
1.

Formal Verification of Celo Core Contracts Release 4

Summary

This document describes the specification and verification of Celo using Certora Prover. The work was undertaken from May 13, 2021 - May 27,
2021. The rules are running continuously in Celo’s CI system.

The scope of our verification was the updated Accounts contract Governance contract.and

The Certora Prover proved the implementation of the Accounts and Governance is correct with respect to the formal rules written by the cLabs
and the Certora teams. During the verification process, the Certora Prover discovered minor bugs in the code listed in the table below. All issues
were promptly corrected, and the fixes were verified to satisfy the specifications up to the limitations of the Certora Prover. The Certora
development team is currently handling these limitations. The next section formally defines high level specifications of Accounts and
Governance. All the rules are publicly available in https://github.com/celo-org/celo-monorepo/blob
/5cd7a58a4b41cdd00e07f7f007979f078d278802/packages/protocol/specs/accounts.spec .

Results for Accounts from Celo’s CI

Results for Governance from Celo’s CI

List of Main Issues Discovered

Severity: Medium

Issue: Users' referendum votes may point to non-existing proposals. Certain functionalities could behave unexpectedly as a
result.

Rules Broken: Consistency of referendum votes

Description: The map for each voter is keyed by an to the array of dequeued proposals. If a proposal referendumVotes index
expires, the index may be changed to point to another proposal. This could lead to failures of and vote revokeVotes
. In addition, the value returned by , a getter that receives an index from and returns getVoteRecord dequeued
also the proposal ID, may not agree with the actual value in .dequeued

Mitigation: If modifying structure is impossible, it may be better to improve error handling and logic of referendumVotes revo
 so that it does not fail in any event of inconsistency. In addition, functionalities that depend on keVotes getVoteRe

 may be wrong, so these should be checked in client side, or add a require to guarantee the consistency of the cord
returned value in .getVoteRecord

Severity: Low

Issue: Getters for default signers may be misleading.

Rules Broken: Getters for signers are in agreement.

Description: For legacy roles, returns the account’s signer for the legacy role, while getIndexedSigner getDefaultSigner
returns the account itself.

Mitigation: Make sure clients are aware of the distinction and not call for legacy roles. Alternatiely, require getDefaultSigner
 to run only on non-legacy roles.getDefaultSigner

Disclaimer

The Certora Prover takes as input a contract and a specification and formally proves that the contract satisfies the specification in all scenarios.
Importantly, the guarantees of the Certora Prover are scoped to the provided specification, and any cases not covered by the specification are
not checked by the Certora Prover.

We hope that this information is useful, but provide no warranty of any kind, express or implied. The contents of this report should not be
construed as a complete guarantee that the contract is secure in all dimensions. In no event shall Certora or any of its employees be liable for
any claim, damages or other liability, whether in an action of contract, tort or otherwise, arising from, out of or in connection with the results
reported here.

Notations

https://github.com/celo-org/celo-monorepo/blob/5cd7a58a4b41cdd00e07f7f007979f078d278802/packages/protocol/specs/accounts.spec
https://github.com/celo-org/celo-monorepo/blob/5cd7a58a4b41cdd00e07f7f007979f078d278802/packages/protocol/specs/accounts.spec
https://prover.certora.com/output/46933/2cfd6de048137e68e664/?anonymousKey=0ed73c7da0e053852cad5ba10e929d4898dccdb0
https://prover.certora.com/output/46933/9c558a80326fabd9b130/?anonymousKey=fb909ed5e8ba9e32ce3194cda0767373bcd51c73

1.

2.
3.
4.
5.

 indicates the rule is formally verified on the latest commit. We write when the rule was verified on a simplified version of the code (or *
under some assumptions).

 indicates the rule was violated under one of the tested versions of the code.
 indicates the rule is not yet formally specified.
 indicates the rule is postponed (<due to other issue, low priority?>) .
We use of the form {p} C {q}, which means that if the execution of program C starts in any state satisfying p, it will end in a Hoare triples
state satisfying q. In Solidity, p is similar to require, and q is similar to assert.

