
Security Assessment

Airnode RRP
Oct 15th, 2021

Table of Contents
Summary

Overview
Project Summary

Audit Summary

Vulnerability Summary

Audit Scope

Findings
GLOBAL-01 : Third Party Dependencies

ARO-01 : "airnode" should be checked

ARO-02 : "requestId" should include "airnode"

ARO-03 : Dangerous low level "call()"

ARO-04 : Possible DOS attack on "makeTemplateRequest()" and "makeFullRequest()"

ARR-01 : Centralization Risk

ARR-02 : "setRank()" and "decreaseSelfRank()" should be overridden and enforce checking on

parameter "adminnedId"

MAO-01 : Built-in function should be used for integer type value range

RBS-01 : Built-in function should be used for integer type value range

RBS-02 : Uint32 may be too short for timestamp

RBS-03 : Centralization Risk

RBS-04 : "templateId" should be checked

RBS-05 : Beacon should be checked

RBS-06 : Wrong sponsorship checking

SRR-01 : Built-in function should be used for integer type value range

TUO-01 : Function parameters should be checked

WUO-01 : Dangerous low level "call()"

WUO-02 : Possible DOS attack on "requestWithdrawal()"

Appendix

Disclaimer

About

Airnode RRP Security Assessment

Summary
This report has been prepared for Api3 to discover issues and vulnerabilities in the source code of the

Airnode RRP project as well as any contract dependencies that were not part of an officially recognized

library. A comprehensive examination has been performed, utilizing Manual Review and Static Analysis

techniques.

The auditing process pays special attention to the following considerations:

Testing the smart contracts against both common and uncommon attack vectors.

Assessing the codebase to ensure compliance with current best practices and industry standards.

Ensuring contract logic meets the specifications and intentions of the client.

Cross referencing contract structure and implementation against similar smart contracts produced

by industry leaders.

Thorough line-by-line manual review of the entire codebase by industry experts.

The security assessment resulted in findings that ranged from critical to informational. We recommend

addressing these findings to ensure a high level of security standards and industry practices. We suggest

recommendations that could better serve the project from the security perspective:

Enhance general coding practices for better structures of source codes;

Add enough unit tests to cover the possible use cases;

Provide more comments per each function for readability, especially contracts that are verified in

public;

Provide more transparency on privileged activities once the protocol is live.

Airnode RRP Security Assessment

Overview

Project Summary

Project Name Airnode RRP

Platform Ethereum

Language Solidity

Codebase https://github.com/api3dao/airnode/tree/master/packages/protocol/contracts

Commit
f09cb54a0a6e66a4547551fd69d1b659c4e6dafd

8467c9522e0c86dc73d84a94a170616c766f2c8c

Audit Summary

Delivery Date Oct 15, 2021

Audit Methodology Manual Review, Static Analysis

Key Components

Vulnerability Summary

Vulnerability Level Total Pending Declined Acknowledged Partially Resolved Resolved

Critical 0 0 0 0 0 0

Major 1 0 0 0 0 1

Medium 1 0 0 1 0 0

Minor 13 0 0 8 1 4

Informational 3 0 0 0 0 3

Discussion 0 0 0 0 0 0

Airnode RRP Security Assessment

https://github.com/api3dao/airnode/tree/master/packages/protocol/contracts

Audit Scope

ID File SHA256 Checksum

IMA admin/interfaces/IMetaAdminnable.sol c10cb75ad39b0504ac46075a9802553b30e4a467d4c72210d6813

2b3c0d2eb31

IRA admin/interfaces/IRankedAdminnable.sol dc73d8a9aa6fcd94b7711c651111315ffb7750789b9b1fc902e7ce4

1a9e4add6

IWO admin/interfaces/IWhitelister.sol cb324e4d9ad3ad8d139f94f290a8f8335e1008ab6b3e015d7dc317

1c5903393f

MAO admin/MetaAdminnable.sol 76c14b74b594b742742082622f1c4c9713a1ed267816062ab2b1f9

fd1840afd3

RAO admin/RankedAdminnable.sol bbd4145ff1abf960d059094d884bf2fc4335d729ca87d03540daccd

3f552cca1

WHI admin/Whitelister.sol 7b32f6a900033bd9526df843c21ce5cfb643dabc661aa685b203e0

17260fe21d

IAR
rrp/authorizers/interfaces/IApi3RequesterRrpAut

horizer.sol
a17e5874b80f9d9a23d763e9c8297616e2afee6a975930bed519b5

019190a331

IRR
rrp/authorizers/interfaces/IRequesterRrpAuthoriz

er.sol
7d471cc283391a238cb3999915af07c609996c0115bec472a23feb

3adbe4e19e

IRP rrp/authorizers/interfaces/IRrpAuthorizer.sol b43ae90e38e372f9a14baea11b19394dad7c76bc81625c2349c2c6

7f7f3e2aba

ISR
rrp/authorizers/interfaces/ISelfRequesterRrpAut

horizer.sol
98f33a9e8ed1d49708fa79fb3387e3796be0a1476d943bbdbcd4d2

1d9e530100

MRA
rrp/authorizers/mock/MockRrpAuthorizerAlways

False.sol
afb65195eeddfb6dbff91467e2a6913e53be9a0309a870ce97b2df6

747bedf02

MRT
rrp/authorizers/mock/MockRrpAuthorizerAlways

True.sol
727344b9ed2e6376b5b1dc11567ef3dc166f02b3a6b85d4f80e81b

29ed8a26bd

ARR rrp/authorizers/Api3RequesterRrpAuthorizer.sol 7e032e5f0543460753e03629f86339a3c5497d859074d5cd7b58c7

29d81c6f5b

RRA rrp/authorizers/RequesterRrpAuthorizer.sol 6c7d05dd6e8bb411625e4f28c12dbaa1b1274b40be40f55b7677a6

1e8d4c48f8

SRR rrp/authorizers/SelfRequesterRrpAuthorizer.sol 5f088c0eb2e330561ee24901331abeb4357a097dc2e8473d18bcd8

b23aa5d8e2

Airnode RRP Security Assessment

ID File SHA256 Checksum

IAI rrp/interfaces/IAirnodeRrp.sol 5335d2ca548ff341162f0cda6e8b973a4457ae2369a0b55d0a2d7ec

549b23d5e

IAU rrp/interfaces/IAuthorizationUtils.sol fa3cb1c4c080e7a3ded6f4c3f8a089a1f08273ad910853f3c3328e20

