CERTIK

Harvest Finance

Security Assessment

November 15th, 2020

For : Harvest Finance

By : Alex Papageorgiou @ CertiK <u>alex.papageorgiou@certik.org</u>

Angelos Apostolidis @ CertiK angelos.apostolidis@certik.org

CertiK reports are not, nor should be considered, an "endorsement" or "disapproval" of any particular project or team. These reports are not, nor should be considered, an indication of the economics or value of any "product" or "asset" created by any team or project that contracts CertiK to perform a security review.

CertiK Reports do not provide any warranty or guarantee regarding the absolute bug-free nature of the technology analyzed, nor do they provide any indication of the technologies proprietors, business, business model or legal compliance.

CertiK Reports should not be used in any way to make decisions around investment or involvement with any particular project. These reports in no way provide investment advice, nor should be leveraged as investment advice of any sort.

CertiK Reports represent an extensive auditing process intending to help our customers increase the quality of their code while reducing the high level of risk presented by cryptographic tokens and blockchain technology.

Blockchain technology and cryptographic assets present a high level of ongoing risk. CertiK's position is that each company and individual are responsible for their own due diligence and continuous security. CertiK's goal is to help reduce the attack vectors and the high level of variance associated with utilizing new and consistently changing technologies, and in no way claims any guarantee of security or functionality of the technology we agree to analyze.

What is a CertiK report?

- A document describing in detail an in depth analysis of a particular piece(s) of source code provided to CertiK by a Client.
- An organized collection of testing results, analysis and inferences made about the structure, implementation and overall best practices of a particular piece of source code.
- Representation that a Client of CertiK has indeed completed a round of auditing with the intention to increase the quality of the company/product's IT infrastructure and or source code.

Project Summary

Project Name	Harvest Finance
Description	A yield farming protocol with multiple strategies.
Platform	Ethereum; Solidity, Yul
Codebase	<u>GitHub Repository</u>
Commit(s)	ffd95f02d19ddf878360059e4fa8a4cebb792c2a

Audit Summary

Delivery Date	Oct. 2nd, 2020
Method of Audit	Static Analysis, Manual Review
Consultants Engaged	2
Timeline	Sep. 16, 2020 - Oct. 2 2020

Vulnerability Summary

Total Issues	74
Total Critical	0
Total Major	0
Total Minor	1
Total Informational	73

We were approached by Harvest to conduct an audit of their yield farming protocol, Harvest Finance. Our audit was able to pinpoint numerous sections where the codebase could be improved optimization-wise, however only a single minor vulnerability was pinpointed that was clarified by the developers to be desired functionality and should not result in an exploitable attack vector.

ID	Contract	Location
STR	Storage.sol	contracts/Storage.sol
CTE	Controllable.sol	contracts/Controllable.sol
GVE	Governable.sol	contracts/Governable.sol
DMT	DelayMinter.sol	contracts/DelayMinter.sol
DPH	DepositHelper.sol	contracts/DepositHelper.sol
FRF	FeeRewardForwarder.sol	contracts/FeeRewardForwarder.sol
HRW	HardRewards.sol	contracts/HardRewards.sol
NHP	NotifyHelper.sol	contracts/NotifyHelper.sol
RWP	RewardPool.sol	contracts/RewardPool.sol
RWT	RewardToken.sol	contracts/RewardToken.sol
VLT	Vault.sol	contracts/Vault.sol
CTL	Controller.sol	contracts/Controller.sol
CTI	CTokenInterfaces.sol	contracts/compound/CTokenInterfaces.sol
COI	ComptrollerInterface.sol	contracts/compound/ComptrollerInterface.sol
IRM	InterestRateModel.sol	contracts/compound/InterestRateModel.sol
ICT	IController.sol	contracts/hardworkInterface/IController.sol
IRP	IRewardPool.sol	contracts/hardworkInterface/IRewardPool.sol
IST	lStrategy.sol	contracts/hardworkInterface/IStrategy.sol
IVT	IVault.sol	contracts/hardworkInterface/IVault.sol
WTH	WETH9.sol	contracts/weth/WETH9.sol
VDI	VaultDAI.sol	contracts/vaults/VaultDAI.sol
VUC	VaultUSDC.sol	contracts/vaults/VaultUSDC.sol
VUT	VaultUSDT.sol	contracts/vaults/VaultUSDT.sol
VYV	VaultYCRV.sol	contracts/vaults/VaultYCRV.sol
IWT	IWETH.sol	contracts/uniswap/interfaces/IWETH.sol
IUM	IUniswapV2Migrator.sol	contracts/uniswap/interfaces/IUniswapV2Migrator.sol
IUP	IUniswapV2Pair.sol	contracts/uniswap/interfaces/IUniswapV2Pair.sol
IUR	lUniswapV2Router01.sol, lUniswapV2Router02.sol	contracts/uniswap/interfaces/IUniswapV2Router01.sol, contracts/uniswap/interfaces/IUniswapV2Router02.sol
IUE	IUniswapV1Exchange.sol	contracts/uniswap/interfaces/V1/IUniswapV1Exchange.sol
IUF	IUniswapV1Factory.sol	contracts/uniswap/interfaces/V1/IUniswapV1Factory.sol
PNF	ProfitNotifier.sol	contracts/strategies/ProfitNotifier.sol
RPN	RewardTokenProfitNotifier.sol	contracts/strategies/RewardTokenProfitNotifier.sol
SRS	SNXRewardStrategy.sol	contracts/strategies/SNXRewards/SNXRewardStrategy.sol
SRU	SNXRewardUniLPStrategy.sol	contracts/strategies/SNXRewards/SNXRewardUniLPStrategy.sol
SRI	SNXRewardInterface.sol	contracts/strategies/SNXRewards/SNXRewardInterface.sol
CMI	CompoundInteractor.sol	contracts/strategies/compound/CompoundInteractor.sol
ССТ	CompleteCToken.sol	contracts/strategies/compound/CompleteCToken.sol

