
Security Assessment

Alpaca Finance
May 13th, 2021

Summary
This report has been prepared for Alpaca Finance smart contracts, to discover issues and vulnerabilities in

the source code of their Smart Contract as well as any contract dependencies that were not part of an

officially recognized library. A comprehensive examination has been performed, utilizing Static Analysis and

Manual Review techniques.

The auditing process pays special attention to the following considerations:

Testing the smart contracts against both common and uncommon attack vectors.

Assessing the codebase to ensure compliance with current best practices and industry standards.

Ensuring contract logic meets the specifications and intentions of the client.

Cross referencing contract structure and implementation against similar smart contracts produced

by industry leaders.

Thorough line-by-line manual review of the entire codebase by industry experts.

The security assessment resulted in findings that ranged from critical to informational. We recommend

addressing these findings to ensure a high level of security standards and industry practices. We suggest

recommendations that could better serve the project from the security perspective:

Enhance general coding practices for better structures of source codes;

Add enough unit tests to cover the possible use cases given they are currently missing in the

repository;

Provide more comments per each function for readability, especially contracts are verified in public;

Provide more transparency on privileged activities once the protocol is live.

Alpaca Finance Security Assessment

Overview

Project Summary

Project Name Alpaca Finance

Platform BSC

Language Solidity

Codebase https://github.com/alpaca-finance/bsc-alpaca-contract

Commits 7b8389ac08f2025af8bad23af0ba7ea91ca94c26

Audit Summary

Delivery Date May 13, 2021

Audit Methodology Static Analysis, Manual Review

Key Components

Vulnerability Summary

Total Issues 68

Critical 2

Major 12

Medium 0

Minor 12

Informational 42

Discussion 0

Alpaca Finance Security Assessment

Audit Scope

ID file SHA256 Checksum

TCK Timelock.sol 16de91fefbf0e27dabd29e42d0acbb48ac984c75af7eae435a861ec1a03dc2e4

CIV
protocol/ConfigurableInterestVaultConfig.s
ol

493add62c1d0ee7d8c1d68ddf7faeb5deffc53e9a4235922d101b7f88705fd8b

DTC protocol/DebtToken.sol a33bcac6b84794199eda950ad3250c23545603086056b4b18e2c3ea875708b60

ITR protocol/IbTokenRouter.sol d33a9c3ac3963b667d6a075e289261bebf64585e96790cd9cc0e05a5f1b5e7e2

POC protocol/PriceOracle.sol 8dbcf1a9d6d211c90321748f68a2c0f12ff7a7c1c2d893d8916a0f11c1af667d

SPO protocol/SimplePriceOracle.sol a3e0dcd9658393a438a0b7c2695b5fa3377960f1483d6ff45d33c08361c0d19f

SVC protocol/SimpleVaultConfig.sol 55a019398538220cb322f42a8c586fa0d3610c8887848582538779b3c6c2f291

VCK protocol/Vault.sol 9f4e4d7dccc96cb7ed332c735ac48d5542ee4331071367573eb94a643ddbad32

WNR protocol/WNativeRelayer.sol 5051cd722f7cc808a1e07d4a74f1fdcb2172d159a61efe71af2652bda93de722

TSM
protocol/interest-models/TripleSlopeModel.
sol

551f185011d9ea8e92e569d69d7b4565d1411d02bf250972c6797c52a5ebd293

SAB
protocol/strategies/pancakeswap/Strategy
AddBaseTokenOnly.sol

23eb36adb140fa416995cab342f892242e79cbe9718384ef8e4e77a876e3caf7

SAT
protocol/strategies/pancakeswap/Strategy
AddTwoSidesOptimal.sol

dc7834857ff509b541ded749ccc758b9ab6ff6e0d5a6f5a7ae14e64d78fe1c93

SLC
protocol/strategies/pancakeswap/Strategy
Liquidate.sol

d7fd55da7caf84aecfbd28e5e91f342b43e51061386dae732b134aa034aea276

SWM
protocol/strategies/pancakeswap/Strategy
WithdrawMinimizeTrading.sol

963506f7c30e026b6eeb3615e0cafb4ccff89116e0f710ac73496eda60c7c78e

PWC protocol/workers/PancakeswapWorker.sol af225614a9d85ba5e44335cff34b23c5d7b4ceca292aa7f4dc0b2f484b34be83

WCC protocol/workers/WorkerConfig.sol 6493c40deac8b60134a45e259e3ad414052befb88d0ba097dce49054fb975005

ATC token/AlpacaToken.sol d0bafecf9d404ff13cd891a4e7c4b5b4e455bc9242e82dbfaf0b2beb15b99760

FLC token/FairLaunch.sol ebba35e56115b4fd7826828544f8d446cd93c2fa906c64eec8d87d1e9fb760b6

FLV token/FairLaunchV2.sol 0d3220a3d061a99026d7427971c29d62a9a8797dd64b5f952d16533a73f5347e

Alpaca Finance Security Assessment

ID file SHA256 Checksum

SCK token/Shield.sol c3c5e375e96b5238d728f86fb450cf4da4ac0df7220ab1e0e5a9addc7192013a

SAC token/StronkAlpaca.sol eb4c9cd117e24a3a1f77969a5fbefc665f5608e085acbca444fffe54d90b3d13

SAR token/StronkAlpacaRelayer.sol e35d7508eb42dffd005a9958dd6fe67ea756872671ff6dc0e9b3e236364e2231

LRC token/lockers/LinearRelease.sol 8b16338d60ed0354682bbf7f702ad68557c2b1855577e2a63d564885505051b1

AMC utils/AlpacaMath.sol 586e3f78a9a9b4706c1ab68e30b16ecb6a8aef7886fff95febbc79607c60d006

STC utils/SafeToken.sol 6505be69ef107c99e07c3cdbcc1834517878f8dad34eb966ea027543609ed97a

Alpaca Finance Security Assessment

Findings

ID Title Category Severity Status

ATC-01 Function Should Be Declared External Gas Optimization Informational Resolved

ATC-02 Unexpected Token Locking Logical Issue Informational Resolved

ATC-03 Lack of State Update in manualMint Logical Issue Critical Resolved

ATC-04 Centralization Risks I
Centralization /
Privilege

Major
Partially
Resolved

ATC-05 Centralization Risks II
Centralization /
Privilege

Major Resolved

ATC-06 Unused Function setReleaseBlock Gas Optimization Informational Resolved

ATC-07 Variables Should Be Declared Constant Gas Optimization Informational Resolved

CIV-01 Centralization Risks
Centralization /
Privilege

Major
Partially
Resolved

CIV-02 Function Should Be Declared External Gas Optimization Informational Resolved

DTC-01
Lack of Allowance Check In
transferFrom

Logical Issue Critical Resolved

DTC-02 Dead Code Gas Optimization Informational Acknowledged

DTC-03 Function Should Be Declared External Gas Optimization Informational Resolved

FLC-01 Function Should Be Declared External Gas Optimization Informational Resolved

FLC-02 Lack of Return Value Handling Logical Issue Minor Resolved

Alpaca Finance Security Assessment

68
Total Issues

Critical 2 (2.94%)

Major 12 (17.65%)

Medium 0 (0.00%)

Minor 12 (17.65%)

Informational 42 (61.76%)

Discussion 0 (0.00%)

ID Title Category Severity Status

FLC-03 Lack of Checks for Reentrancy Logical Issue Major
Partially
Resolved

FLC-04 Division Before Multiplication
Mathematical
Operations

Informational
Partially
Resolved

FLV-01 Function Should Be Declared External Gas Optimization Informational Resolved

FLV-02 Lack of Return Value Handling Logical Issue Minor Resolved

FLV-03 Lack of Checks for Reentrancy Logical Issue Major
Partially
Resolved

FLV-04 Division Before Multiplication
Mathematical
Operations

Informational
Partially
Resolved

ITR-01 Function Should Be Declared External Gas Optimization Informational Resolved

LRC-01 Function Should Be Declared External Gas Optimization Informational Resolved

LRC-02 Redundant Data Structure Gas Optimization Informational Resolved

PWC-01 Lack of Return Value Handling Logical Issue Minor
Partially
Resolved

PWC-02 Lack of Event for Significant Transaction Data Flow Informational Resolved

