
Security Assessment

Flux

Apr ��nd, ����

Summary

This report has been prepared for Flux smart contracts, to discover issues and vulnerabilities in the

source code of their Smart Contract as well as any contract dependencies that were not part of an

officially recognized library. A comprehensive examination has been performed, utilizing Dynamic

Analysis, Static Analysis, and Manual Review techniques.

The auditing process pays special attention to the following considerations:

Testing the smart contracts against both common and uncommon attack vectors.

Assessing the codebase to ensure compliance with current best practices and industry

standards.

Ensuring contract logic meets the specifications and intentions of the client.

Cross referencing contract structure and implementation against similar smart contracts

produced by industry leaders.

Thorough line-by-line manual review of the entire codebase by industry experts.

Additionally, this audit is based on a premise that all external smart contracts are implemented safely.

For example, we assumed that the chainlink oracle will be available and reliable.

The security assessment resulted in �� findings that ranged from minor to informational. We

recommend addressing these findings to ensure a high level of security standards and industry

practices. We suggest recommendations that could better serve the project from the security

perspective:

Enhance general coding practices for better structures of source codes;

Add enough unit tests to cover the possible use cases given they are currently missing in the

repository;

Provide more comments per each function for readability, especially contracts are verified in

public;

Provide more transparency on privileged activities once the protocol is live.

Flux Security Assessment

Overview

Project Summary

Project Name Flux

Description Lending Platform

Platform BSC

Language Solidity

Codebase https://github.com/��-finance/flux-protocol/tree/bsc/testnet

Commits d����ee����fa�d�cf�c��������e�d���������

Audit Summary

Delivery Date Apr ��, ����

Audit Methodology Manual Review

Key Components

Vulnerability Summary

Total Issues ��

Critical �

Major �

Minor �

Informational �

Discussion �

Flux Security Assessment

Audit Scope

ID file SHA��� Checksum

FAI FluxApp.sol �fe�������a��b�a�����������a�bfada�e���dff�����a�d������������f�

FMI FluxMint.sol �����b�eaed��a����b�c�c��dae�a����d�������ad��ed������a��a����aa

GIV Guard.sol ��a�b�fdf����eef����ff���fdf�ae�ee����be�ed���d��b�e�ef�f�c�����

LOI LinkOracle.sol ��e���c����a�d�eec����edf�bff��f���c��f�df�d�ffb�fa������fee��cc

MIV Market.sol ff�c��������da�a������a�c�fa�f��de���c�����dc�ecb�d�c����d���bcd

MCF MarketCFX.sol ��e��ccbd��cb���������fcdf��a��e����ec�f�a��a�d���be���fe�������

MER MarketERC��.sol �cec�����eb��������eaa�e���a��f����acd�a���e���aa����abba���fb�b

Flux Security Assessment

Centralization Roles

The Flux smart contract introduced an authorization.

Owner

[FluxApp.sol]

setConfig()

approveMarket()

resetCollRatio()

removeMarket()

changeSupplyStatus()

changeBorrowStatus()

changeLiquidateStatus()

changeAllActionStatus()

setMarketStatus()

setBorrowLimit()

setFluxMint()

changeWeights()

stakePoolApprove()

setStakePoolStatus()

removeStakePool()

[FluxMint.sol]

resetTeamAdress()

grantFlux()

changeWeights()

setPoolSeed()

removePool()

refreshFluxMintIndex()

settleOnce()

[Guard.sol]

withdraw()

[LinkOracle.sol]

setAggregator()

Flux Security Assessment

[Market.sol]

changeOracle()

[MarketCFX.sol]

initWithdrawProxy()