ID	Contract	Location
WCS	WETHCreamNoFoldStrategy.sol	contracts/strategies/compound/WETHCreamNoFoldStrategy.sol
PCV	PriceConvertor.sol	contracts/strategies/curve/PriceConvertor.sol
SST	CRVStrategyStable.sol	contracts/strategies/curve/CRVStrategyStable.sol
SYC	CRVStrategyYCRV.sol	contracts/strategies/curve/CRVStrategyYCRV.sol
SSW	CRVStrategySwerve.sol	contracts/strategies/curve/CRVStrategySwerve.sol
SWB	CRVStrategyWRenBTC.sol	contracts/strategies/curve/CRVStrategyWRenBTC.sol
SSM	CRVStrategyStableMainnet.sol	contracts/strategies/curve/CRVStrategyStableMainnet.sol
SRB	CRVStrategyRENBTCMainnet.sol	contracts/strategies/curve/CRVStrategyRENBTCMainnet.sol
SSD	CRVStrategySwerveDAIMainnet.sol	contracts/strategies/curve/CRVStrategySwerveDAlMainnet.sol
SSU	CRVStrategySwerveUSDCMainnet.sol	contracts/strategies/curve/CRVStrategySwerveUSDCMainnet.sol
SWM	CRVStrategyWBTCMainnet.sol	contracts/strategies/curve/CRVStrategyWBTCMainnet.sol
SYM	CRVStrategyYCRVMainnet.sol	contracts/strategies/curve/CRVStrategyYCRVMainnet.sol
GAU	Gauge.sol	contracts/strategies/curve/interfaces/Gauge.sol
ICF	ICurveFi.sol	contracts/strategies/curve/interfaces/ICurveFi.sol
ICW	ICurveFiWbtc.sol	contracts/strategies/curve/interfaces/ICurveFiWbtc.sol
IPC	IPriceConvertor.sol	contracts/strategies/curve/interfaces/IPriceConvertor.sol
ISF	ISwerveFi.sol	contracts/strategies/curve/interfaces/ISwerveFi.sol
YVL	yVault.sol	contracts/strategies/curve/interfaces/yVault.sol

ID	Title	Туре	Severity
<u>STR-01</u>	Pull-over-Push Pattern	Language Specific	Informational
<u>CTE-01</u>	Consecutive External Calls	Optimization	Informational
<u>DMT-01</u>	Variable Mutability Specifiers	Optimization	Informational
<u>DMT-02</u>	Variable Visibility Specifiers	Language Specific	Informational
<u>DMT-03</u>	Event Optimization	Optimization	Informational
<u>DMT-04</u>	require Statement Optimization	Optimization	Informational
<u>DMT-05</u>	Redundant Assignment	Optimization	Informational
<u>DMT-06</u>	Mapping Lookup Optimization	Optimization	Informational
<u>DMT-07</u>	Checks-Effects- Interactions Pattern	Logical	Minor
<u>DMT-08</u>	Redundant SafeMath	Optimization	Informational
<u>DMT-09</u>	Typecasting Optimization	Optimization	Informational
<u>DMT-10</u>	Typecasting Optimization	Language Specific	Informational
<u>DPH-01</u>	Function Input Optimization	Language Specific	Informational
<u>DPH-02</u>	Assignment Optimization	Optimization	Informational
<u>FRF-01</u>	Function Input Optimization	Language Specific	Informational
<u>FRF-02</u>	Potential Underflow	Mathematical	Informational
<u>FRF-03</u>	Inefficient Conditional	Optimization	Informational
<u>FRF-04</u>	Function Side-Effect	Language Specific	Informational
<u>HRW-01</u>	Assignment Optimization	Optimization	Informational
<u>HRW-02</u>	Conditional Optimization	Optimization	Informational
<u>HRW-03</u>	Inefficient Greater-Than Comparison w/ Zero	Optimization	Informational
<u>HRW-04</u>	Redundant Syntax	Syntax	Informational
<u>NHP-01</u>	Function Input Optimization	Language Specific	Informational