PWC-03 Function Should Be Declared External Gas Optimization Informational Resolved

PWC-04 Centralization Risks
Centralization /
Privilege

Major
Partially
Resolved

PWC-05
Non-Optimal Parameters Passed to
Strategy

Logical Issue Minor
Partially
Resolved

SAB-01 Unused Variable Dead Code Informational Resolved

SAB-02 Inappropriate Payable Modifier Logical Issue Informational Resolved

SAB-03 Lack of Return Value Handling Logical Issue Minor
Partially
Resolved

SAB-04 Function Should Be Declared External Gas Optimization Informational Resolved

SAB-05 Possible Residue in Current Contract Logical Issue Informational Acknowledged

Alpaca Finance Security Assessment

ID Title Category Severity Status

SAB-06 Non-Optimal Parameter Set Logical Issue Informational Resolved

SAC-01 Function Should Be Declared External Gas Optimization Informational Resolved

SAT-01 Function Should Be Declared External Gas Optimization Informational Resolved

SAT-02 Division Before Multiplication
Mathematical
Operations

Informational Resolved

SAT-03 Inappropriate Payable Modifier Logical Issue Informational Resolved

SAT-04 Lack of Return Value Handling Logical Issue Minor
Partially
Resolved

SAT-05 Non-Optimal Parameter Set Logical Issue Informational Resolved

SCK-01 Function Should Be Declared External Gas Optimization Informational Resolved

SCK-02 Lack of Checks for Reentrancy Logical Issue Major Resolved

SLC-01 Function Should Be Declared External Gas Optimization Informational Resolved

SLC-02 Inappropriate Payable Modifier Logical Issue Informational Resolved

SLC-03 Lack of Return Value Handling Logical Issue Minor
Partially
Resolved

SLC-04 Non-Optimal Parameter Set Logical Issue Informational Resolved

SPO-01 Centralization Risks
Centralization /
Privilege

Major
Partially
Resolved

SPO-02 Mismatch Between Comment and Code Coding Style Informational Resolved

SPO-03 Function Should Be Declared External Gas Optimization Informational Resolved

SVC-01 Centralization Risks
Centralization /
Privilege

Major
Partially
Resolved

SVC-02 Function Should Be Declared External Gas Optimization Informational Resolved

SWM-01 Function Should Be Declared External Gas Optimization Informational Resolved

SWM-02 Inappropriate Payable Modifier Logical Issue Informational Resolved

Alpaca Finance Security Assessment

ID Title Category Severity Status

SWM-03 Lack of Return Value Handling Logical Issue Minor
Partially
Resolved

SWM-04 Non-Optimal Parameter Set Logical Issue Informational Resolved

TCK-01 Function Should Be Declared External Gas Optimization Informational Resolved

TCK-02 Lack of Checks for Reentrancy Logical Issue Minor Resolved

VCK-01 Potential Liquidating Issue Logical Issue Informational Resolved

VCK-02 Unexpected Revert Logical Issue Minor Resolved

VCK-03 Risk When Opening a Farming Position Logical Issue Major Resolved

VCK-04 Residue in the Contract Logical Issue Minor Resolved

VCK-05 Function Should Be Declared External Gas Optimization Informational Resolved

WCC-01
Unkillable Position When Worker Is
Unstable

Logical Issue Minor Resolved

WCC-02 Boolean Function Never Returns False Logical Issue Informational Resolved

WCC-03 Centralization Risks I
Centralization /
Privilege

Major
Partially
Resolved

WCC-04 Centralization Risks II
Centralization /
Privilege

Major
Partially
Resolved

WCC-05 Function Should Be Declared External Gas Optimization Informational Resolved

WNR-01 Function Should Be Declared External Gas Optimization Informational Resolved

Alpaca Finance Security Assessment

ATC-01 | Function Should Be Declared External

Category Severity Location Status

Gas Optimization Informational token/AlpacaToken.sol: 32, 42, 61, 65, 69, 73, 77, 112, 124 Resolved

Description

The functions which are never called internally within the contract should have external visibility. For

example:

setReleaseBlock

unlockedSupply

burn

totalBalanceOf

lockOf

lastUnlockBlock

lock

unlock

transferAll

Recommendation

We recommend changing the visibility of the aforementioned functions to external .

Alleviation

The development team heeded our advice and resolved this issue in the commit

7b8389ac08f2025af8bad23af0ba7ea91ca94c26.

Alpaca Finance Security Assessment

https://github.com/alpaca-finance/bsc-alpaca-contract/commit/7b8389ac08f2025af8bad23af0ba7ea91ca94c26

ATC-02 | Unexpected Token Locking

Category Severity Location Status

Logical Issue Informational token/AlpacaToken.sol: 93, 124 Resolved

Description

The function transferAll in L124 is designed to transfer all the Alpaca tokens from msg.sender to the

input address _to (including the locked ones), and meanwhile, it would update _lastUnlockBlock[_to] to

be the max among _lastUnlockBlock[_to] , startReleaseBlock and _lastUnlockBlock[msg.sender] :

124124 functionfunction transferAlltransferAll((addressaddress _to _to)) publicpublic {{
125125 _locks _locks[[_to_to]] == _locks _locks[[_to_to]]..addadd((_locks_locks[[msgmsg..sendersender]]));;
126126
127127 ifif ((_lastUnlockBlock_lastUnlockBlock[[_to_to]] << startReleaseBlock startReleaseBlock)) {{
128128 _lastUnlockBlock _lastUnlockBlock[[_to_to]] == startReleaseBlock startReleaseBlock;;
129129 }}
130130
131131 ifif ((_lastUnlockBlock_lastUnlockBlock[[_to_to]] << _lastUnlockBlock _lastUnlockBlock[[msgmsg..sendersender]])) {{
132132 _lastUnlockBlock _lastUnlockBlock[[_to_to]] == _lastUnlockBlock _lastUnlockBlock[[msgmsg..sendersender]];;
133133 }}
134134
135135 _locks _locks[[msgmsg..sendersender]] == 00;;
136136 _lastUnlockBlock _lastUnlockBlock[[msgmsg..sendersender]] == 00;;
137137
138138 _transfer_transfer((msgmsg..sendersender,, _to _to,, balanceOfbalanceOf((msgmsg..sendersender))));;
139139 }}

The mapping _lastUnlockBlock is used to calculate the percentage of the tokens that each user can

unlock. According to the calculation in the function canUnlockAmount in L106~107, the percentage of the

tokens that can be unlocked would decrease when _lastUnlockBlock[_account] increases:

9393 functionfunction canUnlockAmountcanUnlockAmount((addressaddress _account _account)) publicpublic viewview returnsreturns ((uint256uint256)) {{
9494
9595 uint256uint256 releasedBlock releasedBlock == block block..numbernumber..subsub((_lastUnlockBlock_lastUnlockBlock[[_account_account]]));;
9696 uint256uint256 blockLeft blockLeft == endReleaseBlock endReleaseBlock..subsub((_lastUnlockBlock_lastUnlockBlock[[_account_account]]));;
9797 returnreturn _locks _locks[[_account_account]]..mulmul((releasedBlockreleasedBlock))..divdiv((blockLeftblockLeft));;
9898
9999 }}

Combining the logic described above, by calling the function transferAll, a malicious user can increase

the _lastUnlockBlock of another user to decrease the percentage of the tokens that the second user can

Alpaca Finance Security Assessment

unlock. For instance,

Assume the current state is: startReleaseBlock = 900 , endReleaseBlock = 1050 and

block.number = 1040 . User Alice has 100 tokens and _lastUnlockBlock[Alice] = 1000 .

In normal case, Alice can unlock 80 tokens (100 * (1040 - 1000) / (1050 - 1000)) per logic

implementation in canUnlockAmount .

Malicious user Bob can prevent her from unlocking so many tokens by calling transferAll(Alice)

if his status is _lastUnlockBlock[Bob] = 1040 . After calling the function, the state of Alice changes

to _lastUnlockBlock[Alice] = 1040 .

As a result, Alice can only unlock 0 token (100*(1040 - 1040) / (1050 - 1000)) at the moment.