Flux Security Assessment

Findings

ID Title Category Severity Status

FAI-�� Missing Some Important Checks Logical Issue Informational
Partially

Resolved

FAI-��
Overly-Privilege Granted To

Governance

Centralization /

Privilege
Minor Acknowledged

FAI-�� Missing Emit Events Coding Style Informational Resolved

FMI-�� Missing Some Important Checks Logical Issue Informational
Partially

Resolved

FMI-�� Missing Return Value Logical Issue Informational Resolved

FMI-��
Overly-Privilege Granted To

Governance

Centralization /

Privilege
Minor Acknowledged

FMI-�� Missing Emit Events Coding Style Informational Resolved

GIV-�� Missing Some Important Checks Logical Issue Informational
Partially

Resolved

GIV-��
Overly-Privilege Granted To

Governance

Centralization /

Privilege
Minor Acknowledged

LOI-��
Overly-Privilege Granted To

Governance

Centralization /

Privilege
Minor Acknowledged

MCF-��
Overly-Privilege Granted To

Governance

Centralization /

Privilege
Minor Acknowledged

MCF-�� Missing Emit Events Coding Style Informational Resolved

Flux Security Assessment

��
Total Issues

Critical � (�.��%)

Major � (�.��%)

Minor � (��.��%)

Informational � (��.��%)

Discussion � (�.��%)

ID Title Category Severity Status

MIV-�� Duplicated Transfer Logical Issue Minor Resolved

MIV-��
Overly-Privilege Granted To

Governance

Centralization /

Privilege
Minor Acknowledged

MIV-�� Missing Emit Events Coding Style Informational Resolved

Flux Security Assessment

FAI-�� | Missing Some Important Checks

Category Severity Location Status

Logical Issue Informational FluxApp.sol: �� Partially Resolved

Description

Function initialize() in contract FluxMint.sol is missing parameter address zero check.

Function initialize() in contract Guard.sol is missing parameter address zero check.

Function initialize() in contract FluxApp.sol is missing parameter address zero check.

Function changeWeights() in contract FluxMint.sol is missing upper limit check for different weight .

Function mint() in contract MarketCFX.sol is missing parameter value zero check.

Zero check is applicable to other similar places.

Recommendation

Consider adding necessary check. For example:

functionfunction initializeinitialize((address admin_address admin_,, address fluxAPP_ address fluxAPP_)) external initializer external initializer {{
 requirerequire((admin_ admin_ !=!= addressaddress((00)),, "FluxMint: admin_ is zero address""FluxMint: admin_ is zero address"));;
 requirerequire((fluxAPP_ fluxAPP_ !=!= addressaddress((00)),, "FluxMint: fluxAPP_ is zero address""FluxMint: fluxAPP_ is zero address"));;

}}
functionfunction changeWeightschangeWeights((
 uint16 borrowuint16 borrow,,
 uint16 supply uint16 supply,,
 uint16 team uint16 team,,
 uint16 community uint16 community
)) external onlyAppOrAdmin external onlyAppOrAdmin {{
 requirerequire((borrowborrow++supplysupply++teamteam++community community <=<= WEIGHT_UNITWEIGHT_UNIT));;

}}
functionfunction mintmint(()) external payable override external payable override {{
 requirerequire((msgmsg..valuevalue >> 00,, "REPAY_IS_ZERO""REPAY_IS_ZERO"));;
 _supply_supply((msgmsg..sendersender,, msg msg..valuevalue));;
}}

Alleviation

The team heeded some of our advice and changed related codes. Code change was applied in commit

�d��c��fcc�����cc��f����e��c��b�ec�f���e.

Flux Security Assessment

FAI-�� | Overly-Privilege Granted To Governance

Category Severity Location Status

Centralization /

Privilege
Minor

FluxApp.sol: ��, ��, ���, ���, ���, ���, ���, ���, ��

�, ���, ���, ���, ���, ���, ���
Acknowledged

Description

In Flux, owner is a role with high privilege. owner has ability to set many sensitive protocol parameters

like configs , collRatioMan , liquidateDisabled , teamFluxReceive , oracle , withdrawProxy ,

aggregators etc. Besides, owner also has the ability to transfer some assets. We believe that by using

such permission setups, Flux could get a short-term benefit for rapid development and stable

operation. However, if this role was granted to a malicious person accidentally, system/users assets

may suffer huge losses. For example, the owner can withdraw assets from Guard . The owner can gain

benefits by influencing the underlying price. Flux project will be eventually hurt without community

engagement and adoption.