831f5e00

ITU rrp/interfaces/ITemplateUtils.sol 0b72be621dedc4af7f5bf364b38c97b0c2d6ad8612838f211b4b20a

fb43505ac

IWU rrp/interfaces/IWithdrawalUtils.sol 0e454a39b4137fa32290afff4758ff9c552e559c11ace3de802940ab

9a617eba

IRB rrp/requesters/interfaces/IRrpBeaconServer.sol a782e22c2c0dc7c21732ab48ccf7732ddb9a9b8409e0b2ec55de05

783026021b

MRR rrp/requesters/mock/MockRrpRequester.sol 2b2ce9eef1939cee736c2bd0321e344104ff3f6e9e22fcef956e21dfa

45e974b

RBS rrp/requesters/RrpBeaconServer.sol d826f61748b63e3f3a6b478184e3b9915572aca59e42c455601b53

b8b97c4fcb

RRO rrp/requesters/RrpRequester.sol 97710beb922a16c0997703d82448d5e631a232b4c42d3a7ef9a2ee

235d157c92

ARO rrp/AirnodeRrp.sol 1510733f70e2963d97bc389c607cdee716613fec2e3de72e5ffebb1

3e4439472

AUO rrp/AuthorizationUtils.sol d6f029cb65c0f6737441b17339c110b8ed27e223f5f6181b47fa42d

a3d0aa1f4

TUO rrp/TemplateUtils.sol 1b054b6dca4a8faaba5f59d2520b26f20dca54bb91bf1caa18b2052

e2cb5c3e2

WUO rrp/WithdrawalUtils.sol 6ed08fdea4eb30d6fea51221f871b011db87ed0dfe3aac44e800f66

d15a817d5

Airnode RRP Security Assessment

Findings

ID Title Category Severity Status

GLOBAL-01 Third Party Dependencies Volatile Code Minor Acknowledged

ARO-01 "airnode" should be checked Logical Issue Minor Resolved

ARO-02 "requestId" should include "airnode" Logical Issue Minor Acknowledged

ARO-03 Dangerous low level "call()"
Language

Specific
Major Resolved

ARO-04
Possible DOS attack on

"makeTemplateRequest()" and

"makeFullRequest()"

Logical Issue Minor Acknowledged

ARR-01 Centralization Risk
Centralization

/ Privilege
Medium Acknowledged

ARR-02
"setRank()" and "decreaseSelfRank()" should

be overridden and enforce checking on

parameter "adminnedId"

Logical Issue Minor Resolved

MAO-01
Built-in function should be used for integer

type value range

Language

Specific
Informational Resolved

RBS-01
Built-in function should be used for integer

type value range

Language

Specific
Informational Resolved

RBS-02 Uint32 may be too short for timestamp Logical Issue Minor Acknowledged

RBS-03 Centralization Risk
Centralization

/ Privilege
Minor Acknowledged

Airnode RRP Security Assessment

18
Total Issues

Critical 0 (0.00%)

Major 1 (5.56%)

Medium 1 (5.56%)

Minor 13 (72.22%)

Informational 3 (16.67%)

Discussion 0 (0.00%)

https://acc.audit.certikpowered.info/project/71fd97c0-f0af-11eb-816b-79c60e95e724/report?fid=1629327197379
https://acc.audit.certikpowered.info/project/71fd97c0-f0af-11eb-816b-79c60e95e724/report?fid=1629262262307
https://acc.audit.certikpowered.info/project/71fd97c0-f0af-11eb-816b-79c60e95e724/report?fid=1629263250083
https://acc.audit.certikpowered.info/project/71fd97c0-f0af-11eb-816b-79c60e95e724/report?fid=1629276043596
https://acc.audit.certikpowered.info/project/71fd97c0-f0af-11eb-816b-79c60e95e724/report?fid=1629278089679
https://acc.audit.certikpowered.info/project/71fd97c0-f0af-11eb-816b-79c60e95e724/report?fid=1629173394201
https://acc.audit.certikpowered.info/project/71fd97c0-f0af-11eb-816b-79c60e95e724/report?fid=1629174291200
https://acc.audit.certikpowered.info/project/71fd97c0-f0af-11eb-816b-79c60e95e724/report?fid=1629167301313
https://acc.audit.certikpowered.info/project/71fd97c0-f0af-11eb-816b-79c60e95e724/report?fid=1629167443687
https://acc.audit.certikpowered.info/project/71fd97c0-f0af-11eb-816b-79c60e95e724/report?fid=1629167919158
https://acc.audit.certikpowered.info/project/71fd97c0-f0af-11eb-816b-79c60e95e724/report?fid=1629168068828

ID Title Category Severity Status

RBS-04 "templateId" should be checked Logical Issue Minor Resolved

RBS-05 Beacon should be checked Logical Issue Minor Acknowledged

RBS-06 Wrong sponsorship checking Logical Issue Minor Resolved

SRR-01
Built-in function should be used for integer

type value range

Language

Specific
Informational Resolved

TUO-01 Function parameters should be checked Logical Issue Minor Partially Resolved

WUO-01 Dangerous low level "call()"
Language

Specific
Minor Acknowledged

WUO-02
Possible DOS attack on

"requestWithdrawal()"
Logical Issue Minor Acknowledged

Airnode RRP Security Assessment

https://acc.audit.certikpowered.info/project/71fd97c0-f0af-11eb-816b-79c60e95e724/report?fid=1629181123023
https://acc.audit.certikpowered.info/project/71fd97c0-f0af-11eb-816b-79c60e95e724/report?fid=1629182133903
https://acc.audit.certikpowered.info/project/71fd97c0-f0af-11eb-816b-79c60e95e724/report?fid=1629271712996
https://acc.audit.certikpowered.info/project/71fd97c0-f0af-11eb-816b-79c60e95e724/report?fid=1629171928470
https://acc.audit.certikpowered.info/project/71fd97c0-f0af-11eb-816b-79c60e95e724/report?fid=1629261839713
https://acc.audit.certikpowered.info/project/71fd97c0-f0af-11eb-816b-79c60e95e724/report?fid=1629274148427
https://acc.audit.certikpowered.info/project/71fd97c0-f0af-11eb-816b-79c60e95e724/report?fid=1629276953907

GLOBAL-01 | Third Party Dependencies

Category Severity Location Status

Volatile Code Minor Global Acknowledged

Description

The contracts in scope is part of a complex system. It needs to interact with on-chain components such as

requester , sponsor , sponsorWallet , and off-chain component airnode . In the real world, harmless data

in part A might trigger an exploit on part B. The scope of the audit treats the connected entities as black

boxes and assumes their functional correctness. For example, we assume the airnode correctly performs

the authorization check and verifies received data before processing them, so that request data is not

verified in the smart contract.