ID	Title	Туре	Severity
<u>NHP-02</u>	Inefficient Greater-Than Comparison w/ Zero	Optimization	Informational
<u>NHP-03</u>	Variable Re-use	Optimization	Informational
<u>RWP-01</u>	Library Consistency	Syntax	Informational
<u>RWP-02</u>	Inefficient Greater-Than Comparison w/ Zero	Optimization	Informational
<u>VLT-01</u>	Unconventional Syntax	Syntax	Informational
<u>VLT-02</u>	Inefficient Greater-Than Comparison w/ Zero	Optimization	Informational
<u>VLT-03</u>	Conditional Consistency	Codebase Consistency	Informational
<u>VLT-04</u>	Redundant SafeMath	Mathematical	Informational
<u>VLT-05</u>	Function Invocation Re- use	Optimization	Informational
<u>CTL-01</u>	Incorrect Error Message	Optimization	Informational
<u>CTL-02</u>	Contract Bytecode Optimization	Optimization	Informational
<u>CTL-03</u>	Inefficient Greater-Than Comparison w/ Zero	Optimization	Informational
<u>PNF-01</u>	require Consistency	Codebase Consistency	Informational
<u>PNF-02</u>	Typecasting Optimization	Optimization	Informational
<u>RPN-01</u>	Variable Mutability Specifiers	Optimization	Informational
<u>RPN-02</u>	require Consistency	Codebase Consistency	Informational
<u>RPN-03</u>	Inefficient Greater-Than Comparison w/ Zero	Optimization	Informational
<u>SRS-01</u>	Redundant SafeMath Operation	Optimization	Informational
<u>SRS-02</u>	Uniswap Conformity	Language Specific	Informational
<u>SRS-03</u>	Variable Re-use	Optimization	Informational
<u>SRS-04</u>	Inefficient Greater-Than Comparison w/ Zero	Optimization	Informational
<u>SRU-01</u>	Visibility Specifier Missing	Optimization	Informational

ID	Title	Туре	Severity
<u>SRU-02</u>	Inefficient Greater-Than Comparison w/ Zero	Optimization	Informational
<u>SRU-03</u>	Redundant Typecasting	Optimization	Informational
<u>SRU-04</u>	Incorrect Comment	Documentation Conformity	Informational
<u>CMI-01</u>	Variable Mutability and Type	Optimization	Informational
<u>CMI-02</u>	Inefficient Greater-Than Comparison w/ Zero	Optimization	Informational
<u>WCS-01</u>	Inefficient Greater-Than Comparison w/ Zero	Optimization	Informational
<u>PCV-01</u>	Variable Mutability Specifier	Optimization	Informational
<u>SSM-01</u>	revert Statement	Syntactic	Informational
<u>SST-01</u>	Visibility Specifier Missing	Syntactic	Informational
<u>SST-02</u>	Variable Mutability Specifier	Optimization	Informational
<u>SST-03</u>	Inefficient Greater-Than Comparison w/ Zero	Optimization	Informational
<u>SST-04</u>	Unconventional Syntax	Syntactic	Informational
<u>SST-05</u>	Redundant SafeMath Operation	Optimization	Informational
<u>SST-06</u>	Variable Re-use	Optimization	Informational
<u>SST-07</u>	Variable Re-use	Optimization	Informational
<u>SYC-01</u>	Variable Mutability Specifier	Optimization	Informational
<u>SYC-02</u>	Variable Declaration Misuse	Optimization / Syntactical	Informational
<u>SYC-03</u>	Variable Re-use	Optimization	Informational
<u>SYC-04</u>	Inefficient Greater-Than Comparison w/ Zero	Optimization	Informational
<u>SYC-05</u>	Literal over Memory	Optimization	Informational
<u>SSW-01</u>	Variable Visibility Specifier	Optimization	Informational

ID	Title	Туре	Severity
<u>SSW-02</u>	Variable Mutability Specifier	Optimization	Informational
<u>SSW-03</u>	Inefficient Greater-Than Comparison w/ Zero	Optimization	Informational
<u>SSW-04</u>	Unconventional Syntax	Syntactic	Informational
<u>SWB-01</u>	Variable Visibility Specifier	Optimization	Informational
<u>SWB-02</u>	Variable Mutability Specifier	Optimization	Informational
<u>SWB-03</u>	Inefficient Greater-Than Comparison w/ Zero	Optimization	Informational
<u>SWB-04</u>	Unconventional Syntax	Syntactic	Informational

Туре	Severity	Location
Language Specific	Informational	Storage.sol L17-L25

A secure Solidity pattern is to update sensitive variables utilizing a pull-over-push pattern whereby instead of overriding existing values, a proposed value is set and then the owner of the proposed value, usually the account an address points to, needs to accept the proposal for it to override the previous value. This prevents against mis-types and accidental transactions as software is prone to error and overriding sensitive variables, such as owners of contracts, is at times irreversible.

Recommendation:

We advise that the set prefixed functions for governance and the controller are instead replaced by propose and accept functions respectively.

Alleviation:

Туре	Severity	Location
Optimization	Informational	Controllable.sol L15-L19

The conditional of L16 conducts to external calls on store by first calling isController and then calling isGovernance.

Recommendation:

As both calls are view functions that rely on the same input, msg.sender, it is possible to instead code a single function on store that retrieves whetehr the address is a controller or the governance as this would result in a single external function call rather than two.

Alleviation:

Туре	Severity	Location
Optimization	Informational	DelayMinter.sol L46-L49

The linked statements contain contract-level variable declarations and assignments, the variables of which are never assigned to elsewhere in the codebase.

Recommendation:

We advise that the mutability specifier constant is imposed on those variables to greatly reduce the gas cost incurred by utilizing them.

Alleviation:

Туре	Severity	Location
Language Specific	Informational	DelayMinter.sol L57

The linked variable declaration is missing a visibility specifier.

Recommendation:

We advise that a proper visibility specifier is set for the linked variable.

Alleviation:

Туре	Severity	Location
Optimization	Informational	DelayMinter.sol L62

The linked MintingAnnounced event declaration is missing any indexed variables.

Recommendation:

We advise that the id of the minting is indexed to greatly speed up lookup operations on blockchain nodes.