Recommendation

Consider adding time lock to all sensitive functions and using multi-signature where critical.

Alleviation

Flux responded that they will add a timelock.

Flux Security Assessment

FAI-�� | Missing Emit Events

Category Severity Location Status

Coding Style Informational FluxApp.sol: ���, ���, ���, ��� Resolved

Description

Some functions should be able to emit events as notifications to customers because they change the

status of sensitive variables or execute some sensitive operations. This suggestion is not limited to

these codes but also applies to other similar codes.

Recommendation

Consider adding an emit to these functions.

Alleviation

The team heeded our advice and changed related codes. Code change was applied in commit

�d��c��fcc�����cc��f����e��c��b�ec�f���e.

Flux Security Assessment

FMI-�� | Missing Some Important Checks

Category Severity Location Status

Logical Issue Informational FluxMint.sol: ���, ��� Partially Resolved

Description

Function initialize() in contract FluxMint.sol is missing parameter address zero check.

Function initialize() in contract Guard.sol is missing parameter address zero check.

Function initialize() in contract FluxApp.sol is missing parameter address zero check.

Function changeWeights() in contract FluxMint.sol is missing upper limit check for different weight .

Function mint() in contract MarketCFX.sol is missing parameter value zero check.

Zero check is applicable to other similar places.

Recommendation

Consider adding necessary check. For example:

functionfunction initializeinitialize((address admin_address admin_,, address fluxAPP_ address fluxAPP_)) external initializer external initializer {{
 requirerequire((admin_ admin_ !=!= addressaddress((00)),, "FluxMint: admin_ is zero address""FluxMint: admin_ is zero address"));;
 requirerequire((fluxAPP_ fluxAPP_ !=!= addressaddress((00)),, "FluxMint: fluxAPP_ is zero address""FluxMint: fluxAPP_ is zero address"));;

}}
functionfunction changeWeightschangeWeights((
 uint16 borrowuint16 borrow,,
 uint16 supply uint16 supply,,
 uint16 team uint16 team,,
 uint16 community uint16 community
)) external onlyAppOrAdmin external onlyAppOrAdmin {{
 requirerequire((borrowborrow++supplysupply++teamteam++community community <=<= WEIGHT_UNITWEIGHT_UNIT));;

}}
functionfunction mintmint(()) external payable override external payable override {{
 requirerequire((msgmsg..valuevalue >> 00,, "REPAY_IS_ZERO""REPAY_IS_ZERO"));;
 _supply_supply((msgmsg..sendersender,, msg msg..valuevalue));;
}}

Alleviation

The team heeded some of our advice and changed related codes. Code change was applied in commit

�d��c��fcc�����cc��f����e��c��b�ec�f���e.

Flux Security Assessment

FMI-�� | Missing Return Value

Category Severity Location Status

Logical Issue Informational FluxMint.sol: ��� Resolved

Description

Function _unlockDAOFlux() declared a return value of bool , but within its function body, there is no

value returned.

Recommendation

Consider removing return declaration or returning a bool value within the function body.

Alleviation

The team heeded our advice and changed related code. Code change was applied in commit

�d��c��fcc�����cc��f����e��c��b�ec�f���e.

Flux Security Assessment

FMI-�� | Overly-Privilege Granted To Governance

Category Severity Location Status

Centralization /

Privilege
Minor

FluxMint.sol: ���, ���, ���, ���, ���, ���, ��

�
Acknowledged

Description

In Flux, owner is a role with high privilege. owner has ability to set many sensitive protocol parameters

like configs , collRatioMan , liquidateDisabled , teamFluxReceive , oracle , withdrawProxy ,

aggregators etc. Besides, owner also has the ability to transfer some assets. We believe that by using

such permission setups, Flux could get a short-term benefit for rapid development and stable

operation. However, if this role was granted to a malicious person accidentally, system/users assets

may suffer huge losses. For example, the owner can withdraw assets from Guard . The owner can gain

benefits by influencing the underlying price. Flux project will be eventually hurt without community

engagement and adoption.