Recommendation

We understand that the business logic of the system requires the contract interaction with components out

of the audit scope. We encourage the team to develop a plan to ensure the rest of the systems are

securely build and adequately tested.

Alleviation

[API3 core tech team]: We acknowledge that the security of the protocol depends on

1. The accompanying oracle node software to be implemented correctly

2. The operator to use the node in the intended way

To mitigate potential vulnerabilities that can be caused by (1), we develop the node software in an open

source way, following the best software development practices. In addition, we are planning to have its

implementation audited.

(2) is a common issue for all oracle implementations, that is, one cannot trustlessly verify the integrity of an

oracle. We mitigate this issue at the operational-level (i.e., this is outside the scope of this audit): We utilize

first-party oracles (i.e., oracles operated by API providers), based on the fact that the requester would have

to trust the API provider to operate the API honestly, and thus also having the API provider operate the

oracle is the optimally trust-minimized configuration. Where applicable, the requester is recommended to

use multiple of these first-party oracles and a consensus mechanism to improve the trustlessness further.

Airnode RRP Security Assessment

https://acc.audit.certikpowered.info/project/71fd97c0-f0af-11eb-816b-79c60e95e724/report?fid=1629327197379

ARO-01 | "airnode" should be checked

Category Severity Location Status

Logical Issue Minor packages/protocol/contracts/rrp/AirnodeRrp.sol (f09cb54): 136 Resolved

Description

If "airnode" is zero address, it means "templateId" does not exist.

Recommendation

We advise the client to add check "airnode == address(0)", if it is true the code should revert. This can help

reduce the amount of unqualified request.

Alleviation

[API3 core tech team]: We will implement this improvement, as attempting to use non-existent templates

will probably be a common mistake and erroring earlier is preferable.

Addressed here:

https://github.com/api3dao/airnode/compare/3dfd88a627e058fb42883258ad755c1828d500d8..8467c952

2e0c86dc73d84a94a170616c766f2c8c#diff-

5f696e2f84f9cff7b62eecced80fe4a2a64c32098b68780f670ce2520374c27fR135

We also prevent templates with zero Airnode address being created here:

https://github.com/api3dao/airnode/compare/3dfd88a627e058fb42883258ad755c1828d500d8..8467c952

2e0c86dc73d84a94a170616c766f2c8c#diff-

1dddbfee34cd9053a76f0782d261bef93f6724d4a51260517405e316b9259da8R36

Airnode RRP Security Assessment

https://acc.audit.certikpowered.info/project/71fd97c0-f0af-11eb-816b-79c60e95e724/report?fid=1629262262307
https://github.com/api3dao/airnode/compare/3dfd88a627e058fb42883258ad755c1828d500d8..8467c9522e0c86dc73d84a94a170616c766f2c8c#diff-5f696e2f84f9cff7b62eecced80fe4a2a64c32098b68780f670ce2520374c27fR135
https://github.com/api3dao/airnode/compare/3dfd88a627e058fb42883258ad755c1828d500d8..8467c9522e0c86dc73d84a94a170616c766f2c8c#diff-1dddbfee34cd9053a76f0782d261bef93f6724d4a51260517405e316b9259da8R36

ARO-02 | "requestId" should include "airnode"

Category Severity Location Status

Logical Issue Minor packages/protocol/contracts/rrp/AirnodeRrp.sol (f09cb54): 191~195 Acknowledged

Description

When calculating "requestId", just like "templateId", "airnode" should be used to identify the airnode where

the request should be sent.

Recommendation

We advise the client to use "airnode" when calculating "requestId".

Alleviation

[API3 core tech team]:

airnode was left out of the requestId calculation deliberately. This is because it is already used to

calculate the respective requestIdToFulfillmentParameters , and its integrity is checked by the

onlyCorrectFulfillmentParameters() modifier. (If airnode in the logs was tampered with, the respective

fulfill() call would revert.) Therefore, we will not address this issue.

This issue brought to our attention that sponsor should be added to requestId calculation and validated

at the node. Otherwise, the node has to trust the blockchain provider for the integrity of its value, which is

slightly problematic because the sponsor value is in turn used to validate sponsorWallet :

https://github.com/api3dao/airnode/compare/3dfd88a627e058fb42883258ad755c1828d500d8..8467c952

2e0c86dc73d84a94a170616c766f2c8c#diff-

5f696e2f84f9cff7b62eecced80fe4a2a64c32098b68780f670ce2520374c27fR150

https://github.com/api3dao/airnode/compare/3dfd88a627e058fb42883258ad755c1828d500d8..8467c952

2e0c86dc73d84a94a170616c766f2c8c#diff-

5f696e2f84f9cff7b62eecced80fe4a2a64c32098b68780f670ce2520374c27fR217

Airnode RRP Security Assessment

https://acc.audit.certikpowered.info/project/71fd97c0-f0af-11eb-816b-79c60e95e724/report?fid=1629263250083
https://github.com/api3dao/airnode/compare/3dfd88a627e058fb42883258ad755c1828d500d8..8467c9522e0c86dc73d84a94a170616c766f2c8c#diff-5f696e2f84f9cff7b62eecced80fe4a2a64c32098b68780f670ce2520374c27fR150
https://github.com/api3dao/airnode/compare/3dfd88a627e058fb42883258ad755c1828d500d8..8467c9522e0c86dc73d84a94a170616c766f2c8c#diff-5f696e2f84f9cff7b62eecced80fe4a2a64c32098b68780f670ce2520374c27fR217

ARO-03 | Dangerous low level "call()"

Category Severity Location Status

Language Specific Major packages/protocol/contracts/rrp/AirnodeRrp.sol (f09cb54): 258~266 Resolved

Description

Low-level "call()" will always succeed if the destination address does not exist or is an EOA. The "call()" in

the code is used to call a user-specified address, which is very dangerous because it can call into

privileged system special contracts like "AirnodeRrp" and authorizers to perform privileged operations.