Alleviation:

DMT-04: require Statement Optimization

Туре	Severity	Location
Optimization	Informational	<u>DelayMinter.sol L71, L73, L75,</u> <u>L77</u>

Description:

The linked require statements ensure that the input variables of the constructor are not zeroed out. However, they access the contract's newly stored variables instead of relying on the variables already in memory.

Recommendation:

We advise that the require statements utilize the underscore (_) prefixed variable counterparts to ensure they do not access the contract's storage optimizing gas cost of deployment.

Alleviation:

Туре	Severity	Location
Optimization	Informational	DelayMinter.sol L78

In Solidity, all variables are by default initialized to their zeroed-out variable type, meaning that explicit assignment of such zeroed variables on a variable's initialization are redundant.

Recommendation:

We advise that the linked manual zeroing statements are omitted.

Alleviation:

Туре	Severity	Location
Optimization	Informational	DelayMinter.sol L102-L120

The function executeMint is utilizing the result of the announcements[_id] struct lookup thrice instead of storing it in an in-memory variable since all three members of the MintingAnnouncement struct are read.

Recommendation:

We advise that a MintingAnnouncement memory declaration is introduced at the beginning of the function that is subsequently read from for all purposes.

Alleviation:

Туре	Severity	Location
Logical	Minor	DelayMinter.sol L102-L120

The function executeMint is performing an arbitrary mint operation on an ERC20Mintable token. As certain tokens contain additional functionality that inform the recipient of a minting operation, it would be possible for a re-entrancy attack to be executed here as the minting announcements are deleted after the token is minted.

Recommendation:

We advise that the delete statement of L119 is moved before the first mint external invocation of L113.

Alleviation:

The reward token utilized in this context is \$FARM, a token designed by Harvest Finance, and as such this attack vector is inexistent and the exhibit is nullified.

Туре	Severity	Location
Optimization	Informational	DelayMinter.sol L112

The linked statement conducts logically-safe subtractions by wrapping them in the SafeMath library.

Recommendation:

These subtractions can be safely performed without being wrapped by the SafeMath library as the subtracted variables are guaranteed to be less than the amount due to the multiplication and divisions always resulting in a value less than amount. Additionally, the div operations that precede this statement can also be omitted and be conducted in their raw / format as SafeMath's div simply ensures the divisor is not equal to 0 which is always the case on this contract.

Alleviation:

Туре	Severity	Location
Optimization	Informational	<u>DelayMinter.sol L51</u>

The linked token declaration is never utilized as an address type and is instead always casted to an ERC20Mintable interface.

Recommendation:

We advise that the address is directly stored as the interface's type, ERC20Mintable.

Alleviation:

Туре	Severity	Location
Language Specific	Informational	DelayMinter.sol L129-L139

A secure Solidity pattern is to update sensitive variables utilizing a pull-over-push pattern whereby instead of overriding existing values, a proposed value is set and then the owner of the proposed value, usually the account an address points to, needs to accept the proposal for it to override the previous value. This prevents against mis-types and accidental transactions as software is prone to error and overriding sensitive variables, such as owners of contracts, is at times irreversible.

Recommendation:

We advise that the set prefixed functions for the team and the operator addresses are instead replaced by propose and accept functions respectively.

Alleviation:

Туре	Severity	Location
Language Specific	Informational	DepositHelper.sol L38

When function calls are not utilized elsewhere internally in the codebase and contain array inputs, it is highly advisable to set them as external and instead store the input arrays in calldata rather than memory to greatly optimize the gas cost involved in invoking those functions.

Recommendation:

We advise the above pattern is applied on the linked function.

Alleviation:

Туре	Severity	Location
Optimization	Informational	DepositHelper.sol L44

The linked require statement conducts an external function call to the controller getter function of store on each iteration of the for loop.

Recommendation:

We advise that the result of this external call is instead stored outside the for loop to ensure only a single external call is conducted to store and the gas cost of the function is optimized.

Alleviation:

FRF-01: Function Input Optimization

Туре	Severity	Location
Language Specific	Informational	FeeRewardForwarder.sol L54

Description:

When function calls are not utilized elsewhere internally in the codebase and contain array inputs, it is highly advisable to set them as external and instead store the input arrays in calldata rather than memory to greatly optimize the gas cost involved in invoking those functions.

Recommendation:

We advise the above pattern is applied on the linked function.

Alleviation:

Туре	Severity	Location
Mathematical	Informational	FeeRewardForwarder.sol L54

The linked require conditional conducts a raw subtraction of the input array's length with the literal 1. This can lead to arrays with a single item to execute the function "properly" and for arrays with no members to fail without a proper reason due to the overflow and subsequent out-of-bounds access of L58.

Recommendation:

We advise that a proper require check is imposed that ensures the length of the path is greaterthan the literal 1.

Alleviation:

Туре	Severity	Location
Optimization	Informational	FeeRewardForwarder.sol L75

If FRF-02 is integrated, it is possible to convert this comparison to an inequality comparison with the literal • which is more optimal than greater-than comparisons.

Recommendation:

N/A.

Alleviation:

Туре	Severity	Location
Language Specific	Informational	FeeRewardForwarder.sol L77

The linked statement utilizes the balance of the contract rather than accepting an input variable.

Recommendation:

While this is secure in most circumstances whereby funds are never meant to remain at rest, the effects of this potentially unwanted accounting of accidental transfers should be evaluated.