Recommendation

We recommend the team review the design and ensure this is an intended design.

Alleviation

(Alpaca Team Response) It is there for saving user's funds when their account gets hacked, so we have a

way to transfer their assets to their new wallet. Our lockup period has been passed. And none of our users

get attacked by this function.

(CertiK) We agree it will be back to normal when lockup period is passed. We still suggest the team should

be cautious about this potential issue which might influence user experience.

Alpaca Finance Security Assessment

ATC-03 | Lack of State Update in manualMint

Category Severity Location Status

Logical Issue Critical token/AlpacaToken.sol: 50, 15 Resolved

Description

According to the naming pattern of the variable manualMinted declared in L15 in the contract

AlpacaToken , we assume it should be used to record the amount of the tokens that are minted manually.

1515 uint256uint256 publicpublic manualMinted manualMinted == 00;;

The require check in L51 is supposed to restrain the owner by checking whether the amount of manually

minted tokens exceeds the limitation.

5050 functionfunction manualMintmanualMint((addressaddress _to _to,, uint256uint256 _amount _amount)) publicpublic onlyOwner onlyOwner {{
5151 requirerequire((manualMinted manualMinted <=<= manualMintLimit manualMintLimit,, "mint limit exceeded""mint limit exceeded"));;
5252 mintmint((_to_to,, _amount _amount));;
5353 }}

However, the function manualMint does not update the value of manualMinted after calling mint .

Therefore, the owner can manually mint tokens without any restriction since manualMinted will always

remain 0. Although the contract Shield sets a limit on the amount of manually minted Alpaca tokens, the

AlpacaToken contract itself is vulnerable.

Recommendation

We recommend updating the state manualMinted whenever the function manualMint is called, to ensure

the tokens manually minted are under control.

Alleviation

(Alpaca Team Response) This is a known issue and fixed through Shield contract.

(CertiK) Please ensure the contract AlpacaToken will always bundle with its owner contract together which

sets up the limitation properly, since as an independent contract, the AlpacaToken will allow the owner to

mint an unlimited amount of tokens, thus being vulnerable alone.

Alpaca Finance Security Assessment

ATC-04 | Centralization Risks I

Category Severity Location Status

Centralization / Privilege Major token/AlpacaToken.sol: 50 Partially Resolved

Description

The public facing function manualMint allows the owner to mint the Alpaca tokens for a certain account:

5050 functionfunction manualMintmanualMint((addressaddress _to _to,, uint256uint256 _amount _amount)) publicpublic onlyOwner onlyOwner {{
5151 requirerequire((manualMinted manualMinted <=<= manualMintLimit manualMintLimit,, "mint limit exceeded""mint limit exceeded"));;
5252 mintmint((_to_to,, _amount _amount));;
5353 }}

Our concern is, if the owner accidentally and improperly mints the Alpaca tokens, the price of the Alpaca

token would be influenced and thus the users/project would suffer unexpected losses.

Recommendation

We recommend the team review the design and ensure minimum centralization risk.

Alleviation

(Alpaca Team Response) ManualMint function needs to be called from the Shield contract. And it

already has a manualMint capped (8m for Warchest portion). Hence, it is already self-prevent as there is

only 8m ALPACA that can be manually minted. So, the team must think carefully about when minting this

portion. Plus, Shield contract is also owned by Timelock . Hence, if there is a warchest mint without

specific reason, token holders can just dump ALPACA to exit all their positions within 24 hours.

(CertiK) Setting up an upper bound does not prevent abusively minting tokens within the range. The team

should be careful about using the manualMint function. Besides, please ensure the proper setup of the

owner role. Meanwhile, to improve the trustworthiness of the project, any dynamic runtime update in the

project should be notified to the community in advance.

Alpaca Finance Security Assessment

ATC-05 | Centralization Risks II

Category Severity Location Status

Centralization / Privilege Major token/AlpacaToken.sol: 32, 77 Resolved

Description

The function setReleaseBlock in L32 allows the owner to modify the significant state variables

startReleaseBlock and endReleaseBlock , which determine the amount of the tokens that the user can

unlock per the implementation of the contract:

3232 functionfunction setReleaseBlocksetReleaseBlock((uint256uint256 _startReleaseBlock _startReleaseBlock,, uint256uint256 _endReleaseBlock _endReleaseBlock))
publicpublic onlyOwner onlyOwner {{
3333 requirerequire((_endReleaseBlock _endReleaseBlock >> _startReleaseBlock _startReleaseBlock,, "endReleaseBlock <"endReleaseBlock <
startReleaseBlock"startReleaseBlock"));;
3434 startReleaseBlock startReleaseBlock == _startReleaseBlock _startReleaseBlock;;
3535 endReleaseBlock endReleaseBlock == _endReleaseBlock _endReleaseBlock;;
3636 }}

Meanwhile, the function lock allows the owner to lock a user's tokens until startRleaseBlock :

7777 functionfunction locklock((addressaddress _account _account,, uint256uint256 _amount _amount)) publicpublic onlyOwner onlyOwner {{
7878
7979 _transfer_transfer((_account_account,, addressaddress((thisthis)),, _amount _amount));;
8080
8181 _locks _locks[[_account_account]] == _locks _locks[[_account_account]]..addadd((_amount_amount));;
8282 _totalLock _totalLock == _totalLock _totalLock..addadd((_amount_amount));;
8383
8484 ifif ((_lastUnlockBlock_lastUnlockBlock[[_account_account]] << startReleaseBlock startReleaseBlock)) {{
8585 _lastUnlockBlock _lastUnlockBlock[[_account_account]] == startReleaseBlock startReleaseBlock;;
8686 }}
8787
8888 }}

Our concern is, if the owner accidentally and improperly calls the function setReleaseBlock to modify the

state startReleaseBlock, and then calls the function lock to lock a user's tokens, it might lead to the

result that the user cannot withdraw his/her assets on time, thus introducing centralization risks.

Recommendation

We recommend the team review the design and ensure minimum centralization risk.

Alpaca Finance Security Assessment

Alleviation

(Alpaca Team Response) Please note that this function is not accessible anymore on production as the

owner of AlpacaToken is a FairLaunch contract, and the FairLaunch contract doesn’t have the functionality

to access this function.

(CertiK) Please ensure the contract AlpacaToken will always bundle with the contract FairLaunch

together.

Alpaca Finance Security Assessment

ATC-06 | Unused Function setReleaseBlock

Category Severity Location Status

Gas Optimization Informational token/AlpacaToken.sol: 32 Resolved

Description

The function setReleaseBlock in L32 can only be called by the owner, which is the contract FairLaunch

according to the project logic:

3232 functionfunction setReleaseBlocksetReleaseBlock((uint256uint256 _startReleaseBlock _startReleaseBlock,, uint256uint256 _endReleaseBlock _endReleaseBlock)) publicpublic
onlyOwneronlyOwner

However, in the contract FairLaunch , there is no function calling AlpacaToken.setReleaseBlock . Hence,

the function startReleaseBlock can be safely omitted.

Recommendation

We recommend removing the function startReleaseBlock in the aforementioned line.

Alleviation

The development team heeded our advice and resolved this issue in the commit

7744419477522dad110205aed6809f80895e4fd0.

Alpaca Finance Security Assessment

https://github.com/alpaca-finance/bsc-alpaca-contract/commit

ATC-07 | Variables Should Be Declared Constant

Category Severity Location Status

Gas Optimization Informational token/AlpacaToken.sol: 9, 14 Resolved

Description

The state variables _cap and manualMintLimit do not change within the contract and thus should be

declared constant for gas saving.

Recommendation

We recommend adding the constant attributes to the aforementioned variables.

Alleviation

The development team heeded our advice and resolved this issue in the commit

7b8389ac08f2025af8bad23af0ba7ea91ca94c26.

