

Table of Contents

Disclaimer 2

Document 3

Introduction 6

Project Scope 7

Executive Summary 8

Code Quality 8

Documentation 10

Use of Dependencies 11

AS-IS Overview 12

Code Flow Diagram - TokenStaking.sol 14

Code Flow Diagram - Slither Results Log 15

Audit Findings 22

Conclusion 23

Note For Contract Users 24

Our Methodology 25

Disclaimers 27

info@rdauditors.com Page No : 1

Disclaimer

This document may contain confidential information about its systems and

intellectual property of the customer as well as information about potential

vulnerabilities and methods of their exploitation.

The report containing confidential information can be used internally by the

customer or it can be disclosed publicly after all vulnerabilities are fixed -

upon the decision of the customer.

info@rdauditors.com Page No : 2

Document

Name Smart Contract Code Review and Security Analysis Report of
Catcoin.com

Platform Binance/ Solidity

File 1 Address.sol

MD5 hash b89961e443500e3fd00bd2581776dba1

SHA256 hash d547cab49a97d7f8fd633db312b8a074ef816dd4544af72e4208382e76391647

File 2 Context.sol

MD5 hash c4b296fb9a98a645ca52cc72c3fbae06

SHA256 hash 6de5302543723d32c8eaf17becc4525936e16d9c4551455c93d306b9b72c0799

File 3 IERC20.sol

MD5 hash 020f718826122fba2f2c83ff2b7cb2cd

SHA256 hash 6654ca211d7ed22937fae539bcf24e0bda89ba7489d4a2f439cc52f53db6ec4d

File 4 iStableStaking.sol

MD5 hash 9874f7a1246794ead37788edfc1c086c

info@rdauditors.com Page No : 3

SHA256 hash 2ddaea963694065cede1d31509ac9d0370f047082bfdf11bc8889214582ce53a

File 5 Ownable.sol

MD5 hash 9cc44a70849e3b6acc652e1157d09fbf

SHA256 hash c53bedd328735571fdf8d130387e2ac3c12a56ea27978e4694b22457b8ab821f

File 6 ReentrancyGuard.sol

MD5 hash 159724b6de9fd97c9b5e28bf38fc12ea

SHA256 hash d403c9c184c27e1320a5bc543a8efbdc54079110043c827ec513b785c2db20a3

File 7 SafeERC20.sol

MD5 hash 85abf875fb0e10e82d8533c19a0c744a

SHA256 hash 71c37232113f52433042d788efd366ceaecf78d412f009b8a88d776cb6934646

File 8 SafeMath.sol

MD5 hash d8601ab024d98063d1884414caa798c1

SHA256 hash 8213cd58437a8a6b5acb2a85358cd245f5ae0e44674af84c60a312b8b86049d7

File 9 TokenStaking.sol

info@rdauditors.com Page No : 4

MD5 hash 05768299fc9f9815767c23bf960adaea

SHA256 hash 6be87e6d4b124bbd1191183932f9adf5b7c26b2119c86c9c6b69738f25f2d974

Date 15/02/2023

info@rdauditors.com Page No : 5

Introduction

RD Auditors (Consultant) were contracted by Catcoin.com (Customer) to

conduct a Smart Contract Code Review and Security Analysis. This report

represents the findings of the security assessment of the customer`s smart

contract and its code review conducted between 13th - 15th February 2023.

This contract consists of nine files.

info@rdauditors.com Page No : 6

Project Scope

The scope of the project is a smart contract. We have scanned this smart

contract for commonly known and more specific vulnerabilities, below are

those considered (the full list includes but is not limited to):

• Reentrancy

• Timestamp Dependence

• Gas Limit and Loops

• DoS with (Unexpected) Throw

• DoS with Block Gas Limit

• Transaction-Ordering Dependence

• Byte array vulnerabilities

• Style guide violation

• Transfer forwards all gas

• ERC20 API violation

• Malicious libraries

• Compiler version not fixed

• Unchecked external call - Unchecked math

• Unsafe type inference

• Implicit visibility level

info@rdauditors.com Page No : 7

Executive Summary
According to the assessment, the customer’s solidity smart contract is now
Well-Secured.

Automated checks are with smartDec, Mythril, Slither and remix IDE. All

issues were performed by our team, which included the analysis of code

functionality, the manual audit found during automated analysis were

manually reviewed and applicable vulnerabilities are presented in the audit

overview section. The general overview is presented in the AS-IS section and

all issues found are located in the audit overview section.

