
Security Assessment

Hoge Finance

Apr ��th, ����

Summary

This report has been prepared for Hoge Finance smart contracts, to discover issues and vulnerabilities

in the source code of their Smart Contract as well as any contract dependencies that were not part of

an officially recognized library. A comprehensive examination has been performed, utilizing Dynamic

Analysis, Static Analysis, and Manual Review techniques.

The auditing process pays special attention to the following considerations:

Testing the smart contracts against both common and uncommon attack vectors.

Assessing the codebase to ensure compliance with current best practices and industry

standards.

Ensuring contract logic meets the specifications and intentions of the client.

Cross referencing contract structure and implementation against similar smart contracts

produced by industry leaders.

Thorough line-by-line manual review of the entire codebase by industry experts.

The security assessment resulted in findings that ranged from critical to informational. We recommend

addressing these findings to ensure a high level of security standards and industry practices. We

suggest recommendations that could better serve the project from the security perspective:

Enhance general coding practices for better structures of source codes;

Add enough unit tests to cover the possible use cases given they are currently missing in the

repository;

Provide more comments per each function for readability, especially contracts are verified in

public;

Provide more transparency on privileged activities once the protocol is live.

Hoge Finance Security Assessment

Overview

Project Summary

Project Name Hoge Finance

Description
HOGE is a deflationary token. Each transaction takes place with HOGE, �% of that

transaction is distributed and burned from the total supply

Platform Ethereum

Language Solidity

Codebase https://etherscan.io/address/�xfad��e�����e�������aa��c��fb����f�cd����#code

Commits hoge-finance

Audit Summary

Delivery Date Apr ��, ����

Audit Methodology Static Analysis, Manual Review

Key Components

Vulnerability Summary

Total Issues �

Critical �

Major �

Minor �

Informational �

Discussion �

Hoge Finance Security Assessment

Audit Scope

ID file SHA��� Checksum

TCK hogeToken.sol �f���fa����e��f���df����fa�d�����eb�e��c��bd�d�c��d�d����c�fc���

Hoge Finance Security Assessment

Centralization

This is a deflationary token smart contract. The onlyOwner address had authority to include/ exclude

address by functions:

includeAccount

excludeAccount

The advantage of the above functions in the codebase is that the client reserves the ability to adjust the

project according to the runtime require to best serve the community. It is also worthy of note the

potential drawbacks of these functions, which should be clearly stated through client's action/plan on

how to prevent abuse of the these functionalities

To improve the trustworthiness of the project, any dynamic runtime updates in the project should be

notified to the community. Any plan to implement aforementioned functions must be also considered to

adopt Timelock with reasonable delay to allow the user to withdraw their funds, Multisig with

community-selected �-party independent co-signers, and/or DAO with transparent governance with

the project's community in the project to manage sensitive role accesses.

Hoge Finance Security Assessment

Findings

ID Title Category Severity Status

TCK-�� Redundant Code Logical Issue Informational Acknowledged

TCK-�� Incorrect Error Message Logical Issue Minor Acknowledged

TCK-��
Dynamic Rate Between rSupply and

tSupply
Logical Issue Informational Acknowledged

TCK-��
Proper Usage of public and

external type
Gas Optimization Informational Acknowledged

TCK-�� Centralized Risk
Centralization /

Privilege
Minor Acknowledged

Hoge Finance Security Assessment

�
Total Issues

Critical � (�.��%)

Major � (�.��%)

Minor � (��.��%)

Informational � (��.��%)

Discussion � (�.��%)

11
22
33

TCK-�� | Redundant Code

Category Severity Location Status

Logical Issue Informational hogeToken.sol: ���~��� Acknowledged

Description

The condition !_isExcluded[sender] && !_isExcluded[recipient] can be included in else .