Recommendation

We advise the client to use openzeppelin "Address" library for low-level calls and use a blacklist to prevent

low-level calls from calling into privileged system special contracts like "AirnodeRrp" and authorizers, etc.

Alleviation

[API3 core tech team]: We disallowed fulfillAddress from being the contract address

https://github.com/api3dao/airnode/compare/3dfd88a627e058fb42883258ad755c1828d500d8..8467c952

2e0c86dc73d84a94a170616c766f2c8c#diff-

5f696e2f84f9cff7b62eecced80fe4a2a64c32098b68780f670ce2520374c27fR136

https://github.com/api3dao/airnode/compare/3dfd88a627e058fb42883258ad755c1828d500d8..8467c952

2e0c86dc73d84a94a170616c766f2c8c#diff-

5f696e2f84f9cff7b62eecced80fe4a2a64c32098b68780f670ce2520374c27fR203

We documented that the request fulfillment will succeed if fulfillAddress does not point to a contract

https://github.com/api3dao/airnode/compare/3dfd88a627e058fb42883258ad755c1828d500d8..8467c952

2e0c86dc73d84a94a170616c766f2c8c#diff-

5f696e2f84f9cff7b62eecced80fe4a2a64c32098b68780f670ce2520374c27fR251-R253

Airnode RRP Security Assessment

https://acc.audit.certikpowered.info/project/71fd97c0-f0af-11eb-816b-79c60e95e724/report?fid=1629276043596
https://github.com/api3dao/airnode/compare/3dfd88a627e058fb42883258ad755c1828d500d8..8467c9522e0c86dc73d84a94a170616c766f2c8c#diff-5f696e2f84f9cff7b62eecced80fe4a2a64c32098b68780f670ce2520374c27fR136
https://github.com/api3dao/airnode/compare/3dfd88a627e058fb42883258ad755c1828d500d8..8467c9522e0c86dc73d84a94a170616c766f2c8c#diff-5f696e2f84f9cff7b62eecced80fe4a2a64c32098b68780f670ce2520374c27fR203
https://github.com/api3dao/airnode/compare/3dfd88a627e058fb42883258ad755c1828d500d8..8467c9522e0c86dc73d84a94a170616c766f2c8c#diff-5f696e2f84f9cff7b62eecced80fe4a2a64c32098b68780f670ce2520374c27fR251-R253

ARO-04 | Possible DOS attack on "makeTemplateRequest()" and

"makeFullRequest()"

Category Severity Location Status

Logical Issue Minor packages/protocol/contracts/rrp/AirnodeRrp.sol (f09cb54): 112, 173 Acknowledged

Description

Anyone can create fake requests. On blockchain where the gas price is cheap, DOS attacks can generate

excessive fake requests which airnode has to process.

Recommendation

We advise the client to add airnode-sponsor relationship functionality to on-chain such that smart contract

can verify whether a sponsor is registered with an airnode.

Alleviation

[API3 core tech team]: The node makes lightweight off-chain computation and static calls to validate

requests. The node is expected to be implemented and configured in a way to be able to do this even

under an on-chain DOS attempt.

We advise the client to add airnode-sponsor relationship functionality to on-chain

We interpreted the above as having the authorizer checks as a step in the call that makes the request. We

do not see this as a solution mainly because a whitelisted requester is not trusted not to attempt a DOS

attack, but only to use the oracle services (e.g., because they made a small payment). Only being able to

whitelist fully-trusted requesters would be impractical.

Airnode RRP Security Assessment

https://acc.audit.certikpowered.info/project/71fd97c0-f0af-11eb-816b-79c60e95e724/report?fid=1629278089679

ARR-01 | Centralization Risk

Category Severity Location Status

Centralization /

Privilege
Medium

packages/protocol/contracts/rrp/authorizers/Api3RequesterRrp

Authorizer.sol (f09cb54): 25
Acknowledged

Description

In the contract Api3RequesterRrpAuthorizer , the role metaAdmin has the authority over the following

function:

setRank()

extendWhitelistExpiration()

setWhitelistExpiration()

setWhitelistStatusPastExpiration()

Any compromise to the metaAdmin account may allow the hacker to take advantage of this and change

the whitelist to allow arbitrary accounts to call oracle.

Recommendation

We advise the client to carefully manage the metaAdmin account's private key to avoid any potential risks

of being hacked. In general, we strongly recommend centralized privileges or roles in the protocol to be

improved via a decentralized mechanism or smart-contract-based accounts with enhanced security

practices, e.g., Multisignature wallets.

Indicatively, here is some feasible suggestions that would also mitigate the potential risk at the different

level in term of short-term and long-term:

Time-lock with reasonable latency, e.g., 48 hours, for awareness on privileged operations;

Assignment of privileged roles to multi-signature wallets to prevent a single point of failure due to the

private key;

Introduction of a DAO/governance/voting module to increase transparency and user involvement.

Alleviation

[API3 core tech team]: Renamed the Api3RequesterRrpAuthorizer contract as

DaoRequesterRrpAuthorizer to emphasize that the metaAdmin of this contract must be a DAO.

Airnode RRP Security Assessment

https://acc.audit.certikpowered.info/project/71fd97c0-f0af-11eb-816b-79c60e95e724/report?fid=1629173394201

ARR-02 | "setRank()" and "decreaseSelfRank()" should be overridden and

enforce checking on parameter "adminnedId"

Category Severity Location Status

Logical

Issue
Minor

packages/protocol/contracts/rrp/authorizers/Api3RequesterRrpAuthorizer.sol (f0

9cb54): 35~38
Resolved

Description

To make the code more robust, it should not rely on caller behavior to function properly. So "setRank()" and

"decreaseSelfRank()" should also be overridden and checking on parameter "adminnedId" should be

enforced in "getRank()", "setRank()", "decreaseSelfRank()" instead of ignoring it.

Recommendation

We advise the client to override functions "setRank()", "decreaseSelfRank()" and add check in "getRank()",

"setRank()", "decreaseSelfRank()" to make sure "adminnedId == bytes32(0)".

Alleviation

[API3 core tech team]: This issue arose from trying to reuse a data structure in two contracts with very

different mechanics. To address this, we refactored the underlying “adminnable” contracts. As a result, the

interfaces of DaoRequesterRrpAuthorizer and AirnodeRequesterRrpAuthorizer are no longer weird.