The syntax {p} (C C) {q} is a generalization of Hoare rules, called . {p} is a requirement on the states before C and C , 1 2 relational properties 1 2
and {q} describes the states after their executions. Notice that C and C result in different states. As a special case, C op C , where op is a 1 2 1 2
getter, indicating that C and C result in states with the same value for op.1 2

Verification of Accounts contract

The Accounts contract was previously formally verified in the original launch of the Celo contracts, reported in May 2020: https://www.certora.com
. For v5, the following proposed changes were implemented: /pubs/CeloMay2020.pdf https://github.com/celo-org/celo-proposals/blob/master/CIPs

/cip-0010.md

Functions

isAccount(address a) : bool

Returns true if a is an account.

isSigner(address s) : bool

Returns true if is a signer.s

getAuthorizedBy(address s) : address

Returns the account that authorized the signer , or 0 if none.s

getDataEncryptionKeyLen(address a) : address

Returns the length of the data encryption key used by account .a

getNameLen(address a) : uint

Returns the length of the name of the account .a

getWalletAddress(address a) : address

Returns the wallet address of the account .a

getAttestationSigner(address a) : address

Returns the attestation signer of the account if it has such a signer, otherwise returns .a a

_getAttestationSigner(address a) : address

Returns the attestation signer of the account if it has such a signer, otherwise returns 0.a

getVoteSigner(address a) : address

Returns the vote signer of the account if it has such a signer, otherwise returns .a a

_getVoteSigner(address a) : address

Returns the vote signer of the account if it has such a signer, otherwise returns 0.a

getValidatorSigner(address a) : address

https://en.wikipedia.org/wiki/Hoare_logic
http://software.imdea.org/~gbarthe/__introrelver.pdf
https://www.certora.com/pubs/CeloMay2020.pdf
https://www.certora.com/pubs/CeloMay2020.pdf
https://github.com/celo-org/celo-proposals/blob/master/CIPs/cip-0010.md
https://github.com/celo-org/celo-proposals/blob/master/CIPs/cip-0010.md

Returns the validator signer of the account if it has such a signer, otherwise returns .a a

_getValidatorSigner(address a) : address

Returns the validator signer of the account if it has such a signer, otherwise returns 0.a

getDefaultSigner(address a, bytes32 r) : address

Returns the default signer of the account for a role if it has such a signer, otherwise returns .a r a

_getDefaultSigner(address a, bytes32 r) : address

Returns the default signer of the account for a role if it has such a signer, otherwise returns 0.a r

isLegacyRole(bytes32 r) : bool

Returns true if is the hash of a legacy role (Vote, Attestation or Validator).r

isCompletedSignerAuthorization(address a, bytes32 r, address s) : bool

Returns true if the signer authorization process of signer of an account for a role has been completed.s a r

isStartedSignerAuthorization(address a, bytes32 r, address s) : bool

Returns true if the signer authorization process of signer of an account for a role has been started.s a r

getValidatorRole() : bytes32

Returns the hash representing the legacy Validator role.

getAttestationRole() : bytes32

Returns the hash representing the legacy Attestation role.

getVoteRole() : bytes32

Returns the hash representing the legacy Vote role.

authorizeValidatorSigner(address a, address s, Sig sig)

Authorizes as the signer of for the Validator role, using the signature .s a sig

authorizeVoteSigner(address a, address s, Sig sig)

Authorizes as the signer of for the Vote role, using the signature .s a sig

authorizeAttestationSigner(address a, address s, Sig sig)

Authorizes as the signer of for the Attestation role, using the signature .s a sig

authorizeSignerWithSig(address a, address s, bytes32 r, Sig sig)

Authorizes as the signer of for the role , using the signature .s a r sig

initialize(...): bool

Initialized the contract, returns true if successful.

createAccount(address a)

Creates an account for address .a

1.

2.

3.

4.

5.

6.