Alpaca Finance Security Assessment

https://github.com/alpaca-finance/bsc-alpaca-contract/commit/7b8389ac08f2025af8bad23af0ba7ea91ca94c26

CIV-01 | Centralization Risks

Category Severity Location Status

Centralization / Privilege Major protocol/ConfigurableInterestVaultConfig.sol: 49, 68 Partially Resolved

Description

The function setParams in L49 allows the owner to change important configurations of the contract after

contract initialization:

4949 functionfunction setParamssetParams((
5050 uint256uint256 _minDebtSize _minDebtSize,,
5151 uint256uint256 _reservePoolBps _reservePoolBps,,
5252 uint256uint256 _killBps _killBps,,
5353 InterestModel _interestModel InterestModel _interestModel,,
5454 addressaddress _wrappedNative _wrappedNative,,
5555 addressaddress _wNativeRelayer _wNativeRelayer,,
5656 addressaddress _fairLaunch _fairLaunch
5757)) publicpublic onlyOwner onlyOwner {{
5858 minDebtSize minDebtSize == _minDebtSize _minDebtSize;;
5959 getReservePoolBps getReservePoolBps == _reservePoolBps _reservePoolBps;;
6060 getKillBps getKillBps == _killBps _killBps;;
6161 interestModel interestModel == _interestModel _interestModel;;
6262 wrappedNative wrappedNative == _wrappedNative _wrappedNative;;
6363 wNativeRelayer wNativeRelayer == _wNativeRelayer _wNativeRelayer;;
6464 fairLaunch fairLaunch == _fairLaunch _fairLaunch;;
6565 }}

These configuration parameters are of great significance to the contract and would directly influence the

income of both the users and the project. For instance, _killBps is a critical parameter to calculate the

reward before killing a position. If it is accidentally and improperly modified, the reward might not be

calculated correctly, and thus the users and project might suffer unexpected loss.

Similarly, the function setWorkers updates workers with configuration parameters:

6868 functionfunction setWorkerssetWorkers((addressaddress[[]] calldatacalldata addrs addrs,, IWorkerConfig IWorkerConfig[[]] calldatacalldata configs configs))
externalexternal onlyOwner onlyOwner {{
6969
7070 forfor ((uint256uint256 idx idx == 00;; idx idx << addrs addrs..lengthlength;; idx idx++++)) {{
7171 workers workers[[addrsaddrs[[idxidx]]]] == configs configs[[idxidx]];;
7272 }}
7373 }}

Alpaca Finance Security Assessment

The state workers in the contract also performs a critical role in executing the core logic like Vault. work .

The configuration parameters bundled with the workers would influence the behavior of the contract. Our

concern is if the owner accidentally updates the significant configurations, it would influence the entire

project logic, which might cause some unexpected loss.

Recommendation

We recommend the team review the design and ensure minimum centralization risk.

Alleviation

(Alpaca Team Response) All ConfigurableInterestVaultConfigs are owned by a Timelock contract with 24

hours delay. Hence, tx that will trigger setParams and setWorkers need to be queued 24 hours in

advance. So, if there is a malicious attempt from us, everyone has 24 hours to exit everything.

(CertiK) We agree with the solution above. We recommend the team set up the owner role properly.

Meanwhile, to improve the trustworthiness of the project, any dynamic runtime update in the project

should be notified to the community in advance.

Alpaca Finance Security Assessment

CIV-02 | Function Should Be Declared External

Category Severity Location Status

Gas Optimization Informational protocol/ConfigurableInterestVaultConfig.sol: 30 Resolved

Description

The function initialize is never called internally within the contract and thus should have external

visibility.

Recommendation

We recommend changing the visibility of the aforementioned function to external .

Alleviation

The development team heeded our advice and resolved this issue in the commit

7b8389ac08f2025af8bad23af0ba7ea91ca94c26.

Alpaca Finance Security Assessment

https://github.com/alpaca-finance/bsc-alpaca-contract/commit/7b8389ac08f2025af8bad23af0ba7ea91ca94c26

DTC-01 | Lack of Allowance Check In transferFrom

Category Severity Location Status

Logical Issue Critical protocol/DebtToken.sol: 54~59 Resolved

Description

The public facing function transferFrom in L54 can transfer any desired amount of tokens from the input

address from to the input address to , whenever these two addresses are both approved holders:

5454 functionfunction transferFromtransferFrom((addressaddress fromfrom,, addressaddress to to,, uint256uint256 amount amount)) publicpublic override override
returnsreturns ((boolbool)) {{
5555 requirerequire((okHoldersokHolders[[fromfrom]],, "debtToken::transferFrom:: unapproved holder in from""debtToken::transferFrom:: unapproved holder in from"));;
5656 requirerequire((okHoldersokHolders[[toto]],, "debtToken::transferFrom:: unapproved holder in to""debtToken::transferFrom:: unapproved holder in to"));;
5757 _transfer_transfer((fromfrom,, to to,, amount amount));;
5858 returnreturn truetrue;;
5959 }}

The only checks in the function transferFrom above are the require statements in L55~56, checking if

the sender and the receiver are both approved. Without allowance check before token transferring, a

malicious approved holder A can drain the tokens from another approved holder B by calling:

 transferFromtransferFrom((BB,, A A,, amount amount));;

Since no allowance check is applied within the function transferFrom , the transaction above can be

executed as long as B has enough tokens.

Recommendation

We recommend adding an allowance check in the function transferFrom as in openzeppelin.

Alleviation

Alpaca Finance Security Assessment

https://github.com/OpenZeppelin/openzeppelin-contracts-upgradeable/blob/master/contracts/token/ERC20/ERC20Upgradeable.sol#L154

The development team heeded our advice and resolved this issue in the commit

7b8389ac08f2025af8bad23af0ba7ea91ca94c26.

(CertiK) Please ensure the sub function in the update commit will revert on failure.

 _approve_approve((fromfrom,, _msgSender_msgSender(()),, allowanceallowance((fromfrom,, _msgSender_msgSender(())))..subsub((amountamount,, "BEP20:"BEP20:
transfer amount exceeds allowance"transfer amount exceeds allowance"))));;

Alpaca Finance Security Assessment

https://github.com/alpaca-finance/bsc-alpaca-contract/commit/7b8389ac08f2025af8bad23af0ba7ea91ca94c26

DTC-02 | Dead Code

Category Severity Location Status

Gas Optimization Informational protocol/DebtToken.sol: 11, 15 Acknowledged

Description

The variable timelock and the modifier onlyTimelock defined in the aforementioned lines are not playing

any actual role in the contract, and thus can be safely omitted.

Recommendation

We recommend removing the dead code if it is not used anywhere.

Alleviation

(Alpaca Team Response) onlyTimelock is reserved for the future used as DebtToken is an upgradable

contract. So, we would like to reserve memory allocation for a Timelock variable since day 1.

Alpaca Finance Security Assessment

DTC-03 | Function Should Be Declared External

Category Severity Location Status

Gas Optimization Informational protocol/DebtToken.sol: 20 Resolved

Description

The function initialize is never called internally within the contract and thus should have external

visibility.

Recommendation

We recommend changing the visibility of the aforementioned function to external .

Alleviation

The development team heeded our advice and resolved this issue in the commit

7b8389ac08f2025af8bad23af0ba7ea91ca94c26.

Alpaca Finance Security Assessment

https://github.com/alpaca-finance/bsc-alpaca-contract/commit/7b8389ac08f2025af8bad23af0ba7ea91ca94c26

FLC-01 | Function Should Be Declared External

Category Severity Location Status

Gas
Optimization

Informational
token/FairLaunch.sol: 100, 106, 119, 143, 174, 242, 258, 262, 284,
305

Resolved

Description

The functions which are never called internally within the contract should have external visibility. For

example:

setAlpacaPerBlock

setBonus

addPool

setPool

manualMint

deposit

withdraw

withdrawAll

harvest

emergencyWithdraw .

Recommendation

We recommend changing the visibility of the aforementioned functions to external .

Alleviation

The development team heeded our advice and resolved this issue in the commit

7b8389ac08f2025af8bad23af0ba7ea91ca94c26.

