
Customer: BreederDAO
Date: April 14th, 2022

This document may contain confidential information about IT systems and
the intellectual property of the Customer as well as information about
potential vulnerabilities and methods of their exploitation.

The report containing confidential information can be used internally by
the Customer, or it can be disclosed publicly after all vulnerabilities
are fixed — upon a decision of the Customer.

Document

Name Smart Contract Code Review and Security Analysis Report for
BreederDAO.

Approved By Evgeniy Bezuglyi | SC Department Head at Hacken OU

Type of Contracts ERC20 token; Vesting

Platform EVM

Language Solidity

Methods Architecture Review, Functional Testing, Computer-Aided
Verification, Manual Review

Website https://www.breederdao.io

Timeline 08.04.2022 – 14.04.2022

Changelog 12.04.2022 – Initial Review
14.04.2022 – Revision

www.hacken.io

https://www.breederdao.io

Table of contents
Introduction 4

Scope 4

Executive Summary 6

Severity Definitions 8

Findings 9

Disclaimers 11

www.hacken.io

Introduction

Hacken OÜ (Consultant) was contracted by BreederDAO (Customer) to conduct a
Smart Contract Code Review and Security Analysis. This report presents the
findings of the security assessment of the Customer's smart contracts.

Scope

The scope of the project is smart contracts in the repository:
Repository:

https://github.com/breederdao/audit-contract-hacken
Commit:

4e266c3a6ccf225e40ad479fdba21c95b0fc952f
7dbb3d56713c632f1c97c6c1d0e32ac95df05876 (revision)

Documentation: Yes
(https://github.com/breederdao/audit-contract-hacken/blob/develop/README.md)
JS tests: Yes
(https://github.com/breederdao/audit-contract-hacken/tree/develop/test)
Contracts:

IBreederDaoTokenLock.sol
IBreederDaoTokenLockManager.sol
IBreederToken.sol
BreederDaoTokenLock.sol
BreederDaoTokenLockManager.sol
BreederDaoTokenLockWallet.sol
BreederToken.sol
MinimalProxyFactory.sol
Ownable.sol
Owned.sol
MathUtils.sol
Pausable.sol

We have scanned this smart contract for commonly known and more specific
vulnerabilities. Here are some of the commonly known vulnerabilities that
are considered:

Category Check Item
Code review ▪ Reentrancy

▪ Ownership Takeover
▪ Timestamp Dependence
▪ Gas Limit and Loops
▪ Transaction-Ordering Dependence
▪ Style guide violation
▪ EIP standards violation
▪ Unchecked external call
▪ Unchecked math
▪ Unsafe type inference
▪ Implicit visibility level
▪ Deployment Consistency
▪ Repository Consistency

www.hacken.io

https://github.com/breederdao/audit-contract-hacken
https://github.com/breederdao/audit-contract-hacken/blob/develop/README.md
https://github.com/breederdao/audit-contract-hacken/tree/develop/test

Functional review ▪ Business Logics Review
▪ Functionality Checks
▪ Access Control & Authorization
▪ Escrow manipulation
▪ Token Supply manipulation
▪ Assets integrity
▪ User Balances manipulation
▪ Data Consistency
▪ Kill-Switch Mechanism

www.hacken.io

Executive Summary

The score measurements details can be found in the corresponding section of
the methodology.

Documentation quality
The Customer provided good functional and technical requirements. The total
Documentation Quality score is 10 out of 10.

Code quality
The total CodeQuality score is 10 out of 10.

Architecture quality
The architecture quality score is 10 out of 10. The logic is carefully
separated by several files.

Security score
As a result of the audit, security engineers found 1 low severity issue.
The security score is 10 out of 10. All found issues are displayed in the
“Issues overview” section.

Summary
According to the assessment, the Customer's smart contract has the
following score: 10.

Notices

1. After the initial review there were added several new contracts that
are not included to the audit scope.

2. The owner can revoke a vesting and take back unvested money, but
rewards earned up to that moment would still be available.

3. The owner can change the master version of the vesting contract. The
audit only covers the version from the scope.

www.hacken.io

https://docs.google.com/document/d/1vpWmShFjGVkwHgX4rEmFhRcmnOZ-k6xEckkQjZkCmgE/edit#heading=h.1ci93xb

Graph 1. The distribution of vulnerabilities after the audit.

www.hacken.io

Severity Definitions

Risk Level Description

Critical
Critical vulnerabilities are usually straightforward to
exploit and can lead to assets loss or data
manipulations.