Properties

If an account does not exist, it should not have a wallet address or a legacy signer

¬isAccount(x)
 getWalletAddress(x) = 0
 _getAttestationSigner(x) = 0
 _getVoteSigner(x) = 0
 _getValidatorSigner(x) = 0

An address cannot be both an account and a signer

x 0 d 0 x d getAuthorizedBy(d) = x
 isAccount(x) ¬isAccount(d)

A signer of an account for the legacy roles should be authorized by the account

x 0 d 0 x d
 (_getAttestationSigner(x) = d
 v _getVoteSigner(x) = d
 v _getValidatorSigner(x) = d)
 isAccount(x) getAuthroizedBy(d) = x

A signer of an account for the new roles should be authorized by the account

x 0 d 0 x d _getDefaultSigner(x, r) = d
 isAccount(x) getAuthroizedBy(d) = x

An address cannot be a signer of two addresses

{ x 0 y 0 d 0 x d x y y d
 isAccount(x) getAuthorizedBy(d) = x
 isAccount(y)
 getIndexedSigner(x, r1) = d
 getIndexedSigner(y, r2) d }
 op()
{ getIndexedSigner(y, r2) d }

An account may have more than one signer, for legacy roles

6.

7.

8.

9.

10.

11.

12.

13.

14.

15.

{ x 0 d1 0 d2 0 x d1 x d2 d1 d2 isAccount(x) }
 (authorizeValidatorSigner(x, d2, sig2) ~
 authorizeVoteSigner(x, d1, sig1); authorizeValidatorSigner(x,
d2, sig2))
{ getAuthorizedBy(d1) = x getAuthorizedBy(d2) = x }

An account may have more than one signer, for new roles

{ x 0 d1 0 d2 0 x d1 x d2 d1 d2 isAccount(x) }
 (authorizeSignerWithSig(x, d2, r2, sig2) ~
 authorizeSignerWithSig(x, d1, r1, sig1);
 authorizeSignerWithSig(x, d2, r2, sig2))
{ getAuthorizedBy(d1) = x getAuthorizedBy(d2) = x }

The authorized-by relation cannot be removed

{ account = getAuthorizedBy(signer) }
 op()
{ account = getAuthorizedBy(signer) v account = 0 }

The Accounts contract can only be initialized once

{ }
 success1 = initialize(args); success2 = initialize(args2)
{ success1 ¬sucesss2 }

The only way to change the existence of an account is the createAccount function

{ isAcc = isAccount(a) }
 op() where op createAccount
{ isAcc = isAccount(a) }

Legacy roles are not used when checking default signers

isLegacyRole(role) _getDefaultSigner(account, role) = 0
View functions conditions for no revert
All view functions are non payable. In addition, and hasAuthorizedSigner(address,string) batchGetMetadataURL(address

 were omitted because they can revert due to calldatasize mismatch. []) Full details
Authorized by is anti-reflexive
a 0 getAuthorizedBy(a) a

When completing signer authorization, authorized-by relation must be set
a 0 (isCompletedSignerAuthorization(a, r, s) getAuthorizedBy(s) = a)

For signer authorizations, a signer can only appear as a signer of a single account

15.

16.

17.

18.

19.

20.

a1 0 a2 0
 (isCompletedSignerAuthorization(a1, r1, s)
 isCompletedSignerAuthorization(a2, r2, s)
 a1 = a2)

Only legacy roles can start and complete signer authorization in a single step

{ ¬isStartedSignerAuthorization(a, r, s)
 ¬isCompletedSignerAuthorization(a, r, s) }
 op() where op authorizeSignerWithSignature
{ isCompletedSignerAuthorization(a, r, s) isLegacyRole(r) }

Signer approval must be received for becoming a signer of a non-legacy role

{ ¬isLegacyRole(r) ¬isCompletedSignerAuthorization(a, r, s) }
 op() where op authorizeSignerWithSignature
{ isCompletedSignerAuthorization(a, r, s) caller of op = s }

Starting an authorization is exclusive for the executing account

{ ¬isStartedSignerAuthorization(a, r, s) }
 op()
{ isStartedSignerAuthorization(a, r, s) caller of op = a }

The only way authorized-by relation can be set is either using a signature, or by the signer being the caller

{ getAuthorizedBy(s) = 0 }
 op(), where op authorizeSignerWithSignature,
 authorizeAttestationSigner,
 authorizeValidatorSigner*,
 authorizeVoteSigner
{ getAuthorizedBy(s) = 0 v caller of op = s }

Can only change signer authorization under limited conditions: only the account can start a signer authorization for the
account, only the account can remove an account’s signer authorization, and only the signer or the account can complete their
signer authorization

20.

21.

22.

23.