We found the following;

Total Issues 0

Critical 0

High 0

Medium 0

Low 0

Very Low 0

info@rdauditors.com Page No : 8

Code Quality

The libraries within this smart contract are part of a logical algorithm. A library

is a different type of smart contract that contains reusable code. Once

deployed on the blockchain (only once), it is assigned to a specific address

and its properties/methods can be reused many times by other contracts.

The Catcoin.com team has not provided scenario and unit test scripts, which

would help to determine the integrity of the code in an automated way.

Overall, the code is almost commented. Commenting can provide rich

documentation for functions, return variables and more. Use of the Ethereum

Natural Language Specification Format (NatSpec) for commenting is

recommended.

info@rdauditors.com Page No : 9

Documentation

We were given the Catcoin.com code as a link:

https://bscscan.com/address/0x456441ce0cF28aCEd1c326BaBA08814dFD2c37B4#code

The hash of that file is mentioned in the table. As mentioned above, it's

recommended to write comments on smart contract code, so anyone can

quickly understand the programming flow as well as complex code logic.

Comments are very helpful in understanding the overall architecture of the

protocol. It also provides a clear overview of the system components,

including helpful details, like the lifetime of the background script.

info@rdauditors.com Page No : 10

https://bscscan.com/address/0x456441ce0cF28aCEd1c326BaBA08814dFD2c37B4#code

Use of Dependencies

As per our observation, the libraries are used in this smart contract

infrastructure. Those were based on well known industry standard open

source projects and even core code blocks that are written well and

systematically.

info@rdauditors.com Page No : 11

AS-IS Overview

TokenStaking.sol

File And Function Level Report

Contract: TokenStaking

Inherit: IERC20Staking

Observation: Passed

Test Report: Passed

Sl. Function Type Observation Test Report Conclusion Score

1 stake public Passed All Passed No Issue Passed

2 addressExists public Passed All Passed No Issue Passed

3 canWithdrawAm
ount

public Passed All Passed No Issue Passed

4 earnedToken public Passed All Passed No Issue Passed

5 unstake public Passed All Passed No Issue Passed

6 _calcRewards public Passed All Passed No Issue Passed

7 claimEarned public Passed All Passed No Issue Passed

8 getTotalOvera
llStaked

public Passed All Passed No Issue Passed

9 getTotalRewar
dDistributed

public Passed All Passed No Issue Passed

10 getTotalPendi
ngRewards

public Passed All Passed No Issue Passed

11 getCurrentSta
ked

public Passed All Passed No Issue Passed

12 getRewardPend
ing

public Passed All Passed No Issue Passed

info@rdauditors.com Page No : 12

13 getStakeCount public Passed All Passed No Issue Passed

14 getStakingHis
tory

public Passed All Passed No Issue Passed

15 isPenaltyAppl
ied

public Passed All Passed No Issue Passed

16 setRewardToke
n

external Passed All Passed No Issue Passed

17 setAPR external Passed All Passed No Issue Passed

18 setDepositDed
uction

external Passed All Passed No Issue Passed

19 setWithdrawDe
duction

external Passed All Passed No Issue Passed

20 setEarlyPenal
ty

external Passed All Passed No Issue Passed

21 setStakeConcl
ude

external Passed All Passed No Issue Passed

info@rdauditors.com Page No : 13

Code Flow Diagram - TokenStaking.sol

info@rdauditors.com Page No : 14

Code Flow Diagram - Slither Results Log

TokenStaking.sol

info@rdauditors.com Page No : 15

info@rdauditors.com Page No : 16

Solidity Static Analysis

TokenStaking.sol

info@rdauditors.com Page No : 17

info@rdauditors.com Page No : 18

info@rdauditors.com Page No : 19

info@rdauditors.com Page No : 20

Severity Definitions

Risk Level Description

Critical Critical vulnerabilities are usually straightforward to exploit and can
lead to lost tokens etc.

High High level vulnerabilities are difficult to exploit; however, they also
have a significant impact on smart contract execution, e.g. public
access to crucial functions.

Medium Medium level vulnerabilities are important to fix; however, they
cannot lead to lost tokens.

Low Low level vulnerabilities are most related to outdated, unused etc.
These code snippets cannot have a significant impact on execution.