Airnode RRP Security Assessment

https://acc.audit.certikpowered.info/project/71fd97c0-f0af-11eb-816b-79c60e95e724/report?fid=1629174291200

MAO-01 | Built-in function should be used for integer type value range

Category Severity Location Status

Language

Specific
Informational

packages/protocol/contracts/admin/MetaAdminnable.sol (f09cb5

4): 13
Resolved

Description

In solidity, system built-in "type(integerType).max" and "type(integerType).min" are used to get integer type

value range. It is easy to get wrong when you calculate them by yourself.

Recommendation

We advise the client to use "type(uint256).max" as uint256 max value.

Alleviation

[API3 core tech team]: This contract no longer assigns the maximum unsigned integer value to

metaAdmin , but has it pass onlyWithRank checks automatically

https://github.com/api3dao/airnode/compare/3dfd88a627e058fb42883258ad755c1828d500d8..8467c952

2e0c86dc73d84a94a170616c766f2c8c#diff-

6435b6da1770cf73f43fe61910453dcdcdfa453dddda0989bdcfa2fcc9bf047cR20 As such, this issue is no

longer relevant.

Airnode RRP Security Assessment

https://acc.audit.certikpowered.info/project/71fd97c0-f0af-11eb-816b-79c60e95e724/report?fid=1629167301313
https://github.com/api3dao/airnode/compare/3dfd88a627e058fb42883258ad755c1828d500d8..8467c9522e0c86dc73d84a94a170616c766f2c8c#diff-6435b6da1770cf73f43fe61910453dcdcdfa453dddda0989bdcfa2fcc9bf047cR20

RBS-01 | Built-in function should be used for integer type value range

Category Severity Location Status

Language

Specific
Informational

packages/protocol/contracts/rrp/requesters/RrpBeaconServer.sol (f

09cb54): 31~33
Resolved

Description

In solidity, system built-in "type(integerType).max" and "type(integerType).min" are used to get integer type

value range. It is easy to get wrong when you calculate them by yourself.

Recommendation

We advise the client to use "type(int224).max", "type(int224).min", "type(uint32).max"

Alleviation

[API3 core tech team]: Addressed here:

https://github.com/api3dao/airnode/compare/3dfd88a627e058fb42883258ad755c1828d500d8..8467c952

2e0c86dc73d84a94a170616c766f2c8c#diff-

59f5b84df1692cd60a4f14f049b10e9b2c99049be76f345e415b464557b53e36R133-R134

Airnode RRP Security Assessment

https://acc.audit.certikpowered.info/project/71fd97c0-f0af-11eb-816b-79c60e95e724/report?fid=1629167443687
https://github.com/api3dao/airnode/compare/3dfd88a627e058fb42883258ad755c1828d500d8..8467c9522e0c86dc73d84a94a170616c766f2c8c#diff-59f5b84df1692cd60a4f14f049b10e9b2c99049be76f345e415b464557b53e36R133-R134

RBS-02 | Uint32 may be too short for timestamp

Category Severity Location Status

Logical

Issue
Minor

packages/protocol/contracts/rrp/requesters/RrpBeaconServer.sol (f09cb5

4): 27
Acknowledged

Description

According to Linux doc(https://man7.org/linux/man-pages/man2/time.2.html), "Applications intended to

run after 2038 should use ABIs with time_t wider than 32 bits."

Recommendation

We advise the client to use at least "uint64" for timestamp.

Alleviation

[API3 core tech team]: We do prefer 64 bit-types for timestamps, but there is a tradeoff to be made here,

as we also want a high overhead for value so that it does not overflow (or rather we do not even need to

think about if it will overflow). The choice was deliberate here, so we will keep it.

Airnode RRP Security Assessment

https://acc.audit.certikpowered.info/project/71fd97c0-f0af-11eb-816b-79c60e95e724/report?fid=1629167919158
https://man7.org/linux/man-pages/man2/time.2.html

RBS-03 | Centralization Risk

Category Severity Location Status

Centralization /

Privilege
Minor

packages/protocol/contracts/rrp/requesters/RrpBeaconServer.s

ol (f09cb54): 42
Acknowledged

Description

In the contract RrpBeaconServer , the role metaAdmin has the authority over the following function:

setRank()

extendWhitelistExpiration()

setWhitelistExpiration()

setWhitelistStatusPastExpiration()

Any compromise to the metaAdmin account may allow the hacker to take advantage of this and change

the whitelist to read beacon data.

Recommendation

We advise the client to carefully manage the metaAdmin account's private key to avoid any potential risks

of being hacked. In general, we strongly recommend centralized privileges or roles in the protocol to be

improved via a decentralized mechanism or smart-contract-based accounts with enhanced security

practices, e.g., Multisignature wallets.

Indicatively, here is some feasible suggestions that would also mitigate the potential risk at the different

level in term of short-term and long-term:

Time-lock with reasonable latency, e.g., 48 hours, for awareness on privileged operations;

Assignment of privileged roles to multi-signature wallets to prevent a single point of failure due to the

private key;

Introduction of a DAO/governance/voting module to increase transparency and user involvement.

Alleviation

[API3 core tech team]: The metaAdmin role is planned to be given to the API3 DAO.

Airnode RRP Security Assessment

https://acc.audit.certikpowered.info/project/71fd97c0-f0af-11eb-816b-79c60e95e724/report?fid=1629168068828

RBS-04 | "templateId" should be checked

Category Severity Location Status

Logical

Issue
Minor

packages/protocol/contracts/rrp/requesters/RrpBeaconServer.sol (f09cb54): 1

01
Resolved

Description

If "templateId == bytes32(0)", it means "requestId" is wrong or does not exist.

Recommendation

We advise the client to add a check "templateId == bytes32(0)", if it is true the code should revert.

Alleviation

[API3 core tech team]: Addressed here:

https://github.com/api3dao/airnode/compare/3dfd88a627e058fb42883258ad755c1828d500d8..8467c952

2e0c86dc73d84a94a170616c766f2c8c#diff-

59f5b84df1692cd60a4f14f049b10e9b2c99049be76f345e415b464557b53e36R128

Airnode RRP Security Assessment

https://acc.audit.certikpowered.info/project/71fd97c0-f0af-11eb-816b-79c60e95e724/report?fid=1629181123023
https://github.com/api3dao/airnode/compare/3dfd88a627e058fb42883258ad755c1828d500d8..8467c9522e0c86dc73d84a94a170616c766f2c8c#diff-59f5b84df1692cd60a4f14f049b10e9b2c99049be76f345e415b464557b53e36R128

RBS-05 | Beacon should be checked

Category Severity Location Status

Logical

Issue
Minor

packages/protocol/contracts/rrp/requesters/RrpBeaconServer.sol (f09cb5

4): 140
Acknowledged

Description

If "beacon.timestamp" is zero, it means either "templateId" is wrong or the beacon has never been

updated.