Alpaca Finance Security Assessment

https://github.com/alpaca-finance/bsc-alpaca-contract/commit/7b8389ac08f2025af8bad23af0ba7ea91ca94c26

FLC-02 | Lack of Return Value Handling

Category Severity Location Status

Logical Issue Minor token/FairLaunch.sol: 320, 322 Resolved

Description

According to the standard IERC20 interface (which AlpacaToken inherits from), the function transfer is

not a void-returning function. However, in FairLaunch contract, the return value of the function transfer

is not handled properly:

319319 ifif ((_amount _amount >> alpacaBal alpacaBal)) {{
320320 alpaca alpaca..transfertransfer((_to_to,, alpacaBal alpacaBal));;
321321 }} elseelse {{
322322 alpaca alpaca..transfertransfer((_to_to,, _amount _amount));;
323323 }}

Ignoring the return value of the function transfer might cause some unexpected exceptions, especially if

the called function doesn't revert automatically on failure.

Recommendation

We recommend checking the output of the aforementioned function, and continuing processing when

receiving a proper returned value, otherwise reverting.

Alleviation

The development team heeded our advice and resolved this issue in the commit

7b8389ac08f2025af8bad23af0ba7ea91ca94c26.

Alpaca Finance Security Assessment

https://github.com/alpaca-finance/bsc-alpaca-contract/commit/7b8389ac08f2025af8bad23af0ba7ea91ca94c26

FLC-03 | Lack of Checks for Reentrancy

Category Severity Location Status

Logical Issue Major token/FairLaunch.sol: 119, 143, 213, 242, 258, 262, 284, 305 Partially Resolved

Description

The functions that contain state update(s) after external call(s) are potentially vulnerable to reentrancy

attack. For example:

addPool

setPool

updatePool

deposit

withdraw

withdrawAll

harvest

emergencyWithdraw

These functions should apply reentrancy guard rails.

Recommendation

We recommend applying OpenZeppelin ReentrancyGuard library - nonReentrant modifier for the

aforementioned functions to prevent reentrancy attack.

Alleviation

The development team heeded our advice and partially resolved this issue in the commit

7b8389ac08f2025af8bad23af0ba7ea91ca94c26, and promised to fix the rest in the future.

Alpaca Finance Security Assessment

https://github.com/OpenZeppelin/openzeppelin-contracts/blob/master/contracts/utils/ReentrancyGuard.sol
https://github.com/alpaca-finance/bsc-alpaca-contract/commit/7b8389ac08f2025af8bad23af0ba7ea91ca94c26

FLC-04 | Division Before Multiplication

Category Severity Location Status

Mathematical Operations Informational token/FairLaunch.sol: 198~199198 , 230, 235 Partially Resolved

Description

The mathematical operations in the aforementioned lines perform divisions before multiplications. In

L198~199, it divides 198 totalAllocPoint before multiplying 1e12 , and in L230, it divides 10 before

multiplying bonusLockUpBps. It is highly recommended to perform multiplication before division to avoid

potential loss of precision.

198198198 uint256uint256 alpacaReward alpacaReward ==
multipliermultiplier..mulmul((alpacaPerBlockalpacaPerBlock))..mulmul((poolpool..allocPointallocPoint))..divdiv((totalAllocPointtotalAllocPoint));;
199199 accAlpacaPerShare accAlpacaPerShare == accAlpacaPerShare accAlpacaPerShare..addadd((alpacaRewardalpacaReward..mulmul((1e121e12))..divdiv((lpSupplylpSupply))));;

230230 alpacaalpaca..locklock((devaddrdevaddr,, alpacaReward alpacaReward..divdiv((1010))..mulmul((bonusLockUpBpsbonusLockUpBps))..divdiv((1000010000))));;

Recommendation

We recommend applying multiplications before divisions if integer overflow would not happen. Then the

L198~199 and L230 can be updated as below.198

198198198 accAlpacaPerShare accAlpacaPerShare ==
accAlpacaPerShareaccAlpacaPerShare..addadd((multipliermultiplier..mulmul((alpacaPerBlockalpacaPerBlock))..mulmul((poolpool..allocPointallocPoint))..mulmul((1e121e12))..divdiv((tt
otalAllocPointotalAllocPoint))..divdiv((lpSupplylpSupply))));;

230230 alpacaalpaca..locklock((devaddrdevaddr,, alpacaReward alpacaReward..mulmul((bonusLockUpBpsbonusLockUpBps))..divdiv((1010))..divdiv((1000010000))));;

Alleviation

The development team partially heeded our advice and partially resolved this issue in the commit

7b8389ac08f2025af8bad23af0ba7ea91ca94c26

Alpaca Finance Security Assessment

https://github.com/alpaca-finance/bsc-alpaca-contract/commit/7b8389ac08f2025af8bad23af0ba7ea91ca94c26

FLV-01 | Function Should Be Declared External

Category Severity Location Status

Gas Optimization Informational token/FairLaunchV2.sol: 86, 96, 114, 137, 199, 221, 242, 280 Resolved

Description

The functions which are never called internally within the contract should have external visibility. For

example：

init

poolLength

addPool

setPool

deposit

withdraw

harvest

emergencyWithdraw

Recommendation

We recommend changing the visibility of the aforementioned functions to external .

Alleviation

The development team heeded our advice and resolved this issue in the commit

7b8389ac08f2025af8bad23af0ba7ea91ca94c26.

Alpaca Finance Security Assessment

https://github.com/alpaca-finance/bsc-alpaca-contract/commit/7b8389ac08f2025af8bad23af0ba7ea91ca94c26

FLV-02 | Lack of Return Value Handling

Category Severity Location Status

Logical Issue Minor token/FairLaunchV2.sol: 90, 266, 269 Resolved

Description

The function approve is not a void-returning function per the IERC20 interface. In the aforementioned

lines, the return value of the function approve is not handled properly, for instance:

9090 dummyTokendummyToken..approveapprove((addressaddress((FAIR_LAUNCH_V1FAIR_LAUNCH_V1)),, balance balance));;

Ignoring the return value of the function approve might cause some unexpected exceptions, especially if

the called function doesn't revert automatically on failure.

Recommendation

We recommend checking the output of the aforementioned function, and continuing processing when

receiving a proper returned value, otherwise reverting.

Alleviation

The development team heeded our advice and resolved this issue in the commit

7b8389ac08f2025af8bad23af0ba7ea91ca94c26.

Alpaca Finance Security Assessment

https://github.com/alpaca-finance/bsc-alpaca-contract/commit/7b8389ac08f2025af8bad23af0ba7ea91ca94c26

FLV-03 | Lack of Checks for Reentrancy

Category Severity Location Status

Logical Issue Major token/FairLaunchV2.sol: 86, 137, 180, 199, 221, 242, 280 Partially Resolved

Description

The functions that contain state update(s) after the external call(s) are potentially vulnerable to reentrancy

attack. For example

init

setPool

updatePool

deposit

withdraw

harvest

emergencyWithdraw

These functions should apply reentrancy guard rails.

Recommendation

We recommend applying OpenZeppelin ReentrancyGuard library - nonReentrant modifier for the

aforementioned functions to prevent reentrancy attack.

Alleviation

The development team heeded our advice and partially resolved this issue in the commit

7b8389ac08f2025af8bad23af0ba7ea91ca94c26, and promised to fix the rest in the future.

Alpaca Finance Security Assessment

https://github.com/OpenZeppelin/openzeppelin-contracts/blob/master/contracts/utils/ReentrancyGuard.sol
https://github.com/alpaca-finance/bsc-alpaca-contract/commit/7b8389ac08f2025af8bad23af0ba7ea91ca94c26

FLV-04 | Division Before Multiplication

Category Severity Location Status

Mathematical Operations Informational token/FairLaunchV2.sol: 155~156, 186~187 Partially Resolved

Description

The mathematical operations in the aforementioned lines perform divisions before multiplications. In

L155~156, it divides totalAllocPoint before multiplying ACC_ALPACA_PRECISION . It is highly

recommended to perform multiplication before division to avoid potential loss of precision.