Lowest
Code Style/
Best Practice

Lowest level vulnerabilities, code style violations and information
statements cannot affect smart contract execution and can be
ignored.

info@rdauditors.com Page No : 21

Audit Findings

Critical:

No critical severity vulnerabilities were found.

High:

No high severity vulnerabilities were found.

Medium:

No medium severity vulnerabilities were found.

Low:

No low severity vulnerabilities were found.

Very Low:

No very low severity vulnerabilities were found.

info@rdauditors.com Page No : 22

Conclusion

We were given a contract file and have used all possible tests based on the

given object. So it is now ready for mainnet deployment. We have used all the

latest static tools and manual observations to cover maximum possible test

cases to scan everything.

The security state of the reviewed contract is “Well-Secured”.

info@rdauditors.com Page No : 23

Note For Contract Users

There are several owner only functions. Those can be called by the owner's

wallet only. So, if the owner's wallet is compromised, then it carries the risk of

the contract becoming vulnerable.

Owner has full control over the smart contract. Thus, technical auditing does

not guarantee the project's ethical side.

Please do your due diligence before investing. Our audit report is never an

investment advice.

info@rdauditors.com Page No : 24

Our Methodology

We like to work with a transparent process and make our reviews a

collaborative effort. The goals of our security audits are to improve the quality

of systems we review and aim for sufficient remediation to help protect users.

The following is the methodology we use in our security audit process.

Manual Code Review

In manually reviewing all of the code, we look for any potential issues with

code logic, error handling, protocol and header parsing, cryptographic errors,

and random number generators. We also watch for areas where more

defensive programming could reduce the risk of future mistakes and speed

up future audits. Although our primary focus is on the in-scope code, we

examine dependency code and behavior when it is relevant to a particular

line of investigation.

Vulnerability Analysis

Our audit techniques included manual code analysis, user interface

interaction, and whitebox penetration testing. We look at the project's web

site to get a high level understanding of what functionality the software

under review provides. We then meet with the developers to gain an

appreciation of their vision of the software. We install and use the relevant

software, exploring the user interactions and roles. While we do this, we

brainstorm threat models and attack surfaces. We read design

documentation, review other audit results, search for similar projects,

examine source code dependencies, skim open issue tickets, and generally

investigate details other than the implementation.

info@rdauditors.com Page No : 25

Documenting Results

We follow a conservative, transparent process for analyzing potential security

vulnerabilities and seeing them through successful remediation. Whenever a

potential issue is discovered, we immediately create an Issue entry for it in

this document, even though we have not yet verified the feasibility and

impact of the issue. This process is conservative because we document our

suspicions early even if they are later shown to not represent exploitable

vulnerabilities. We generally follow a process of first documenting the

suspicion with unresolved questions, then confirming the issue through code

analysis, live experimentation, or automated tests. Code analysis is the most

tentative, and we strive to provide test code, log captures, or screenshots

demonstrating our confirmation. After this we analyse the feasibility of an

attack in a live system.

Suggested Solutions

We search for immediate mitigations that live deployments can take, and

finally we suggest the requirements for remediation engineering for future

releases. The mitigation and remediation recommendations should be

scrutinised by the developers and deployment engineers, and successful

mitigation and remediation is an ongoing collaborative process after we

deliver our report, and before the details are made public.

info@rdauditors.com Page No : 26

Disclaimers

RD Auditors Disclaimer

The smart contracts given for audit have been analysed in accordance with

the best industry practices at the date of this report, in relation to:

cybersecurity vulnerabilities and issues in smart contract source code, the

details of which are disclosed in this report, (Source Code); the Source Code

compilation, deployment and functionality (performing the intended

functions).

Because the total number of test cases are unlimited, the audit makes no

statements or warranties on the security of the code. It also cannot be

considered as a sufficient assessment regarding the utility and safety of the

code, bugfree status or any other statements of the contract. While we have

done our best in conducting the analysis and producing this report, it is

important to note that you should not rely on this report only - we

recommend proceeding with several independent audits and a public bug

bounty program to ensure security of smart contracts.

Technical Disclaimer

Smart contracts are deployed and executed on the blockchain. The platform,

its programming language, and other software related to the smart contract

can have their own vulnerabilities that can lead to hacks. Thus, the audit can’t

guarantee explicit security of the audited smart contracts.

info@rdauditors.com Page No : 27