Alleviation:

Туре	Severity	Location
Optimization	Informational	HardRewards.sol L59

The linked assignment of block.number to lastReward[vault] can be moved to the if block between L49 and L56 as, in any other case, it is redundant.

Recommendation:

L34 guarantees that the blockReward variable is greater-than zero and L46 would result in zero only if lastReward[vault] is already equal to block.number, so an assignment of block.number is only sensible if lastReward[vault] contains a different value which is the case only in the if clause of L49.

Alleviation:

Туре	Severity	Location
Optimization	Informational	HardRewards.sol L34, L40

The linked if clauses contain the same statements as the else clause of L56.

Recommendation:

As a result, it is advisable that the inverse conditions are checked on the if clause of L49 and the linked if clauses are omitted completely.

Alleviation:

HRW-03: Inefficient Greater-Than Comparison w/ Zero

Туре	Severity	Location
Optimization	Informational	HardRewards.sol L49, L52, L77

Description:

The linked greater-than comparisons with zero compare variables that are restrained to the nonnegative integer range, meaning that the comparator can be changed to an inequality one which is more gas efficient.

Recommendation:

We advise that the above paradigm is applied to the linked greater-than statements.

Alleviation:

Туре	Severity	Location
Syntax	Informational	HardRewards.sol L67

The linked statement conducts a delete operation on a parenthesis of a mapping lookup.

Recommendation:

The parenthesis can be safely omitted.

Alleviation:

Туре	Severity	Location
Language Specific	Informational	NotifyHelper.sol L14

When function calls are not utilized elsewhere internally in the codebase and contain array inputs, it is highly advisable to set them as external and instead store the input arrays in calldata rather than memory to greatly optimize the gas cost involved in invoking those functions.

Recommendation:

We advise the above pattern is applied on the linked function.

Alleviation:

NHP-02: Inefficient Greater-Than Comparison w/ Zero

Туре	Severity	Location
Optimization	Informational	NotifyHelper.sol L17

Description:

The linked greater-than comparisons with zero compare variables that are restrained to the nonnegative integer range, meaning that the comparator can be changed to an inequality one which is more gas efficient.

Recommendation:

We advise that the above paradigm is applied to the linked greater-than statements.

Alleviation:

Туре	Severity	Location
Optimization	Informational	NotifyHelper.sol L22

The linked external call conducts a surplus type-casting which already exists under the variable pool.

Recommendation:

We advise that the already-declared variable pool is utilized instead.

Alleviation:

Туре	Severity	Location
Syntax	Informational	RewardPool.sol L57

The Math library contains a max and a mint function, the former using a loose greater-than comparison in contrast to the latter.

Recommendation:

We advise that a uniform comparison is utilized as both are equivalent.

Alleviation:

RWP-02: Inefficient Greater-Than Comparison w/ Zero

Туре	Severity	Location
Optimization	Informational	<u>RewardPool.sol L720, L726,</u> <u>L738</u>

Description:

The linked greater-than comparisons with zero compare variables that are restrained to the nonnegative integer range, meaning that the comparator can be changed to an inequality one which is more gas efficient.

Recommendation:

We advise that the above paradigm is applied to the linked greater-than statements.

Alleviation:

Туре	Severity	Location
Syntax	Informational	Vault.sol L140

The linked representation of the maximum of uint256 is unconventional.

Recommendation:

We advise that either ~uint256(0) or uint256(-1) is utilized, the former of which we suggest. Additionally, it may be wise to store it in a contract-level constant declaration for ease-of-use.

Alleviation:

VLT-02: Inefficient Greater-Than Comparison w/ Zero

Туре	Severity	Location
Optimization	Informational	<u>Vault.sol L145, L172, L200,</u> L201, L230

Description:

The linked greater-than comparisons with zero compare variables that are restrained to the nonnegative integer range, meaning that the comparator can be changed to an inequality one which is more gas efficient.

Recommendation:

We advise that the above paradigm is applied to the linked greater-than statements.

Alleviation:

Туре	Severity	Location
Codebase Consistency	Informational	Vault.sol L46, L146

The constructor of the Vault contract ensures that the numerator is less-than-or-equal to the denominator, however the setter does not permit the equality case.

Recommendation:

We advise that one of the two conditionals is properly enforced on both require statements.

Alleviation:

Туре	Severity	Location
Mathematical	Informational	Vault.sol L164, L213

The linked mathematical statements can be represented in their raw format rather than their SafeMath counterpart as the statements of L161 and L208 ensure their safety respectively.

Recommendation:

We advise that the SafeMath utilization is avoided here to optimize gas cost.

Alleviation:

Туре	Severity	Location
Optimization	Informational	Vault.sol L200, L202

The result of the totalSupply() function invocation is utilized twice.

Recommendation:

As its result won't change across invocations, it is more optimal to store the result of the invocation to an in-memory variable.

Alleviation:

Туре	Severity	Location
Optimization	Informational	Controller.sol L60

The linked require statement checks whether the msg.sender is a hard worker or the governance, however the error message differs.

Recommendation:

We advise that the error message is synced with what the conditionals represent.

Alleviation:

CTL-02: Contract Bytecode Optimization

Туре	Severity	Location
Optimization	Informational	Controller.sol L70-L91

Description:

The linked code block contains two sets of add and remove prefixed functions that occupy surplus bytecode size.

Recommendation:

We advise that each set is assimilated to a single setter function that sets the hard workers and grey lists status respectively.