High

High-level vulnerabilities are difficult to exploit;
however, they also have a significant impact on smart
contract execution, e.g., public access to crucial
functions

Medium
Medium-level vulnerabilities are important to fix;
however, they cannot lead to assets loss or data
manipulations.

Low
Low-level vulnerabilities are mostly related to
outdated, unused, etc. code snippets that cannot
have a significant impact on execution

www.hacken.io

Findings

Critical

No critical severity issues were found.

High

1. Unexpected allowance

Approving and revoking the protocol by the beneficiary may leave some
additional allowances. If the admin has removed or added any
destination between user approving and revoking, some unexpected
allowances or disallowances may appear.

This could lead to the disappearance of vested tokens that are not
approved to the protocol.

Contract: BreederDaoTokenLockManager.sol

Functions: addTokenDestination, removeTokenDestination

Recommendation: manage and update all wallet approvals on adding or
removing destinations.

Status: Fixed (Revised Commit: 7dbb3d5)

Medium

1. Corrupted calculation of periods

Constant MIN_PERIOD is the minimum amount of vesting periods, but it
is also used for calculating the current period number. That is wrong
because for calculation should be used adding or subbing just 1, not
a constant linked to the amount of vesting periods.

In such a way, the logic of the functions may be corrupted if
MIN_PERIOD is changed in the future.

Contract: BreederDaoTokenLock.sol

Functions: currentPeriod, passedPeriods, availableAmountByTimestamp

Recommendation: replace MIN_PERIOD with 1 in mentioned functions.

Status: Fixed (Revised Commit: 7dbb3d5)

2. Possible gas exceeding

The contract can exceed the gas limit in long cycles or by returning
a big array.

Contract: BreederDaoTokenLockManager.sol

Function: getTokenDestinations

Contract: BreederDaoTokenLockWallet.sol

Functions: approveProtocol, revokeProtocol

www.hacken.io

Recommendation: use page navigation to avoid unexpected exceeding of
Gas; the user should have the ability to separate his action in
several transactions if needed.

Status: Fixed (Revised Commit: 7dbb3d5)

Low

1. Floating pragma

The contracts use floating pragma ^0.8.10 and ^0.8.6.

Recommendation: consider locking the pragma version whenever possible
and avoid using a floating pragma in the final deployment.

Status: Fixed (Revised Commit: 7dbb3d5)

2. Local variable shadowing

Local variable shadowing may lead to unexpected code behavior in
future development.

Contract: BreederDaoTokenLock.sol

Functions: availableAmountByTimestamp:(currentPeriod),
_initialize:(_owner)

Contract: BreederDaoTokenLockWallet.sol

Function: initialize:(_owner)

Contract: BreederDaoTokenLockManager.sol

Functions: createTokenLockWallet:(_owner)

Recommendation: rename the local variables that shadow other
components.

Status: Fixed (Revised Commit: 7dbb3d5)

3. Boolean equality

Boolean constants can be used directly and do not need to be compared
to true or false.

Contract: BreederDaoTokenLock.sol

Function: cancelLock, revoke

Recommendation: remove the equality to the boolean constant.

Status: Fixed (Revised Commit: 7dbb3d5)

4. Unused event

The TokenDestinationAllowed event was declared, but never used.

Contract: BreederDaoTokenLockManager.sol

Recommendation: remove the unused event.

Status: New
www.hacken.io

Disclaimers

Hacken Disclaimer
The smart contracts given for audit have been analyzed by the best industry
practices at the date of this report, with cybersecurity vulnerabilities
and issues in smart contract source code, the details of which are
disclosed in this report (Source Code); the Source Code compilation,
deployment, and functionality (performing the intended functions).

The audit makes no statements or warranties on the security of the code. It
also cannot be considered a sufficient assessment regarding the utility and
safety of the code, bug-free status, or any other contract statements.
While we have done our best in conducting the analysis and producing this
report, it is important to note that you should not rely on this report
only — we recommend proceeding with several independent audits and a public
bug bounty program to ensure the security of smart contracts.

Technical Disclaimer
Smart contracts are deployed and executed on a blockchain platform. The
platform, its programming language, and other software related to the smart
contract can have vulnerabilities that can lead to hacks. Thus, the audit
cannot guarantee the explicit security of the audited smart contracts.

www.hacken.io