155155 uint256uint256 alpacaReward alpacaReward == blocks blocks..mulmul((alpacaPerBlockalpacaPerBlock(())))..mulmul((poolpool..allocPointallocPoint)) //
totalAllocPointtotalAllocPoint;;
156156 accAlpacaPerShare accAlpacaPerShare ==
accAlpacaPerShareaccAlpacaPerShare..addadd((alpacaRewardalpacaReward..mulmul((ACC_ALPACA_PRECISIONACC_ALPACA_PRECISION)) // lpSupply lpSupply));;

Recommendation

We recommend applying multiplications before divisions if the integer overflow would not happen. Then

the L155~156 can be updated as below

 accAlpacaPerShare accAlpacaPerShare ==
accAlpacaPerShareaccAlpacaPerShare..addadd((blocksblocks..mulmul((alpacaPerBlockalpacaPerBlock(())))..mulmul((poolpool..allocPointallocPoint))..mulmul((ACC_ALPACA_PRACC_ALPACA_PR
ECISIONECISION))..divdiv((totalAllocPointtotalAllocPoint))..divdiv((lpSupplylpSupply))));;

Alleviation

The development team partially heeded our advice and partially resolved this issue in the commit

7b8389ac08f2025af8bad23af0ba7ea91ca94c26

Alpaca Finance Security Assessment

https://github.com/alpaca-finance/bsc-alpaca-contract/commit/7b8389ac08f2025af8bad23af0ba7ea91ca94c26

ITR-01 | Function Should Be Declared External

Category Severity Location Status

Gas Optimization Informational protocol/IbTokenRouter.sol: 23, 275, 320 Resolved

Description

The functions initialize , removeLiquidityToken and removeLiquidityAllAlpaca in the

aforementioned lines are never called internally within the contract and thus should have external visibility.

Recommendation

We recommend changing the visibility of the aforementioned functions to external .

Alleviation

The development team heeded our advice and resolved this issue in the commit

7b8389ac08f2025af8bad23af0ba7ea91ca94c26.

Alpaca Finance Security Assessment

https://github.com/alpaca-finance/bsc-alpaca-contract/commit/7b8389ac08f2025af8bad23af0ba7ea91ca94c26

LRC-01 | Function Should Be Declared External

Category Severity Location Status

Gas Optimization Informational token/lockers/LinearRelease.sol: 48, 52, 56, 95 Resolved

Description

The functions which are never called internally within the contract should have external visibility. For

example:

calLockAmount

lockOf

lock

claim

Recommendation

We recommend changing the visibility of the aforementioned functions to external .

Alleviation

The development team heeded our advice and resolved this issue in the commit

7b8389ac08f2025af8bad23af0ba7ea91ca94c26.

Alpaca Finance Security Assessment

https://github.com/alpaca-finance/bsc-alpaca-contract/commit/7b8389ac08f2025af8bad23af0ba7ea91ca94c26

LRC-02 | Redundant Data Structure

Category Severity Location Status

Gas Optimization Informational token/lockers/LinearRelease.sol: 69~93 Resolved

Description

The arrays _rewardTokens[] and _rewardAmounts[] declared in L88 and L90 are single element arrays

(only _rewardTokens[0] and _rewardAmounts[0] are declared and used):

8888 IERC20 IERC20[[]] memorymemory _rewardTokens _rewardTokens == newnew IERC20IERC20[[]]((11));;
8989 _rewardTokens _rewardTokens[[00]] == ((tokentoken));;
9090 uint256uint256[[]] memorymemory _rewardAmounts _rewardAmounts == newnew uint256uint256[[]]((11));;
9191 _rewardAmounts _rewardAmounts[[00]] == amount amount;;

Therefore, the arrays above can be replaced with single value variables _rewardTokens and

_rewardAmounts , or use token and amount instead.

Recommendation

We recommend replacing _rewardTokens[] and _rewardAmounts[] with token and amount .

Alleviation

(Alpaca Team Response) This is reserved for the case that the contract that is implemented ILocker

distributes more than 1 reward for users.

Alpaca Finance Security Assessment

PWC-01 | Lack of Return Value Handling

Category Severity Location Status

Logical Issue Minor protocol/workers/PancakeswapWorker.sol: 147, 174, 219 Partially Resolved

Description

According to IUniswapV2Router02 and IERC20 interfaces, the functions swapExactTokensForTokens and

transfer are not void-returning functions. However, in this contract, the return values of the functions are

not handled properly:

147147 router router..swapExactTokensForTokensswapExactTokensForTokens((rewardreward..subsub((bountybounty)),, 00,, path path,, addressaddress((thisthis)),,
nownow));;

174174 lpToken lpToken..transfertransfer((addressaddress((liqStratliqStrat)),, lpToken lpToken..balanceOfbalanceOf((addressaddress((thisthis))))));;

219219 lpToken lpToken..transfertransfer((addressaddress((liqStratliqStrat)),, lpToken lpToken..balanceOfbalanceOf((addressaddress((thisthis))))));;

Ignoring the return values of these functions might cause some unexpected exceptions, especially if the

called functions don't revert automatically on failure.

Recommendation

We recommend checking the output values of the aforementioned functions, and continuing processing

when receiving proper returned values, otherwise reverting.

Alleviation

The development team heeded our advice and handled the return value of transfer in the commit

7b8389ac08f2025af8bad23af0ba7ea91ca94c26, and decided to leave swapExactTokensForTokens as it

was.

(CertiK) Per the current PancakeRouter contract design, the function swapExactTokensForTokens will

automatically revert on failure, which is safe. However, we encourage the team to be cautious about any

modification or update of PancakeRouter to ensure these external calls coordinate well with your project

logic.

Alpaca Finance Security Assessment

https://github.com/alpaca-finance/bsc-alpaca-contract/commit/7b8389ac08f2025af8bad23af0ba7ea91ca94c26

PWC-02 | Lack of Event for Significant Transaction

Category Severity Location Status

Data Flow Informational protocol/workers/PancakeswapWorker.sol: 164 Resolved

Description

The function work in L164 performs a significant role in the contract. Therefore, logging this action is highly

recommended.

Recommendation

We recommend emitting an event in the work function, as what is done in the reinvest and liquidate

functions.

Alleviation

(Alpaca Team Response) There are events emitted in _addShare() and _removeShare() functions

already. Hence, there is no need to emit events in work() .

Alpaca Finance Security Assessment

PWC-03 | Function Should Be Declared External

Category Severity Location Status

Gas Optimization Informational protocol/workers/PancakeswapWorker.sol Resolved

Description

The functions initialize and reinvest are never called internally within the contract and thus should

have external visibility.

Recommendation

We recommend changing the visibility of the aforementioned functions to external .

Alleviation

The development team heeded our advice and resolved this issue in the commit

7b8389ac08f2025af8bad23af0ba7ea91ca94c26.

Alpaca Finance Security Assessment

https://github.com/alpaca-finance/bsc-alpaca-contract/commit/7b8389ac08f2025af8bad23af0ba7ea91ca94c26

PWC-04 | Centralization Risks

Category Severity Location Status

Centralization / Privilege Major protocol/workers/PancakeswapWorker.sol: 295 Partially Resolved

Description

The function setCriticalStrategies in L295 allows the owner to change the execution strategies

addStrat and liqStrat , after contract initialization, and thus could potentially influence the contract

execution logic in an improper way. For example, if the owner accidentally updates the strategies to some

vulnerable contracts, tokens from the current contract might be stolen away:

 functionfunction setCriticalStrategiessetCriticalStrategies((IStrategy _addStratIStrategy _addStrat,, IStrategy _liqStrat IStrategy _liqStrat)) externalexternal
onlyOwner onlyOwner {{
 addStrat addStrat == _addStrat _addStrat;;
 liqStrat liqStrat == _liqStrat _liqStrat;;
 }}

Recommendation

We recommend the team review the design and ensure minimum centralization risk.

Alleviation

(Alpaca Team Response) All workers are owned by a Timelock contract with 24 hours delay. Hence, tx

that will trigger setCriticalStrategies needs to be queued 24 hours in advance. So, if there is a

malicious attempt from us, everyone has 24 hours to exit everything.

(CertiK) We agree with the solution above. We recommend the team set up the owner role properly.

Meanwhile, to improve the trustworthiness of the project, any dynamic runtime update in the project

should be notified to the community in advance.

