte flips 0/448, 0/32, 0/32 pending fav

arithmetics 8/1792, 6/2032, 0/1088 max depth

known ints 8/96, 6/544, 0/848 except type

dictionary 6/5328, 6/13 unig except
havoc /252786 predicates
random 0/0

call order 276012

gasless send : none dangerous delegatecall : none

exception disorder : none freezing ether : none

reentrancy : none integer overflow : none

timestamp dependency : none integer underflow : none
block number dependency : none

** Write stats: 600.095

e Excel Sheet of States for the Output of Fuzz Testing
[With the use of: “-g-r1-d 600 "]

https://drive.google.com/file/d/1sWhVwrw2L L mICJujlpnfX1KStW1d3u25/view?usp=sharing

This audit does not provide a security or correctness guarantee of the audited smart contract. Securing smart contracts is a multistep process, therefore
running a bug bounty program as a complement to this audit is strongly recommended.

17

https://drive.google.com/file/d/1sWhVwrw2LLmICJujlpnfX1KStW1d3u25/view?usp=sharing

IMMUNE BYTES
6. UsingHelpers.sol: -

a. Terminal Output
[With the use of: “-g-r0-d 600 "]

Fuzz UsingHelpers

run time
last new path

® days, © hrs, 7 min, 37 sec
® days, © hrs, 7 min, 37 sec

now trying havoc cycles done 173703
stage execs 1/16 (6%) tuples 1

total execs 2788385 branches 1l

exec speed 6091 bit/tuples 768 bits
cycle prog 1 (100%) coverage 50 %

bit flips e/768, 0/767, 6/765 pending
byte flips ef/96, @/32, 0/32 pending fav
arithmetics ef/1792, 0fz032, 0/1088 max depth
known ints 0/96, 08/544, 0/848 except type
dictionary ef272, /2 uniq except
havoc 0/2779248 predicates
random /0
call order 0]

gasless send dangerous delegatecall

exception disorder freezing ether

reentrancy integer overflow

timestamp dependency integer underflow
block number dependency

e Excel Sheet of States for the Output of Fuzz Testing
[With the use of: “-g-r1-d 600 "]

https://drive.qooale.com/file/d/16fvn6LUR3UAte4 8miicHOIfBI5SDwwTg/view?usp=sharing

This audit does not provide a security or correctness guarantee of the audited smart contract. Securing smart contracts is a multistep process, therefore
running a bug bounty program as a complement to this audit is strongly recommended.

18

https://drive.google.com/file/d/16fvn6LUR3UAte4_8miicH9IfBI5DwwTq/view?usp=sharing

7. TokenRegistry.sol: -

a. Terminal Output

IMMUNE BYTES

[With the use of: “-g-r 0-d 600"]

>> Fuzz TokenRegistry
Rhythmbox

run time
last new path

® days, @ hrs, 9 min, 59 sec
: ®@ days, @ hrs, 9 min, 58 sec

now trying
stage execs
total execs
exec speed

cycle prog :

bit flips

havoc

13/16 (81%)
814133

1359

1 (100%)

©/2816, ©/2815, 8/2813

cycles done
tuples
branches
bit/tuples :
coverage :

40466

1

|

2816 bits
1%

pending

byte flips
arithmetics
known ints
dictionary

havoc

random
call order

0/352, 0/32, 6/32

0/1792, 0/2032, 0/1088
: 0/96, 0/544, 0/848

0/3248, 0/10

0/647456

0/0

148144

pending fav
max depth
except type
uniq except
predicates

gasless send

exception disorder
reentrancy

timestamp dependency
block number dependency

dangerous delegatecall
freezing ether

integer overflow
integer underflow

** Write stats: 600.036

e Excel Sheet of States for the Output of Fuzz Testing
[With the use of: “-g-r1-d 600 "]

https://drive.qooale.com/file/d/1DMKwLL7CJiCSbCKxaflD3Db-gFw1i66b/view?usp=sharing

This audit does not provide a security or correctness guarantee of the audited smart contract. Securing smart contracts is a multistep process, therefore
running a bug bounty program as a complement to this audit is strongly recommended.