Recommendation

Consider adding time lock to all sensitive functions and using multi-signature where critical.

Alleviation

Flux responded that they will add a timelock.

Flux Security Assessment

FMI-�� | Missing Emit Events

Category Severity Location Status

Coding Style Informational FluxMint.sol: ��� Resolved

Description

Some functions should be able to emit events as notifications to customers because they change the

status of sensitive variables or execute some sensitive operations. This suggestion is not limited to

these codes but also applies to other similar codes.

Recommendation

Consider adding an emit to these functions.

Alleviation

The team heeded our advice and changed related codes. Code change was applied in commit

�d��c��fcc�����cc��f����e��c��b�ec�f���e.

Flux Security Assessment

GIV-�� | Missing Some Important Checks

Category Severity Location Status

Logical Issue Informational Guard.sol: �� Partially Resolved

Description

Function initialize() in contract FluxMint.sol is missing parameter address zero check.

Function initialize() in contract Guard.sol is missing parameter address zero check.

Function initialize() in contract FluxApp.sol is missing parameter address zero check.

Function changeWeights() in contract FluxMint.sol is missing upper limit check for different weight .

Function mint() in contract MarketCFX.sol is missing parameter value zero check.

Zero check is applicable to other similar places.

Recommendation

Consider adding necessary check. For example:

functionfunction initializeinitialize((address admin_address admin_,, address fluxAPP_ address fluxAPP_)) external initializer external initializer {{
 requirerequire((admin_ admin_ !=!= addressaddress((00)),, "FluxMint: admin_ is zero address""FluxMint: admin_ is zero address"));;
 requirerequire((fluxAPP_ fluxAPP_ !=!= addressaddress((00)),, "FluxMint: fluxAPP_ is zero address""FluxMint: fluxAPP_ is zero address"));;

}}
functionfunction changeWeightschangeWeights((
 uint16 borrowuint16 borrow,,
 uint16 supply uint16 supply,,
 uint16 team uint16 team,,
 uint16 community uint16 community
)) external onlyAppOrAdmin external onlyAppOrAdmin {{
 requirerequire((borrowborrow++supplysupply++teamteam++community community <=<= WEIGHT_UNITWEIGHT_UNIT));;

}}
functionfunction mintmint(()) external payable override external payable override {{
 requirerequire((msgmsg..valuevalue >> 00,, "REPAY_IS_ZERO""REPAY_IS_ZERO"));;
 _supply_supply((msgmsg..sendersender,, msg msg..valuevalue));;
}}

Alleviation

The team heeded some of our advice and changed related codes. Code change was applied in commit

�d��c��fcc�����cc��f����e��c��b�ec�f���e.

Flux Security Assessment

GIV-�� | Overly-Privilege Granted To Governance

Category Severity Location Status

Centralization / Privilege Minor Guard.sol: ��� Acknowledged

Description

In Flux, owner is a role with high privilege. owner has ability to set many sensitive protocol parameters

like configs , collRatioMan , liquidateDisabled , teamFluxReceive , oracle , withdrawProxy ,

aggregators etc. Besides, owner also has the ability to transfer some assets. We believe that by using

such permission setups, Flux could get a short-term benefit for rapid development and stable

operation. However, if this role was granted to a malicious person accidentally, system/users assets

may suffer huge losses. For example, the owner can withdraw assets from Guard . The owner can gain

benefits by influencing the underlying price. Flux project will be eventually hurt without community

engagement and adoption.

Recommendation

Consider adding time lock to all sensitive functions and using multi-signature where critical.

Alleviation

Flux responded that they will add a timelock.