Recommendation

We advise the client to add a check "beacon.timestamp == 0", if it is true the code should revert.

Alleviation

[API3 core tech team]: The beacon server returns the timestamp because it expects the client to use it. If

we revert automatically, we would be disabling the client from handling it as an error case, e.g., “If the

timestamp of templateId1 is 0, use templateId2 instead.” Therefore, we will not be implementing the

recommendation (but we will document this as being the case).

Acknowledged, behavior documented here:

https://github.com/api3dao/airnode/compare/3dfd88a627e058fb42883258ad755c1828d500d8..8467c952

2e0c86dc73d84a94a170616c766f2c8c#diff-

59f5b84df1692cd60a4f14f049b10e9b2c99049be76f345e415b464557b53e36R237-R240

Airnode RRP Security Assessment

https://acc.audit.certikpowered.info/project/71fd97c0-f0af-11eb-816b-79c60e95e724/report?fid=1629182133903
https://github.com/api3dao/airnode/compare/3dfd88a627e058fb42883258ad755c1828d500d8..8467c9522e0c86dc73d84a94a170616c766f2c8c#diff-59f5b84df1692cd60a4f14f049b10e9b2c99049be76f345e415b464557b53e36R237-R240

RBS-06 | Wrong sponsorship checking

Category Severity Location Status

Logical

Issue
Minor

packages/protocol/contracts/rrp/requesters/RrpBeaconServer.sol (f09cb54): 65

~71
Resolved

Description

Sponsorship checking is done by AirnodeRrp and should not be done in the requester contract. It will

result in rejecting all valid requests. (https://docs.api3.org/pre-alpha/protocols/request-

response/endorsement.html)

Recommendation

We advise the client to remove the wrong sponsorship checking.

Alleviation

[API3 core tech team]: We re-implemented the beacon update permission logic, and replaced the check

here

https://github.com/api3dao/airnode/compare/3dfd88a627e058fb42883258ad755c1828d500d8..8467c952

2e0c86dc73d84a94a170616c766f2c8c#diff-

59f5b84df1692cd60a4f14f049b10e9b2c99049be76f345e415b464557b53e36R94-R97

Airnode RRP Security Assessment

https://acc.audit.certikpowered.info/project/71fd97c0-f0af-11eb-816b-79c60e95e724/report?fid=1629271712996
https://docs.api3.org/pre-alpha/protocols/request-response/endorsement.html
https://github.com/api3dao/airnode/compare/3dfd88a627e058fb42883258ad755c1828d500d8..8467c9522e0c86dc73d84a94a170616c766f2c8c#diff-59f5b84df1692cd60a4f14f049b10e9b2c99049be76f345e415b464557b53e36R94-R97

SRR-01 | Built-in function should be used for integer type value range

Category Severity Location Status

Language

Specific
Informational

packages/protocol/contracts/rrp/authorizers/SelfRequesterRrpAuthor

izer.sol (f09cb54): 17
Resolved

Description

In solidity, system built-in "type(integerType).max" and "type(integerType).min" are used to get integer type

value range. It is easy to get wrong when you calculate them by yourself.

Recommendation

We advise the client to use "type(uint256).max"

Alleviation

[API3 core tech team]: This contract no longer assigns the maximum unsigned integer value to airnode ,

but has it pass onlyWithRank checks automatically

https://github.com/api3dao/airnode/compare/3dfd88a627e058fb42883258ad755c1828d500d8..8467c952

2e0c86dc73d84a94a170616c766f2c8c#diff-

5f11089e0b8d2ff66ad8618ca1794247725f42b4eb0308b020bb3aa6e94993a2R22

As such, this issue is no longer relevant.

Airnode RRP Security Assessment

https://acc.audit.certikpowered.info/project/71fd97c0-f0af-11eb-816b-79c60e95e724/report?fid=1629171928470
https://github.com/api3dao/airnode/compare/3dfd88a627e058fb42883258ad755c1828d500d8..8467c9522e0c86dc73d84a94a170616c766f2c8c#diff-5f11089e0b8d2ff66ad8618ca1794247725f42b4eb0308b020bb3aa6e94993a2R22

TUO-01 | Function parameters should be checked

Category Severity Location Status

Logical Issue Minor packages/protocol/contracts/rrp/TemplateUtils.sol (f09cb54): 32~33 Partially Resolved

Description

We assume that "airnode" must not be zero address and "endpointId" must not be zero bytes.

Recommendation

We advise the client to add checks to make sure "airnode" is not zero address and "endpointId" is not all

zero bytes.

Alleviation

[API3 core tech team]: Since the solution to ARO-01 implies that zero airnode values are invalid, we will

have to check for airnode . However, we would rather not check if endpointId is bytes32(0) , as we

intend to use that value to signal that we want the Airnode to call fulfill() directly, without making an

API call. We will document that endpointId not being checked is on purpose.

We disallowed airnode from being zero in TemplateUtils

https://github.com/api3dao/airnode/compare/3dfd88a627e058fb42883258ad755c1828d500d8..8467c952

2e0c86dc73d84a94a170616c766f2c8c#diff-

1dddbfee34cd9053a76f0782d261bef93f6724d4a51260517405e316b9259da8R36 and all other contracts

such as

https://github.com/api3dao/airnode/compare/3dfd88a627e058fb42883258ad755c1828d500d8..8467c952

2e0c86dc73d84a94a170616c766f2c8c#diff-

8775d9a79085ac4ccb0d13e2107603c7ad7b0f79ee87915b6ff4916f753014b6R68

We documented that endpointId can be zero

https://github.com/api3dao/airnode/compare/3dfd88a627e058fb42883258ad755c1828d500d8..8467c952