Alleviation:

CTL-03: Inefficient Greater-Than Comparison w/ Zero

Туре	Severity	Location
Optimization	Informational	Controller.sol L145

Description:

The linked greater-than comparisons with zero compare variables that are restrained to the nonnegative integer range, meaning that the comparator can be changed to an inequality one which is more gas efficient.

Recommendation:

We advise that the above paradigm is applied to the linked greater-than statements.

Alleviation:

Туре	Severity	Location
Codebase Consistency	Informational	ProfitNotifier.sol L32

The linked numerator and denominator require conditional should be synced with the result of VLT-03.

Recommendation:

N/A.

Alleviation:

Туре	Severity	Location
Optimization	Informational	ProfitNotifier.sol L15

The linked underlying declaration is never utilized as an address type and is instead always casted to an IERC20 interface.

Recommendation:

We advise that the address is directly stored as the interface's type, IERC20.

Alleviation:

RPN-01: Variable Mutability Specifiers

Туре	Severity	Location
Optimization	Informational	RewardTokenProfitNotifier.sol L13-L14

Description:

The linked contract variables are assigned to only once during the contract's constructor and the assignment contains literal values.

Recommendation:

If the literal values remain, it is advisable to instead declare those two variables as constant optimizing gas cost.

Alleviation:

Туре	Severity	Location
Codebase Consistency	Informational	RewardTokenProfitNotifier.sol L25

The linked numerator and denominator require conditional should be synced with the result of VLT-03.

Recommendation:

N/A.

Alleviation:

RPN-03: Inefficient Greater-Than Comparison w/ Zero

Туре	Severity	Location
Optimization	Informational	RewardTokenProfitNotifier.sol L31

Description:

The linked greater-than comparisons with zero compare variables that are restrained to the nonnegative integer range, meaning that the comparator can be changed to an inequality one which is more gas efficient.

Recommendation:

We advise that the above paradigm is applied to the linked greater-than statements.

Alleviation:

SRS-01: Redundant SafeMath Operation

Туре	Severity	Location
Optimization	Informational	SNXRewardStrategy.sol L162, L239

Description:

The linked mathematical statements can be represented in their raw format rather than their SafeMath counterpart as the statements of L161 and L236 ensure their safety respectively.

Recommendation:

We advise that the SafeMath utilization is avoided here to optimize gas cost.

Alleviation:

Туре	Severity	Location
Language Specific	Informational	SNXRewardStrategy.sol L170-L178

The Uniswap implementation of a route defines a set of point to point segments that are meant to direct the contract how to swap each token pair to the next one. The current function implementation allows for no routes to be defined as it is possible for the route array to be valid and be composed of a single element.

Recommendation:

We advise that a require check is imposed that ensures the uniswap route has a length greaterthan-or-equal (>=) to 2 as the current function allows the inclusion of a single address array which should not be the case.

Alleviation:

Туре	Severity	Location
Optimization	Informational	SNXRewardStrategy.sol L236-L241

The linked code segment evaluates the external call underlying.balanceOf(address(this)) twice. The comment beneath the if statement dictates that the result of this invocation may change between the if block invocation and the sub invocation that immediately follows it.

Recommendation:

We advise that the result of the underlying.balanceOf(address(this)) call is actually stored to an in-memory variable as it is not meant to change between those two invocations since balanaceOf is a view function that cannot possibly alter storage. Thus, those two results are guaranteed to be the same.

Alleviation:

SRS-04: Inefficient Greater-Than Comparison w/ Zero

Туре	Severity	Location
Optimization	Informational	SNXRewardStrategy.sol L185, L213

Description:

The linked greater-than comparisons with zero compare variables that are restrained to the nonnegative integer range, meaning that the comparator can be changed to an inequality one which is more gas efficient.

Recommendation:

We advise that the above paradigm is applied to the linked greater-than statements.

Alleviation:

SRU-01: Visibility Specifier Missing

Туре	Severity	Location
Optimization	Informational	SNXRewardUniLPStrategy.sol L58

Description:

The visibility specifier of the linked variable is missing.

Recommendation:

We advise that the visibility specifier for the linked variable is properly set.

Alleviation:

SRU-02: Inefficient Greater-Than Comparison w/ Zero

Туре	Severity	Location
Optimization	Informational	SNXRewardUniLPStrategy.sol L153, L216

Description:

The linked greater-than comparisons with zero compare variables that are restrained to the nonnegative integer range, meaning that the comparator can be changed to an inequality one which is more gas efficient.

Recommendation:

We advise that the above paradigm is applied to the linked greater-than statements.

Alleviation:

Туре	Severity	Location
Optimization	Informational	<u>SNXRewardUniLPStrategy.sol L154,</u> L155, L170

The linked statements contain redundant castings of address variables to the address type.

Recommendation:

As such, they can be safely omitted.

Alleviation:

Туре	Severity	Location
Documentation	Informational	SNXRewardUniLPStrategy.sol L279
Conformity		

The comment of the linked function states that "Note that although onlyNotPausedInvesting is not added here" which is invalid as it is actually used as seen on L283.

Recommendation:

We advise the linked comment be revised.

Alleviation:

CMI-01: Variable Mutability and Type

Туре	Severity	Location
Optimization	Informational	CompoundInteractor.sol L20

Description:

The linked variable is only assigned to once at its contract-level declaration and it is redundantly casted to the IERC20 type whilst it is only used after being again cast to the WETH9 type.