Recommendation

The following code can be removed:

...... elseelse ifif ((!!_isExcluded_isExcluded[[sendersender]] &&&& !!_isExcluded_isExcluded[[recipientrecipient]])) {{
 _transferStandard_transferStandard((sendersender,, recipient recipient,, amount amount));;
}}

Alleviation

[Hoge]: The team acknowledged the issue, but can not make any changes in the current version.

Hoge Finance Security Assessment

TCK-�� | Incorrect Error Message

Category Severity Location Status

Logical Issue Minor hogeToken.sol: ��� Acknowledged

Description

The error message in require(_isExcluded[account], "Account is already excluded") does not

describe the error correctly.

Recommendation

The message "Account is already excluded" can be changed to "Account is not excluded" .

Alleviation

[Hoge]: The team acknowledged the issue, but can not make any changes in the current version.

Hoge Finance Security Assessment

TCK-�� | Dynamic Rate Between rSupply and tSupply

Category Severity Location Status

Logical Issue Informational hogeToken.sol: ��� Acknowledged

Description

Suppose the initial total supplies _tTotal = and _rTotal , then the initial exchange rate between

rSupply and tSupply . After we make the first transfer of amount x from the initial owner

to account A , the r balance of A _rOwned[A] . And _rTotal becomes

because of the transfer fees. Then we exclude account A such that the t balance _tOwned[A]

. Now the rate

Similarly we can find the exchange rate will decrease as more accounts are excluded. However, as long

as the majority of the supply is not excluded, the decrease will be small.

Alleviation

[Hoge]: The team acknowledged the issue, but can not make any changes in the current version.

Hoge Finance Security Assessment

T 0
t T 0

r

r =0 T /T 0
r

0
t

= O =A
r 0.99x T −0

r 0.01x

=

O /r =A
r

0 0.99xT /T 0
t

0
r

r =1 =
T − 0.99xT /T 0
t

0
t

0
r

T − 0.01x − 0.99x0
r

 ⋅
T − 0.99x0
r

T − x0
r

 <
T 0
t

T 0
r

r0

TCK-�� | Proper Usage of public and external type

Category Severity Location Status

Gas

Optimization
Informational

hogeToken.sol: ���, ���, ���, ���, ���, ���, ���, ���, �

��, ���, ���, ���, ���, ���, ���
Acknowledged

Description

Public functions that are never called by the contract could be declared external. When the inputs are

arrays external functions are more efficient than public functions. Public functions that are never

called by the contract could be declared external. When the inputs are arrays external functions are

more efficient than public functions.

Example functions :

name()

symbol()

totalSupply()

balanceOf(address)

transfer(address,uint���)

allowance(address,address)

approve(address,uint���)

transferFrom(address,address,uint���)

increaseAllowance(address,uint���)

decreaseAllowance(address,uint���)

isExcluded(address)

totalFees()

reflect(uint���)

reflectionFromToken(uint���,bool)

Recommendation

Consider using the external attribute for functions never called from the contract.

Alleviation

[Hoge]: The team acknowledged the issue, but can not make any changes in the current version.

Hoge Finance Security Assessment

TCK-�� | Centralized Risk

Category Severity Location Status

Centralization / Privilege Minor hogeToken.sol: ���, ��� Acknowledged

Description

onlyOwner address had authority to following functions:

excludeAccount()

includeAccount()

Recommendation

We advise the client to carefully manage the project's private key and avoid any potential risks of being

hacked. We also advise the client to adopt Timelock with reason delay to allow the user to withdraw

their funds, Multisig with community-selected �-party independent co-signers, and/or DAO with

transparent governance with the project's community in the project to manage sensitive role accesses.

Alleviation

[Hoge Finance]: This function exists to allow the exclusion of centralized exchanges from receiving

redistribution as several exchanges are unable to integrate our tokenomics. Written approval of

permission to exclude is received from the exchanges and shared with the community publicly. The

development team voted on � trusted developers to control the smart contract via a multi-sig wallet.

Note: the original developers who launched HOGE do not have access to the multi-sig wallet.