2e0c86dc73d84a94a170616c766f2c8c#diff-

5f696e2f84f9cff7b62eecced80fe4a2a64c32098b68780f670ce2520374c27fR184

Airnode RRP Security Assessment

https://acc.audit.certikpowered.info/project/71fd97c0-f0af-11eb-816b-79c60e95e724/report?fid=1629261839713
https://github.com/api3dao/airnode/compare/3dfd88a627e058fb42883258ad755c1828d500d8..8467c9522e0c86dc73d84a94a170616c766f2c8c#diff-1dddbfee34cd9053a76f0782d261bef93f6724d4a51260517405e316b9259da8R36
https://github.com/api3dao/airnode/compare/3dfd88a627e058fb42883258ad755c1828d500d8..8467c9522e0c86dc73d84a94a170616c766f2c8c#diff-8775d9a79085ac4ccb0d13e2107603c7ad7b0f79ee87915b6ff4916f753014b6R68
https://github.com/api3dao/airnode/compare/3dfd88a627e058fb42883258ad755c1828d500d8..8467c9522e0c86dc73d84a94a170616c766f2c8c#diff-5f696e2f84f9cff7b62eecced80fe4a2a64c32098b68780f670ce2520374c27fR184

WUO-01 | Dangerous low level "call()"

Category Severity Location Status

Language

Specific
Minor

packages/protocol/contracts/rrp/WithdrawalUtils.sol (f09cb54): 78~

79
Acknowledged

Description

Low level "call()" is used to call a user-specified address, which is very dangerous because it can call into

privileged system special contracts like "AirnodeRrp" and authorizers to perform privileged operations.

Recommendation

We advise the client to use openzeppelin "Address" library for low-level calls and use a blacklist to prevent

low-level calls from calling into privileged system special contracts like "AirnodeRrp" and authorizers, etc.

Alleviation

[API3 core tech team]: See ARO-03. We already use the same implementation from OpenZeppelin’s

Address.sol with the exception of the nice revert string, and we do not want it as a dependency unless

absolutely required.

Airnode RRP Security Assessment

https://acc.audit.certikpowered.info/project/71fd97c0-f0af-11eb-816b-79c60e95e724/report?fid=1629274148427

WUO-02 | Possible DOS attack on "requestWithdrawal()"

Category Severity Location Status

Logical Issue Minor packages/protocol/contracts/rrp/WithdrawalUtils.sol (f09cb54): 25 Acknowledged

Description

Anyone can create fake withdrawal requests. On blockchain where the gas fee is cheap, DOS attacks can

generate excessive fake withdrawal requests which airnode has to process.

Recommendation

We advise the client to add airnode-sponsor relationship functionality to on-chain such that smart contract

can verify whether a sponsor is registered with an airnode.

Alleviation

[API3 core tech team]: See ARO-04. In this case, only off-chain computation is required to detect an

invalid withdrawal request, so it is less of a risk.

Airnode RRP Security Assessment

https://acc.audit.certikpowered.info/project/71fd97c0-f0af-11eb-816b-79c60e95e724/report?fid=1629276953907

Appendix

Finding Categories

Centralization / Privilege

Centralization / Privilege findings refer to either feature logic or implementation of components that act

against the nature of decentralization, such as explicit ownership or specialized access roles in

combination with a mechanism to relocate funds.

Logical Issue

Logical Issue findings detail a fault in the logic of the linked code, such as an incorrect notion on how

block.timestamp works.

Volatile Code

Volatile Code findings refer to segments of code that behave unexpectedly on certain edge cases that may

result in a vulnerability.

Language Specific

Language Specific findings are issues that would only arise within Solidity, i.e. incorrect usage of private or

delete.

Checksum Calculation Method

The "Checksum" field in the "Audit Scope" section is calculated as the SHA-256 (Secure Hash Algorithm 2

with digest size of 256 bits) digest of the content of each file hosted in the listed source repository under

the specified commit.

The result is hexadecimal encoded and is the same as the output of the Linux "sha256sum" command

against the target file.

Airnode RRP Security Assessment

Disclaimer
This report is subject to the terms and conditions (including without limitation, description of services,

confidentiality, disclaimer and limitation of liability) set forth in the Services Agreement, or the scope of

services, and terms and conditions provided to you (“Customer” or the “Company”) in connection with the

Agreement. This report provided in connection with the Services set forth in the Agreement shall be used

by the Company only to the extent permitted under the terms and conditions set forth in the Agreement.

This report may not be transmitted, disclosed, referred to or relied upon by any person for any purposes,

nor may copies be delivered to any other person other than the Company, without CertiK’s prior written

consent in each instance.

This report is not, nor should be considered, an “endorsement” or “disapproval” of any particular project or

team. This report is not, nor should be considered, an indication of the economics or value of any

“product” or “asset” created by any team or project that contracts CertiK to perform a security

assessment. This report does not provide any warranty or guarantee regarding the absolute bug-free

nature of the technology analyzed, nor do they provide any indication of the technologies proprietors,

business, business model or legal compliance.

This report should not be used in any way to make decisions around investment or involvement with any

particular project. This report in no way provides investment advice, nor should be leveraged as investment

advice of any sort. This report represents an extensive assessing process intending to help our customers

increase the quality of their code while reducing the high level of risk presented by cryptographic tokens

and blockchain technology.

Blockchain technology and cryptographic assets present a high level of ongoing risk. CertiK’s position is

that each company and individual are responsible for their own due diligence and continuous security.

CertiK’s goal is to help reduce the attack vectors and the high level of variance associated with utilizing

new and consistently changing technologies, and in no way claims any guarantee of security or

functionality of the technology we agree to analyze.

The assessment services provided by CertiK is subject to dependencies and under continuing

development. You agree that your access and/or use, including but not limited to any services, reports,

and materials, will be at your sole risk on an as-is, where-is, and as-available basis. Cryptographic tokens

are emergent technologies and carry with them high levels of technical risk and uncertainty. The

assessment reports could include false positives, false negatives, and other unpredictable results. The

services may access, and depend upon, multiple layers of third-parties.