Recommendation:

We advise that its mutability specifier is set to constant and that it is stored as a WETH9 variable rather than an IERC20 variable.

Alleviation:

CMI-02: Inefficient Greater-Than Comparison w/ Zero

Туре	Severity	Location
Optimization	Informational	CompoundInteractor.sol L110, L119

Description:

The linked greater-than comparisons with zero compare variables that are restrained to the nonnegative integer range, meaning that the comparator can be changed to an inequality one which is more gas efficient.

Recommendation:

We advise that the above paradigm is applied to the linked greater-than statements.

Alleviation:

WCS-01: Inefficient Greater-Than Comparison w/ Zero

Туре	Severity	Location
Optimization	Informational	WETHCreamNoFoldStrategy.sol L170

Description:

The linked greater-than comparisons with zero compare variables that are restrained to the nonnegative integer range, meaning that the comparator can be changed to an inequality one which is more gas efficient.

Recommendation:

We advise that the above paradigm is applied to the linked greater-than statements.

Alleviation:

Туре	Severity	Location
Optimization	Informational	PriceConvertor.sol L11

The linked variable is only assigned to once at its contract-level declaration.

Recommendation:

We advise that its mutability is set to constant, optimizing the gas cost involved in utilizing it.

Alleviation:

Туре	Severity	Location
Syntactic	Informational	CRVStrategyStableMainnet.sol L11

The linked code block contains a revert statement which is ill-advised.

Recommendation:

While it makes complete sense to keep the code as is, for it to conform to the latest standards an alternative would be to utilize a local variable assigned to the maximum of uint256 that is then assigned in the chained if-else statements and consequently used in a require statement that ensures it has changed.

Alleviation:

SST-01: Visibility Specifier Missing

Туре	Severity	Location
Syntactic	Informational	CRVStrategyStable.sol L38

Description:

The linked variable has no visibility specifier set.

Recommendation:

We advise that an explicit visibility specifier is set to aid in the legibility of the codebase.

Alleviation:

SST-02: Variable Mutability Specifier

Туре	Severity	Location
Optimization	Informational	CRVStrategyStable.sol L99

Description:

The linked variable is only assigned to once during the contract's **constructor** and is done so to a value literal rather than an input variable.

Recommendation:

We advise that the variable is set to a constant greatly optimizing the gas cost involved in utilizing it and moving its assignment to its declaration.

Alleviation:

SST-03: Inefficient Greater-Than Comparison w/ Zero

Туре	Severity	Location
Optimization	Informational	<u>CRVStrategyStable.sol L124, L141,</u> L190, L208, L222

Description:

The linked greater-than comparisons with zero compare variables that are restrained to the nonnegative integer range, meaning that the comparator can be changed to an inequality one which is more gas efficient.

Recommendation:

We advise that the above paradigm is applied to the linked greater-than statements.

Alleviation:

SST-04: Unconventional Syntax

Туре	Severity	Location
Syntactic	Informational	CRVStrategyStable.sol L158, L206

Description:

The linked representation of the maximum of uint256 is unconventional.

Recommendation:

We advise that either ~uint256(0) or uint256(-1) is utilized, the former of which we suggest. Additionally, it may be wise to store it in a contract-level constant declaration for ease-of-use.

Alleviation:

SST-05: Redundant SafeMath Operation

Туре	Severity	Location
Optimization	Informational	CRVStrategyStable.sol L173

Description:

The linked mathematical statement can be represented in its raw format rather than its SafeMath counterpart as the statement of L171 ensures its safety.

Recommendation:

We advise that the SafeMath utilization is avoided here to optimize gas cost.

Alleviation:

Туре	Severity	Location
Optimization	Informational	CRVStrategyStable.sol L260

The linked in-memory variable declaration should be omitted as ycrvUnit can be used instead with no extra gas cost.

Recommendation:

Included above.

Alleviation:

Туре	Severity	Location
Optimization	Informational	CRVStrategyStable.sol L272, L289

The linked numeric literals should be omitted as ycrvUnit can be used instead with no extra gas cost.

Recommendation:

Included above.

Alleviation:

Туре	Severity	Location
Optimization	Informational	CRVStrategyYCRV.sol L42

The linked variable is only assigned to once during its contract-level declaration.

Recommendation:

We advise that the variable is set to a constant greatly optimizing the gas cost involved in utilizing it.

Alleviation:

Туре	Severity	Location
Optimization / Syntactical	Informational	CRVStrategyYCRV.sol L50

The linked variable is only assigned to once during its contract-level declaration, has no visibility specifier and conforms to an unusual syntax.

Recommendation:

We advise that the variable is set to a constant greatly optimizing the gas cost involved in utilizing it, its visibilit specifier is explicitly set and that it is represented either by ~uint256(0) or uint256(-1), the former of which we advise.

Alleviation:

Туре	Severity	Location
Optimization	Informational	CRVStrategyYCRV.sol L88

The linked array declaration utilises 3 storage declarations whilst they are readily available in memory.

Recommendation:

We advise that the in-memory variables are used instead optimizing the deployment cost of the contract.

Alleviation:

SYC-04: Inefficient Greater-Than Comparison w/ Zero

Туре	Severity	Location
Optimization	Informational	<u>CRVStrategyYCRV.sol L140, L156,</u>

Description:

The linked greater-than comparisons with zero compare variables that are restrained to the nonnegative integer range, meaning that the comparator can be changed to an inequality one which is more gas efficient.