19

https://drive.google.com/file/d/1DMKwLL7CJiCSbCKxafID3Db-qFw1i66b/view?usp=sharing

IMMUNE BYTES

8. BosonRouter.sol: -

a. Terminal Output
[With the use of: “-g-r0-d 600 "]

>> Fuzz BosonRouter

® days, ® hrs, 1 min, 53 sec
® days, ® hrs, 1 min, 53 sec

run time
last new path

now trying bitflip 1/1 cycles done
stage execs 4431232 (0%) tuples
total execs 1245 branches
exec speed 11 bit/tuples
cycle prog 1 (1600%) coverage

bit flips e/e,
byte flips e/e, pending faw
arithmetics e/e, max depth
known ints e/e, except type
dictionary e/e, uniq except
havoc /e predicates

random a/e

call order 1188

gasless send : dangerous delegatecall

exception disorder : freezing ether

reentrancy : integer overflow

timestamp dependency : integer underflow
block number dependency :

** Write stats: 114.258

e Excel Sheet of States for the Output of Fuzz Testing
[With the use of: “-g-r1-d 600 "]

https://drive.google.com/file/d/1SPdOZ51dV39b4CruEmSLVUzPbzcH371Z/view?usp=sharing

This audit does not provide a security or correctness guarantee of the audited smart contract. Securing smart contracts is a multistep process, therefore
running a bug bounty program as a complement to this audit is strongly recommended.

20

https://drive.google.com/file/d/1SPdOZ5ldV39b4CruEm5LVUzPbzcH371Z/view?usp=sharing

IMMUNE BYTES

Vulnerability Checks

TYPES [ORACLES WHEN A VULNERABILITY IS WHY IT IS Results
DETECTED VULNERABLE
Error Gasless Send Function sends or transfer is called and | RunOufOfGasexception | PASSED
receiver has a costly fallback function
Error Exception There is an exception in the call chain Root of the call chain PASSED
Disorder but the. These functions hide exceptions | does not throw
exception
Error Timestamp The test case evaluates a condition Miners control the PASSED
Dependency based on timestamp and then sends values of timestamp
ether
Error Block Number The test case evaluates a condition Miners control the PASSED
Dependency based on block number and then sends | values of block number.
ether
Error Danger delegatecall is executed via msg.data. The attacker can call PASSED
Delegate Call any function.
Error Reentrancy A contract function is called via fallback | Refer to the DAO PASSED
function from another contract and vulnerability
sends ether.
Error Integer Ifb>0anda+b<aorb>0anda-b> | Arithmetic error PASSED
Overflow/Underf | b or -
low
Error Integer fb>0anda+b<aorb>0anda-b> | Arithmetic error PASSED
Overflow/Underf | b or -
low
Warning | Freezing Ether | After all test case, nosend()or transfer() | The contractis a PASSED
function is executed blackhole for ether

This audit does not provide a security or correctness guarantee of the audited smart contract. Securing smart contracts is a multistep process, therefore
running a bug bounty program as a complement to this audit is strongly recommended.

21

IMMUNE BYTES

Concluding Remarks
While conducting the audits of the Boson Protocol smart contracts, it was observed that the contracts

contained High and Low severity issues.

Our auditors suggest that High and Low severity issues should be resolved by the developers. The
recommendations given will improve the operations of the smart contract.

Disclaimer

ImmuneBytes’s audit does not provide a security or correctness guarantee of the audited smart contract.
Securing smart contracts is a multistep process, therefore running a bug bounty program as a complement to
this audit is strongly recommended.

Our team does not endorse the Boson Protocol platform or its product nor this audit is investment advice.
Notes:

e Please make sure contracts deployed on the mainnet are the ones audited.

e Check for the code refactor by the team on critical issues.

ImmuneBytes

This audit does not provide a security or correctness guarantee of the audited smart contract. Securing smart contracts is a multistep process, therefore
running a bug bounty program as a complement to this audit is strongly recommended.

22