Flux Security Assessment

LOI-�� | Overly-Privilege Granted To Governance

Category Severity Location Status

Centralization / Privilege Minor LinkOracle.sol: �� Acknowledged

Description

In Flux, owner is a role with high privilege. owner has ability to set many sensitive protocol parameters

like configs , collRatioMan , liquidateDisabled , teamFluxReceive , oracle , withdrawProxy ,

aggregators etc. Besides, owner also has the ability to transfer some assets. We believe that by using

such permission setups, Flux could get a short-term benefit for rapid development and stable

operation. However, if this role was granted to a malicious person accidentally, system/users assets

may suffer huge losses. For example, the owner can withdraw assets from Guard . The owner can gain

benefits by influencing the underlying price. Flux project will be eventually hurt without community

engagement and adoption.

Recommendation

Consider adding time lock to all sensitive functions and using multi-signature where critical.

Alleviation

Flux responded that they will add a timelock.

Flux Security Assessment

MCF-�� | Overly-Privilege Granted To Governance

Category Severity Location Status

Centralization / Privilege Minor MarketCFX.sol: �� Acknowledged

Description

In Flux, owner is a role with high privilege. owner has ability to set many sensitive protocol parameters

like configs , collRatioMan , liquidateDisabled , teamFluxReceive , oracle , withdrawProxy ,

aggregators etc. Besides, owner also has the ability to transfer some assets. We believe that by using

such permission setups, Flux could get a short-term benefit for rapid development and stable

operation. However, if this role was granted to a malicious person accidentally, system/users assets

may suffer huge losses. For example, the owner can withdraw assets from Guard . The owner can gain

benefits by influencing the underlying price. Flux project will be eventually hurt without community

engagement and adoption.

Recommendation

Consider adding time lock to all sensitive functions and using multi-signature where critical.

Alleviation

Flux responded that they will add a timelock.

Flux Security Assessment

MCF-�� | Missing Emit Events

Category Severity Location Status

Coding Style Informational MarketCFX.sol: �� Resolved

Description

Some functions should be able to emit events as notifications to customers because they change the

status of sensitive variables or execute some sensitive operations. This suggestion is not limited to

these codes but also applies to other similar codes.

Recommendation

Consider adding an emit to these functions.

Alleviation

The team heeded our advice and changed related codes. Code change was applied in commit

�d��c��fcc�����cc��f����e��c��b�ec�f���e.

Flux Security Assessment

MIV-�� | Duplicated Transfer

Category Severity Location Status

Logical Issue Minor Market.sol: ��� Resolved

Description

According to the logic of function liquidate() . When users liquidate borrower's debt, they need to

transfer underlying to Guard . Related market mkt apply unlimited allowance of Guard . Then function

liquidate() of Market is called. It seems Market will get these related underlying from Guard .

However, msg.sender which represent users is passed as the liquidator , according to the logic of

function liquidate() of Market , Market will get money from msg.sender again.

Recommendation

Consider correcting the logic of function liquidate() of Market . Pass msg.sender to

underlyingTransferIn() but not liquidator .

Alleviation

The team heeded our advice and changed related code. Code change was applied in commit

�d��c��fcc�����cc��f����e��c��b�ec�f���e.

Flux Security Assessment

MIV-�� | Overly-Privilege Granted To Governance

Category Severity Location Status

Centralization / Privilege Minor Market.sol: ��� Acknowledged

Description

In Flux, owner is a role with high privilege. owner has ability to set many sensitive protocol parameters

like configs , collRatioMan , liquidateDisabled , teamFluxReceive , oracle , withdrawProxy ,

aggregators etc. Besides, owner also has the ability to transfer some assets. We believe that by using

such permission setups, Flux could get a short-term benefit for rapid development and stable

operation. However, if this role was granted to a malicious person accidentally, system/users assets

may suffer huge losses. For example, the owner can withdraw assets from Guard . The owner can gain

benefits by influencing the underlying price. Flux project will be eventually hurt without community

engagement and adoption.

Recommendation

Consider adding time lock to all sensitive functions and using multi-signature where critical.

Alleviation

Flux responded that they will add a timelock.

Flux Security Assessment

MIV-�� | Missing Emit Events

Category Severity Location Status

Coding Style Informational Market.sol: ��� Resolved

Description

Some functions should be able to emit events as notifications to customers because they change the

status of sensitive variables or execute some sensitive operations. This suggestion is not limited to

these codes but also applies to other similar codes.