Recommendation:

We advise that the above paradigm is applied to the linked greater-than statements.

Alleviation:

Туре	Severity	Location
Optimization	Informational	CRVStrategyYCRV.sol L209

The linked variable utilization serves no purpose apart from explicitly representing its purpose.

Recommendation:

As memory declarations cost gas, we advise that a literal is utilized here instead that is properly documented in the form of comments rather than memory variable names.

Alleviation:

SSW-01: Variable Visibility Specifier

Туре	Severity	Location
Optimization	Informational	CRVStrategySwerve.sol L34

Description:

The linked variable contains no visibility specifier.

Recommendation:

We advise that an explicit visibility specifier is set for it.

Alleviation:

SSW-02: Variable Mutability Specifier

Туре	Severity	Location
Optimization	Informational	CRVStrategySwerve.sol L123

Description:

The linked variable is only assigned to once during the contract's **constructor** and is done so to a value literal rather than an input variable.

Recommendation:

We advise that the variable is set to a constant greatly optimizing the gas cost involved in utilizing it and moving its assignment to its declaration.

Alleviation:

SSW-03: Inefficient Greater-Than Comparison w/ Zero

Туре	Severity	Location
Optimization	Informational	<u>CRVStrategySwerve.sol L148, L205,</u> L223, L237

Description:

The linked greater-than comparisons with zero compare variables that are restrained to the nonnegative integer range, meaning that the comparator can be changed to an inequality one which is more gas efficient.

Recommendation:

We advise that the above paradigm is applied to the linked greater-than statements.

Alleviation:

SSW-04: Unconventional Syntax

Туре	Severity	Location
Syntactic	Informational	CRVStrategySwerve.sol L220

Description:

The linked representation of the maximum of uint256 is unconventional.

Recommendation:

We advise that either ~uint256(0) or uint256(-1) is utilized, the former of which we suggest. Additionally, it may be wise to store it in a contract-level constant declaration for ease-of-use.

Alleviation:

SWB-01: Variable Visibility Specifier

Туре	Severity	Location
Optimization	Informational	CRVStrategyWRenBTC.sol L33

Description:

The linked variable contains no visibility specifier.

Recommendation:

We advise that an explicit visibility specifier is set for it.

Alleviation:

SWB-02: Variable Mutability Specifier

Туре	Severity	Location
Optimization	Informational	CRVStrategyWRenBTC.sol L119

Description:

The linked variable is only assigned to once during the contract's **constructor** and is done so to a value literal rather than an input variable.

Recommendation:

We advise that the variable is set to a constant greatly optimizing the gas cost involved in utilizing it and moving its assignment to its declaration.

Alleviation:

SWB-03: Inefficient Greater-Than Comparison w/ Zero

Туре	Severity	Location
Optimization	Informational	<u>CRVStrategyWRenBTC.sol L144, L201,</u> L219, L233

Description:

The linked greater-than comparisons with zero compare variables that are restrained to the nonnegative integer range, meaning that the comparator can be changed to an inequality one which is more gas efficient.

Recommendation:

We advise that the above paradigm is applied to the linked greater-than statements.

Alleviation:

Туре	Severity	Location
Syntactic	Informational	CRVStrategyWRenBTC.sol L216

The linked representation of the maximum of uint256 is unconventional.

Recommendation:

We advise that either ~uint256(0) or uint256(-1) is utilized, the former of which we suggest. Additionally, it may be wise to store it in a contract-level constant declaration for ease-of-use.

Alleviation:

Icons explanation

: Issue resolved

(!): Issue not resolved / Acknowledged. The team will be fixing the issues in the own timeframe.

: Issue partially resolved. Not all instances of an issue was resolved.

Finding Categories

Gas Optimization

Gas Optimization findings refer to exhibits that do not affect the functionality of the code but generate different, more optimal EVM opcodes resulting in a reduction on the total gas cost of a transaction.

Mathematical Operations

Mathematical Operation exhibits entail findings that relate to mishandling of math formulas, such as overflows, incorrect operations etc.

Logical Issue

Logical Issue findings are exhibits that detail a fault in the logic of the linked code, such as an incorrect notion on how block.timestamp works.

Control Flow

Control Flow findings concern the access control imposed on functions, such as owner-only functions being invoke-able by anyone under certain circumstances.

Volatile Code

Volatile Code findings refer to segments of code that behave unexpectedly on certain edge cases that may result in a vulnerability.

Data Flow

Data Flow findings describe faults in the way data is handled at rest and in memory, such as the result of a struct assignment operation affecting an in-memory struct rather than an instorage one.

Language Specific

Language Specific findings are issues that would only arise within Solidity, i.e. incorrect usage of private or delete.

Coding Style

Coding Style findings usually do not affect the generated byte-code and comment on how to make the codebase more legible and as a result easily maintainable.

Inconsistency

Inconsistency findings refer to functions that should seemingly behave similarly yet contain different code, such as a constructor assignment imposing different require statements on the input variables than a setter function.

Magic Numbers

Magic Number findings refer to numeric literals that are expressed in the codebase in their raw format and should otherwise be specified as constant contract variables aiding in their legibility and maintainability.

Compiler Error

Compiler Error findings refer to an error in the structure of the code that renders it impossible to compile using the specified version of the project.

Dead Code

Code that otherwise does not affect the functionality of the codebase and can be safely omitted.