ALL SERVICES, THE LABELS, THE ASSESSMENT REPORT, WORK PRODUCT, OR OTHER MATERIALS,

OR ANY PRODUCTS OR RESULTS OF THE USE THEREOF ARE PROVIDED “AS IS” AND “AS

Airnode RRP Security Assessment

AVAILABLE” AND WITH ALL FAULTS AND DEFECTS WITHOUT WARRANTY OF ANY KIND. TO THE

MAXIMUM EXTENT PERMITTED UNDER APPLICABLE LAW, CERTIK HEREBY DISCLAIMS ALL

WARRANTIES, WHETHER EXPRESS, IMPLIED, STATUTORY, OR OTHERWISE WITH RESPECT TO THE

SERVICES, ASSESSMENT REPORT, OR OTHER MATERIALS. WITHOUT LIMITING THE FOREGOING,

CERTIK SPECIFICALLY DISCLAIMS ALL IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A

PARTICULAR PURPOSE, TITLE AND NON-INFRINGEMENT, AND ALL WARRANTIES ARISING FROM

COURSE OF DEALING, USAGE, OR TRADE PRACTICE. WITHOUT LIMITING THE FOREGOING, CERTIK

MAKES NO WARRANTY OF ANY KIND THAT THE SERVICES, THE LABELS, THE ASSESSMENT REPORT,

WORK PRODUCT, OR OTHER MATERIALS, OR ANY PRODUCTS OR RESULTS OF THE USE THEREOF,

WILL MEET CUSTOMER’S OR ANY OTHER PERSON’S REQUIREMENTS, ACHIEVE ANY INTENDED

RESULT, BE COMPATIBLE OR WORK WITH ANY SOFTWARE, SYSTEM, OR OTHER SERVICES, OR BE

SECURE, ACCURATE, COMPLETE, FREE OF HARMFUL CODE, OR ERROR-FREE. WITHOUT LIMITATION

TO THE FOREGOING, CERTIK PROVIDES NO WARRANTY OR UNDERTAKING, AND MAKES NO

REPRESENTATION OF ANY KIND THAT THE SERVICE WILL MEET CUSTOMER’S REQUIREMENTS,

ACHIEVE ANY INTENDED RESULTS, BE COMPATIBLE OR WORK WITH ANY OTHER SOFTWARE,

APPLICATIONS, SYSTEMS OR SERVICES, OPERATE WITHOUT INTERRUPTION, MEET ANY

PERFORMANCE OR RELIABILITY STANDARDS OR BE ERROR FREE OR THAT ANY ERRORS OR

DEFECTS CAN OR WILL BE CORRECTED.

WITHOUT LIMITING THE FOREGOING, NEITHER CERTIK NOR ANY OF CERTIK’S AGENTS MAKES ANY

REPRESENTATION OR WARRANTY OF ANY KIND, EXPRESS OR IMPLIED AS TO THE ACCURACY,

RELIABILITY, OR CURRENCY OF ANY INFORMATION OR CONTENT PROVIDED THROUGH THE

SERVICE. CERTIK WILL ASSUME NO LIABILITY OR RESPONSIBILITY FOR (I) ANY ERRORS, MISTAKES,

OR INACCURACIES OF CONTENT AND MATERIALS OR FOR ANY LOSS OR DAMAGE OF ANY KIND

INCURRED AS A RESULT OF THE USE OF ANY CONTENT, OR (II) ANY PERSONAL INJURY OR

PROPERTY DAMAGE, OF ANY NATURE WHATSOEVER, RESULTING FROM CUSTOMER’S ACCESS TO

OR USE OF THE SERVICES, ASSESSMENT REPORT, OR OTHER MATERIALS.

ALL THIRD-PARTY MATERIALS ARE PROVIDED “AS IS” AND ANY REPRESENTATION OR WARRANTY

OF OR CONCERNING ANY THIRD-PARTY MATERIALS IS STRICTLY BETWEEN CUSTOMER AND THE

THIRD-PARTY OWNER OR DISTRIBUTOR OF THE THIRD-PARTY MATERIALS.

THE SERVICES, ASSESSMENT REPORT, AND ANY OTHER MATERIALS HEREUNDER ARE SOLELY

PROVIDED TO CUSTOMER AND MAY NOT BE RELIED ON BY ANY OTHER PERSON OR FOR ANY

PURPOSE NOT SPECIFICALLY IDENTIFIED IN THIS AGREEMENT, NOR MAY COPIES BE DELIVERED TO,

ANY OTHER PERSON WITHOUT CERTIK’S PRIOR WRITTEN CONSENT IN EACH INSTANCE.

NO THIRD PARTY OR ANYONE ACTING ON BEHALF OF ANY THEREOF, SHALL BE A THIRD PARTY OR

OTHER BENEFICIARY OF SUCH SERVICES, ASSESSMENT REPORT, AND ANY ACCOMPANYING

Airnode RRP Security Assessment

MATERIALS AND NO SUCH THIRD PARTY SHALL HAVE ANY RIGHTS OF CONTRIBUTION AGAINST

CERTIK WITH RESPECT TO SUCH SERVICES, ASSESSMENT REPORT, AND ANY ACCOMPANYING

MATERIALS.

THE REPRESENTATIONS AND WARRANTIES OF CERTIK CONTAINED IN THIS AGREEMENT ARE

SOLELY FOR THE BENEFIT OF CUSTOMER. ACCORDINGLY, NO THIRD PARTY OR ANYONE ACTING

ON BEHALF OF ANY THEREOF, SHALL BE A THIRD PARTY OR OTHER BENEFICIARY OF SUCH

REPRESENTATIONS AND WARRANTIES AND NO SUCH THIRD PARTY SHALL HAVE ANY RIGHTS OF

CONTRIBUTION AGAINST CERTIK WITH RESPECT TO SUCH REPRESENTATIONS OR WARRANTIES OR

ANY MATTER SUBJECT TO OR RESULTING IN INDEMNIFICATION UNDER THIS AGREEMENT OR

OTHERWISE.

FOR AVOIDANCE OF DOUBT, THE SERVICES, INCLUDING ANY ASSOCIATED ASSESSMENT REPORTS

OR MATERIALS, SHALL NOT BE CONSIDERED OR RELIED UPON AS ANY FORM OF FINANCIAL, TAX,

LEGAL, REGULATORY, OR OTHER ADVICE.

Airnode RRP Security Assessment

About
Founded in 2017 by leading academics in the field of Computer Science from both Yale and Columbia

University, CertiK is a leading blockchain security company that serves to verify the security and

correctness of smart contracts and blockchain-based protocols. Through the utilization of our world-class

technical expertise, alongside our proprietary, innovative tech, we’re able to support the success of our

clients with best-in-class security, all whilst realizing our overarching vision; provable trust for all

throughout all facets of blockchain.

Airnode RRP Security Assessment