Alpaca Finance Security Assessment

PWC-05 | Non-Optimal Parameters Passed to Strategy

Category Severity Location Status

Logical Issue Minor protocol/workers/PancakeswapWorker.sol: 150, 220 Partially Resolved

Description

In the function reinvest of the current contract, addStrat is executed in L150, where the last 0 (encoded

in abi.encode(baseToken, quoteToken, 0)) would be passed down as the value of the parameter

minLPAmount in the execute function of the strategy contracts:

150150 addStrat addStrat..executeexecute((addressaddress((00)),, 00,, abi abi..encodeencode((baseTokenbaseToken,, quoteToken quoteToken,, 00))));;

For example, in the execute function of the strategy contract StrategyAddBaseTokenOnly :

6969 requirerequire((moreLPAmount moreLPAmount >=>= minLPAmount minLPAmount,, "StrategyAddBaseTokenOnly::execute::"StrategyAddBaseTokenOnly::execute::
insufficient LP tokens received"insufficient LP tokens received"));;

The require statement is used as a guard rail to ensure the minimum amount of LP tokens should be

received after adding liquidity. However, in this case (when setting minLPAmount as 0), the above require

statement will always be passed, since moreLPAmount will always be non-negative. Thus the above require

statement is not playing an effective role. Our concern is it might be vulnerable to front running attack.

Similarly, in the function liquidate , liqStrat is executed in L220, where the last 0 (encoded in

abi.encode(baseToken, quoteToken, 0) would be the value of parameter minBaseToken in the execute

function of the strategy contracts:

220220 liqStrat liqStrat..executeexecute((addressaddress((00)),, 00,, abi abi..encodeencode((baseTokenbaseToken,, quoteToken quoteToken,, 00))));;

For example, in the execute function of the strategy contract StrategyLiquidate :

5656 requirerequire((balance balance >=>= minBaseToken minBaseToken,, "StrategyLiquidate::execute:: insufficient"StrategyLiquidate::execute:: insufficient
baseToken received"baseToken received"));;

It is used as a guard rail to ensure the minimum amount of baseToken balance after removing liquidity and

token swap. However, in this case (minBaseToken being 0), it will not behave as an effective guard rail. It

Alpaca Finance Security Assessment

would make no difference with or without this require check when the minBaseToken is set as 0 since the

balance will always be non-negative. Hence, it might be vulnerable to front running attack.

Recommendation

We recommend carefully setting the last parameter in L150, corresponding to minLPAmount in addStrat ,

and the last parameter in L220, corresponding to minBaseToken in liquidate , as some better evaluated

non-zero values, to improve the safety overall.

Alleviation

(Alpaca Team Response) For reinvest , the function is triggered by our reinvest bot and we run it every

30 mins. From running the platform for 2 months, the total amount of $CAKE that is earned during 30 mins

compared to $CAKE liquidity is quite small. For liquidate , we have to liquidate positions as fast as

possible. This is due to the position already in the killing zone. Passing minBaseToken there would cause

transaction revert and not be able to liquidate the position before it is going underwater.

(CertiK) We agree the risk is relatively low for small transactions. We still suggest the team should be

cautious about the potential attack for big transactions and carefully set the value of parameters

minLPAmount and minBaseToken (to be encoded in data) whenever calling the strategy execute function.

Alpaca Finance Security Assessment

SAB-01 | Unused Variable

Category Severity Location Status

Dead Code Informational protocol/strategies/pancakeswap/StrategyAddBaseTokenOnly.sol: 19 Resolved

Description

In L19, the contract declares a variable wNative , The variable is not used within the contract and thus can

be safely omitted.

1919 addressaddress publicpublic wNative wNative;;

Recommendation

We recommend removing the variable in the aforementioned line.

Alleviation

The development team heeded our advice and resolved this issue in the commit

7b8389ac08f2025af8bad23af0ba7ea91ca94c26.

Alpaca Finance Security Assessment

https://github.com/alpaca-finance/bsc-alpaca-contract/commit/7b8389ac08f2025af8bad23af0ba7ea91ca94c26

SAB-02 | Inappropriate Payable Modifier

Category Severity Location Status

Logical Issue Informational protocol/strategies/pancakeswap/StrategyAddBaseTokenOnly.sol: 38 Resolved

Description

In this contract, there is no such payable receive() or fallback() , which means the contract itself

cannot receive any native token (BNB or ETH). However, the function execute() (L35) comes with the

payable modifier, which is conflict with its design intention.

3535 functionfunction executeexecute((addressaddress /* user *//* user */,, uint256uint256 /* debt *//* debt */,, bytesbytes calldatacalldata data data))
3636 externalexternal
3737 override override
3838 payablepayable
3939 nonReentrant nonReentrant
4040 {{
4141

Recommendation

We recommend removing the payable modifier from the function execute in the aforementioned contract.

Alleviation

The development team heeded our advice and resolved this issue in the commit

7b8389ac08f2025af8bad23af0ba7ea91ca94c26.

Alpaca Finance Security Assessment

https://github.com/alpaca-finance/bsc-alpaca-contract/commit/7b8389ac08f2025af8bad23af0ba7ea91ca94c26

SAB-03 | Lack of Return Value Handling

Category Severity Location Status

Logical
Issue

Minor
protocol/strategies/pancakeswap/StrategyAddBaseTokenOnly.sol: 64
~70

Partially
Resolved

Description

The functions swapExactTokensForTokens and transfer in the aforementioned lines are not void-

returning functions per IUniswapV2Router02 and IERC20 interfaces. Ignoring the return values of these

functions might cause some unexpected exceptions, especially if the called functions don't revert

automatically on failure.

In the StrategyAddBaseTokenOnly contract, the return values of the functions are not handled properly:

6464 router router..swapExactTokensForTokensswapExactTokensForTokens((aInaIn,, 00,, path path,, addressaddress((thisthis)),, now now));;

7070 lpToken lpToken..transfertransfer((msgmsg..sendersender,, lpToken lpToken..balanceOfbalanceOf((addressaddress((thisthis))))));;

Recommendation

We recommend checking the output of the aforementioned functions, and continuing processing when

receiving proper returned values, otherwise reverting.

Alleviation

The development team heeded our advice and handled the return value of transfer in the commit

7b8389ac08f2025af8bad23af0ba7ea91ca94c26, and decided to leave swapExactTokensForTokens as it

was.

[CertiK] In the current PancakeRouter contract design, the function swapExactTokensForTokens will

automatically revert on failure, which is safe. However, we encourage the team to be cautious about any

modification or update of the PancakeRouter to ensure the external calls coordinate well with your project

logic.

Alpaca Finance Security Assessment

https://github.com/alpaca-finance/bsc-alpaca-contract/commit/7b8389ac08f2025af8bad23af0ba7ea91ca94c26

SAB-04 | Function Should Be Declared External

Category Severity Location Status

Gas
Optimization

Informational
protocol/strategies/pancakeswap/StrategyAddBaseTokenOnly.sol:
26

Resolved

Description

The function initialize is never called internally within the contract and thus should have external

visibility.

Recommendation

We recommend changing the visibility of the aforementioned function to external for gas optimization.

Alleviation

The development team heeded our advice and resolved this issue in the commit

7b8389ac08f2025af8bad23af0ba7ea91ca94c26.

Alpaca Finance Security Assessment

https://github.com/alpaca-finance/bsc-alpaca-contract/commit/7b8389ac08f2025af8bad23af0ba7ea91ca94c26

SAB-05 | Possible Residue in Current Contract

Category Severity Location Status

Logical
Issue

Informational
protocol/strategies/pancakeswap/StrategyAddBaseTokenOnly.sol
: 66~68

Acknowledged

Description

The execute function in the current contract is to add liquidity to the Uniswap liquidity pool by executing

L66:

6666 ((,,,, uint256uint256 moreLPAmount moreLPAmount)) == router router..addLiquidityaddLiquidity((
6767 baseToken baseToken,, farmingToken farmingToken,, baseToken baseToken..myBalancemyBalance(()),, farmingToken farmingToken..myBalancemyBalance(()),, 00,,

00,, addressaddress((thisthis)),, now now
6868));;

After calling addLiquidity , there might be some "baseToken" or "farmingToken" leftover in this strategy

contract, because the addLiquidity function cannot guarantee all the tokens are sent to the router. That is

why function addLiquidity has return values telling how many tokens were actually sent. With the current

code implementation, the leftover tokens are not returned to the msg. sender , but stay in this contract.

Our concern is that the leftover tokens might be taken use of by the adjacent next execute function caller.