{ started = isStartedSignerAuthorization(a, r, s)
 completed = isCompletedSignerAuthorization(a, r, s) }
 op()
{
 (started isStartedSignerAuthorization(a, r, s) caller of op =
a)
 (completed ¬isCompletedSignerAuthorization(a, r, s) caller of
op = a)
 ¬completed isCompletedSignerAuthorization(a, r, s) caller of
op = s)
}

There is no functionality in the fallback function

{}
 success = fallback()
{ ¬success }

Getters for signers are in agreement

(r = getVoteRole() getIndexedSigner(a, r) = getLegacySigner(a, r)
 getIndexedSigner(a, r) = getVoteSigner(a))

(r = getValidatorRole() getIndexedSigner(a, r) = getLegacySigner
(a, r)
 getIndexedSigner(a, r) = getValidatorSigner
(a))

(r = getAttestationRole() getIndexedSigner(a, r) = getLegacySigner
(a, r)
 getIndexedSigner(a, r) = getAttestationSigner
(a))

(¬isLegacyRole(r) getIndexedSigner(a, r) = getDefaultSigner(a, r))

(getIndexedSigner(a, r) 0
 getDefaultSigner(a, r) 0
 getLegacySigner(a, r) 0)

(¬isLegacyRole(r) // unexpected condition - rule is violated when
removed
 getIndexedSigner(a, r) a getDefaultSigner(a, r) a)

Account to signer and signer to account getters should agree

23.

a s (
(r = getVoteRole()
 s = getVoteSigner(a) voteSignerToAccount(s) = a)

(r = getValidatorRole()
 s = getValidatorSigner(a) validatorSignerToAccount(s) = a)

(r = getAttestationRole()
 s = getAttestationSigner(a) attestationSignerToAccount(s) = a)

(getIndexedSigner(a, r) = s signerToAccount(s) = a)
)

Table for View functions conditions for no revert

Function Condition for no reverting

getLegacySigner(address a, bytes32 r) isLeagcyRole(r)

hasLegacySigner(address a, bytes32 r) isLeagcyRole(r)

signerToAccount(address a) getAuthorizedBy(a) 0 v isAccount(a)

voteSignerToAccount(address a) (getAuthorizedBy(a) 0 isSigner(getAuthorizedBy
(a), a, getVoteRole())) v (getAuthorizedBy(a) = 0
isAccount(a)

validatorSignerToAccount(address a) (getAuthorizedBy(a) 0 isSigner(getAuthorizedBy
(a), a, getValidatorRole())) v (getAuthorizedBy(a)
= 0 isAccount(a)

attestationSignerToAccount(address a) (getAuthorizedBy(a) 0 isSigner(getAuthorizedBy
(a), a, getAttestationRole())) v (getAuthorizedBy
(a) = 0 isAccount(a)

Verification of Governance contract

Governance is the main managing contract of governance operations in Celo. The process of changing any parameter or code in the Celo suite
of smart contracts is going through 4 steps: upvoting initial , approvals by the approval committee, referendum voting by owners of proposals
locked gold, and execution. Certora and cLabs have written rules describing the correctness of govrenance during its development in 2019.
Following the changes made for v5, those rules were re-integrated into Celo’s CI.

Functions

getProposal(uint256 p) : address, uint256, uint256, uint256

For the proposal with id , return the proposer, deposit, timestamp and number of transactions that will be executed in execution phase.p

stageDurations() : uint256, uint256, uint256

Returns the stage durations for proposals: time until approval stage, time until referendum stage, time until execution stage.

getUpvotes(uint256 p) : uint256

Returns the number of upvotes that a queued proposal has received.p

1.

2.

getUpvotedProposal(address a) : uint256

Returns the proposal upvoted by an account .a

getUpvoteRecord(address a) : uint256, uint256

Returns the proposal upvoted by an account as well as the weight.a

getQueueLength() : uint256

Returns the length of the queued proposals.

proposalCount() : uint256

Returns the total number of proposals created, used to generate the next proposal’s ID.

getDequeuedLength() : uint256

Returns the length of the dequeued proposals.

getFromDequeued(uint256 i) : uint256

Returns the id of the proposal at index of the dequeued array.i

queueExpiry() : uint256

The time in seconds that a proposal can stay in the queue before expiring.

isApproved(uint256 p) : bool

Returns true if proposal was approved.p

isDequeuedProposalExpired(uint256 p) : bool

Returns true if the proposal expired.p

getVoteTotals(uint256 p) : uint256, uint256, uint256

Returns the yes, no and abstain votes for a proposal with id .p

approver() : address

Returns the address that is allowed to approve proposals in the approval stage.

getVoteRecord(address a, uint256 i) : uint256, uint256, uint256

Returns the vote record of account in favor for index in dequeued array.a i

Properties

Consistency of dequeued array

0 i < getDequeuedLength() getFromDequeued(i) proposalCount()

Consistency of referendum votes

2.