While we agree that this is a risk, we do not believe it is a major one given the steps we have taken and

the nature of the internal workings of centralized exchanges.

Hoge Finance Security Assessment

Appendix

Finding Categories

Gas Optimization

Gas Optimization findings refer to exhibits that do not affect the functionality of the code but generate

different, more optimal EVM opcodes resulting in a reduction on the total gas cost of a transaction.

Mathematical Operations

Mathematical Operation exhibits entail findings that relate to mishandling of math formulas, such as

overflows, incorrect operations etc.

Logical Issue

Logical Issue findings are exhibits that detail a fault in the logic of the linked code, such as an incorrect

notion on how block.timestamp works.

Control Flow

Control Flow findings concern the access control imposed on functions, such as owner-only functions

being invoke-able by anyone under certain circumstances.

Volatile Code

Volatile Code findings refer to segments of code that behave unexpectedly on certain edge cases that

may result in a vulnerability.

Data Flow

Data Flow findings describe faults in the way data is handled at rest and in memory, such as the result

of a struct assignment operation affecting an in-memory struct rather than an in storage one.

Language Specific

Language Specific findings are issues that would only arise within Solidity, i.e. incorrect usage of

private or delete .

Coding Style

Hoge Finance Security Assessment

Coding Style findings usually do not affect the generated byte-code and comment on how to make the

codebase more legible and as a result easily maintainable.

Inconsistency

Inconsistency findings refer to functions that should seemingly behave similarly yet contain different

code, such as a constructor assignment imposing different require statements on the input variables

than a setter function.

Magic Numbers

Magic Number findings refer to numeric literals that are expressed in the codebase in their raw format

and should otherwise be specified as constant contract variables aiding in their legibility and

maintainability.

Compiler Error

Compiler Error findings refer to an error in the structure of the code that renders it impossible to

compile using the specified version of the project.

Hoge Finance Security Assessment

Disclaimer

This report is subject to the terms and conditions (including without limitation, description of services,

confidentiality, disclaimer and limitation of liability) set forth in the Services Agreement, or the scope of

services, and terms and conditions provided to the Company in connection with the Agreement. This

report provided in connection with the Services set forth in the Agreement shall be used by the

Company only to the extent permitted under the terms and conditions set forth in the Agreement. This

report may not be transmitted, disclosed, referred to or relied upon by any person for any purposes

without CertiKʼs prior written consent.

This report is not, nor should be considered, an “endorsement” or “disapproval” of any particular

project or team. This report is not, nor should be considered, an indication of the economics or value of

any “product” or “asset” created by any team or project that contracts CertiK to perform a security

assessment. This report does not provide any warranty or guarantee regarding the absolute bug-free

nature of the technology analyzed, nor do they provide any indication of the technologies proprietors,

business, business model or legal compliance.

This report should not be used in any way to make decisions around investment or involvement with any

particular project. This report in no way provides investment advice, nor should be leveraged as

investment advice of any sort. This report represents an extensive assessing process intending to help

our customers increase the quality of their code while reducing the high level of risk presented by

cryptographic tokens and blockchain technology.

Blockchain technology and cryptographic assets present a high level of ongoing risk. CertiKʼs position

is that each company and individual are responsible for their own due diligence and continuous

security. CertiKʼs goal is to help reduce the attack vectors and the high level of variance associated with

utilizing new and consistently changing technologies, and in no way claims any guarantee of security or

functionality of the technology we agree to analyze.

Hoge Finance Security Assessment

About

Founded in ���� by leading academics in the field of Computer Science from both Yale and Columbia

University, CertiK is a leading blockchain security company that serves to verify the security and

correctness of smart contracts and blockchain-based protocols. Through the utilization of our world-

class technical expertise, alongside our proprietary, innovative tech, weʼre able to support the success

of our clients with best-in-class security, all whilst realizing our overarching vision; provable trust for all

throughout all facets of blockchain.

Hoge Finance Security Assessment