Recommendation

Consider adding an emit to these functions.

Alleviation

The team heeded our advice and changed related codes. Code change was applied in commit

�d��c��fcc�����cc��f����e��c��b�ec�f���e.

Flux Security Assessment

Appendix

Finding Categories

Gas Optimization

Gas Optimization findings refer to exhibits that do not affect the functionality of the code but generate

different, more optimal EVM opcodes resulting in a reduction on the total gas cost of a transaction.

Mathematical Operations

Mathematical Operation exhibits entail findings that relate to mishandling of math formulas, such as

overflows, incorrect operations etc.

Logical Issue

Logical Issue findings are exhibits that detail a fault in the logic of the linked code, such as an incorrect

notion on how block.timestamp works.

Control Flow

Control Flow findings concern the access control imposed on functions, such as owner-only functions

being invoke-able by anyone under certain circumstances.

Volatile Code

Volatile Code findings refer to segments of code that behave unexpectedly on certain edge cases that

may result in a vulnerability.

Data Flow

Data Flow findings describe faults in the way data is handled at rest and in memory, such as the result

of a struct assignment operation affecting an in-memory struct rather than an in storage one.

Language Specific

Language Specific findings are issues that would only arise within Solidity, i.e. incorrect usage of

private or delete .

Coding Style

Flux Security Assessment

Coding Style findings usually do not affect the generated byte-code and comment on how to make the

codebase more legible and as a result easily maintainable.

Inconsistency

Inconsistency findings refer to functions that should seemingly behave similarly yet contain different

code, such as a constructor assignment imposing different require statements on the input variables

than a setter function.

Magic Numbers

Magic Number findings refer to numeric literals that are expressed in the codebase in their raw format

and should otherwise be specified as constant contract variables aiding in their legibility and

maintainability.

Compiler Error

Compiler Error findings refer to an error in the structure of the code that renders it impossible to

compile using the specified version of the project.

Flux Security Assessment

Disclaimer

This report is subject to the terms and conditions (including without limitation, description of services,

confidentiality, disclaimer and limitation of liability) set forth in the Services Agreement, or the scope of

services, and terms and conditions provided to the Company in connection with the Agreement. This

report provided in connection with the Services set forth in the Agreement shall be used by the

Company only to the extent permitted under the terms and conditions set forth in the Agreement. This

report may not be transmitted, disclosed, referred to or relied upon by any person for any purposes

without CertiKʼs prior written consent.

This report is not, nor should be considered, an “endorsement” or “disapproval” of any particular

project or team. This report is not, nor should be considered, an indication of the economics or value of

any “product” or “asset” created by any team or project that contracts CertiK to perform a security

assessment. This report does not provide any warranty or guarantee regarding the absolute bug-free

nature of the technology analyzed, nor do they provide any indication of the technologies proprietors,

business, business model or legal compliance.

This report should not be used in any way to make decisions around investment or involvement with any

particular project. This report in no way provides investment advice, nor should be leveraged as

investment advice of any sort. This report represents an extensive assessing process intending to help

our customers increase the quality of their code while reducing the high level of risk presented by

cryptographic tokens and blockchain technology.

Blockchain technology and cryptographic assets present a high level of ongoing risk. CertiKʼs position

is that each company and individual are responsible for their own due diligence and continuous

security. CertiKʼs goal is to help reduce the attack vectors and the high level of variance associated with

utilizing new and consistently changing technologies, and in no way claims any guarantee of security or

functionality of the technology we agree to analyze.

Flux Security Assessment

About

Founded in ���� by leading academics in the field of Computer Science from both Yale and Columbia

University, CertiK is a leading blockchain security company that serves to verify the security and

correctness of smart contracts and blockchain-based protocols. Through the utilization of our world-

class technical expertise, alongside our proprietary, innovative tech, weʼre able to support the success

of our clients with best-in-class security, all whilst realizing our overarching vision; provable trust for all

throughout all facets of blockchain.

Flux Security Assessment