3.

4.

5.

6.

7.

8.

getVotedId(voter, indx) 0 proposalExists(getVotedId(voter, indx))

Consistency of upvotes

let proposalId, weight = getUpvotedRecord(a) in
 (proposalId 0 weight > 0) v (proposalId = 0 weight = 0)

A user should not be able to upvote more than once

{ accounts.voteSignerToAccount(u) = u
 upvotes = getUpvotes(p)
 upvotedProposal = getUpvotedProposal(u) }
 upvote(p) by caller u
{ upvotedProposal = p getUpvotes(p) upvotes }

Proposal count is monotonic non-decreasing, and is increasing in propose

{ count = proposalCount() }
 op()
{ proposalCount() count (op == propose proposalCount() > count)
}

Cannot vote in referendum stage before approval

{ yes, no, abstain = getVoteTotals(p) yes = 0 no = 0 abstain = 0
 approved = isApproved(p) }
 op()
{ yes', no', abstain' = getVoteTotals(p)
 (yes' 0 v no' 0 v abstain' 0) approved }

One cannot cancel votes (only change their type to yes/no/abstain)

{ d = accounts.getVoteSigner(u)
 (recordValue, weight) = getVoteRecord(d, deqIndx)}
 success = vote(p, deqIndex, value) by caller u
{ value = NONE ¬success (recordValue, weight) = getvoteRecord(d,
deqIndx) }

Votes can only be changed via vote and revokeVotes

8.

9.

10.

11.

12.

{ proposal, recordValue = getVoteRecord(u, deqIndx)
 (y,n,a) = getVoteTotals(proposal) }
 op() by caller u, where op vote, revokeVotes
{ (y', n', a') = getVoteTotals(proposal)
 (recordValue NONE proposalExists(p) y + n + a = y' + n' + a')
 (recordValue = YES y' < y)
 (recordValue = NO n' < n)
 (recordValue = ABSTAIN a' < a)
 (recordValue = NONE (¬proposalExists(p) y' = 0 n' = 0 a' =
0))
 v (y' = y n' = n a' = a))
}

Can only approve proposals that were promoted from the queue

{ isDequeued = getFromDequeued(index) = p
 a = approver()
 ¬isApproved(p)
 ¬isDequeuedProposalExpired(p) }
 approve(p, index) by caller u
{ isApproved(p) isDequeued v (¬isDequeued getFromDequeued(index)
= p)
 isApproved(p) u = a }

An approved proposal cannot be disapproved, for as long as it not expired

{ wasApproved = isApproved(p) wasApproved proposalExists(p) }
 op()
{ isApproved(p) proposalExists(p)
 wasApproved isApproved(p) v ¬proposalExists(p) }

For a proposal to be executed, there must be more “yes” votes than “no” votes

{ (y, n, _) = getVoteTotals(p) }
 success = execute(p, index)
{ n y ¬success }

Only initialize, setApprovalStageDuration, setReferendumStageDuration and setExecutionStageDuration may
change the stage durations

12.

13.

14.

15.

{ (d1, d2, d3) = getStageDurations() }
 op(), where op initialize, set*StageDuration
{ (d1, d2, d3) = getStageDurations() }

Proposals can be added only via propose

{ queueLen = getQueueLength() }
 op(), where op propose
{ getQueueLength() queueLen }

The constitution can be changed only via setConstitution

{ constitution = getConstitution(dest, sighash) }
 op(), where op setConstitution
{ constitution = getConstitution(dest, sighash) }

initialize can only be called once

{ }
 success1 = initialize(args); success2 = initialize(args2)
{ success1 ¬sucesss2 }

	Formal Verification of Celo Core Contracts Release 4