For example:

Alice is a worker, who would call function work in the contract Vault . Per the function call chain

implemented in the project, the "baseToken" would be transferred from the contract Vault to the

contract PancakeswapWorker and finally to the contract StrategyAddBaseTokenOnly .

After the execute function being executed, there might be some "baseToken" leftover, and the

leftover "baseToken" would stay in the contract.

Bob is an attacker who calls the execute function right after Alice finishes her work . As a result, he

would make use of the leftover "baseToken" (because the contract just cares about the balance

baseToken.myBalance() , but doesn't care where/who these tokens are from) and thus collect

lpToken .

Recommendation

We recommend transferring the token leftover back to the function caller after addLiquidity , or set proper

role access on top of the execute function.

Alpaca Finance Security Assessment

https://uniswap.org/docs/v2/smart-contracts/router02/#addliquidity

Alleviation

(Alpaca Team Response) The leftover on baseToken will be minimal and not really worth the gas fee to

return back to users. For strategy add base token only, each floor function in the formula can contribute to

at most value of 1 diff from the actual value without floor function. Hence, rounding error will <= 2 Wei.

Alpaca Finance Security Assessment

SAB-06 | Non-Optimal Parameter Set

Category Severity Location Status

Logical
Issue

Informational
protocol/strategies/pancakeswap/StrategyAddBaseTokenOnly.sol: 64~
68

Resolved

Description

The 2nd input parameter, amountOutMin of the function swapExactTokensForTokens indicates the desired

minimum amount of the tokens that should be swapped. If less than amountOutMin is swapped, this

function will revert. However, in the current contract, the parameter amountOutMin is set as 0:

6464 router router..swapExactTokensForTokensswapExactTokensForTokens((aInaIn,, 00,, path path,, addressaddress((thisthis)),, now now));;

Moreover, the 5th and 6th input parameters, amountAMin and amountBMin , of the function addLiquidity

indicate the minimum amount of the tokens that should be added to the liquidity pool. If less than

amountAMin and amountBMin are added, this function will revert. However, in the current contract,

amountAMin and amountBMin are set as 0:

6666 ((,,,, uint256uint256 moreLPAmount moreLPAmount)) == router router..addLiquidityaddLiquidity((
6767 baseToken baseToken,, farmingToken farmingToken,, baseToken baseToken..myBalancemyBalance(()),, farmingToken farmingToken..myBalancemyBalance(()),, 00,,

00,, addressaddress((thisthis)),, now now
6868));;

This will result in instant token-swap/liquidity-add without considering the market price. Therefore, it is

vulnerable to front running attack.

Recommendation

We recommend carefully setting the aforementioned parameters: amountOutMin , amountAMin and

amountAMin as some non-zero values, to reduce the potential risks.

Alleviation

(Alpaca Team Response) The reason that we passed those params as 0 is because for each strategy we

only assert the result after swapping only. We have

requirerequire((moreLPAmount moreLPAmount >=>= minLPAmount minLPAmount,, "StrategyAddBaseTokenOnly::execute:: insufficient LP"StrategyAddBaseTokenOnly::execute:: insufficient LP
tokens received"tokens received"));;

Alpaca Finance Security Assessment

after swapping. With this line, it basically checks if we received enough LPs and if there is a front running

attack or sandwich attack happened. Then this line will be reverted as it is not enough LP received.

(CertiK) We agreed on the design mentioned above. We still suggest the team should be cautious about

the potential attack for big transactions and carefully set the value of parameter minLPAmount (encoded in

the input data) whenever calling the execute function.

Alpaca Finance Security Assessment

SAC-01 | Function Should Be Declared External

Category Severity Location Status

Gas Optimization Informational token/StronkAlpaca.sol: 105 Resolved

Description

The function getRelayerAddress in L105 is never called internally within the contract and thus should

have external visibility.

Recommendation

We recommend changing the visibility of the aforementioned function to external .

Alleviation

The development team heeded our advice and resolved this issue in the commit

7b8389ac08f2025af8bad23af0ba7ea91ca94c26.

Alpaca Finance Security Assessment

https://github.com/alpaca-finance/bsc-alpaca-contract/commit/7b8389ac08f2025af8bad23af0ba7ea91ca94c26

SAT-01 | Function Should Be Declared External

Category Severity Location Status

Gas
Optimization

Informational
protocol/strategies/pancakeswap/StrategyAddTwoSidesOptimal.so
l: 27

Resolved

Description

The function initialize is never called internally within the contract and thus should have external

visibility.

Recommendation

We recommend changing the visibility of the aforementioned function to external for gas optimization.

Alleviation

The development team heeded our advice and resolved this issue in the commit

7b8389ac08f2025af8bad23af0ba7ea91ca94c26.

Alpaca Finance Security Assessment

https://github.com/alpaca-finance/bsc-alpaca-contract/commit/7b8389ac08f2025af8bad23af0ba7ea91ca94c26

SAT-02 | Division Before Multiplication

Category Severity Location Status

Mathematical
Operations

Informational
protocol/strategies/pancakeswap/StrategyAddTwoSidesOpti
mal.sol: 71

Resolved

Description

The mathematical operations in the aforementioned line perform division before multiplication. In L71, it

divides amtB.add(resB) before resA . It is highly recommended to perform multiplication before division to

avoid potential loss of precision.

7171 uint256uint256 c c == _c _c..mulmul((10001000))..divdiv((amtBamtB..addadd((resBresB))))..mulmul((resAresA));;

Recommendation

We recommend applying multiplications before divisions if integer overflow would not happen. Then the

L71 can be updated as below

7171 uint256uint256 c c == _c _c..mulmul((10001000))..mulmul((resAresA))..divdiv((amtBamtB..addadd((resBresB))));;

Alleviation

The development team heeded our advice and resolved this issue in the commit

7b8389ac08f2025af8bad23af0ba7ea91ca94c26.

Alpaca Finance Security Assessment

https://github.com/alpaca-finance/bsc-alpaca-contract/commit/7b8389ac08f2025af8bad23af0ba7ea91ca94c26

SAT-03 | Inappropriate Payable Modifier

Category Severity Location Status

Logical
Issue

Informational
protocol/strategies/pancakeswap/StrategyAddTwoSidesOptimal.sol: 8
4

Resolved

Description

According to the current code implementation, this strategy contract is not designed to hold any native

token (BNB or ETH). However, the execute function in the contract is a payable function, which is conflict

with its design:

8484 functionfunction executeexecute((addressaddress user user,, uint256uint256,, /* debt *//* debt */ bytesbytes calldatacalldata data data)) externalexternal
override override payablepayable nonReentrant nonReentrant

Recommendation

We recommend removing the payable modifier from the function execute in the aforementioned contract.

Alleviation

The development team heeded our advice and resolved this issue in the commit

7b8389ac08f2025af8bad23af0ba7ea91ca94c26.

Alpaca Finance Security Assessment

https://github.com/alpaca-finance/bsc-alpaca-contract/commit/7b8389ac08f2025af8bad23af0ba7ea91ca94c26

SAT-04 | Lack of Return Value Handling

Category Severity Location Status

Logical
Issue

Minor
protocol/strategies/pancakeswap/StrategyAddTwoSidesOptimal.sol: 11
1~117

Partially
Resolved

Description

The functions swapExactTokensForTokens and transfer are not void-returning functions per

IUniswapV2Router02 and IERC20 interfaces. In the StrategyAddTwoSidesOptimal contract, the return

values of the functions are not handled properly:

111111 ifif ((swapAmt swapAmt >> 00)) router router..swapExactTokensForTokensswapExactTokensForTokens((swapAmtswapAmt,, 00,, path path,,
addressaddress((thisthis)),, now now));;

117117 lpToken lpToken..transfertransfer((msgmsg..sendersender,, lpToken lpToken..balanceOfbalanceOf((addressaddress((thisthis))))));;

Ignoring the return values of these functions might cause some unexpected exceptions, especially if the

called functions don't revert automatically on failure.

Recommendation

We recommend checking the output of the aforementioned functions, and continuing processing when

receiving proper returned values, otherwise reverting.

Alleviation

The development team heeded our advice and handled the return value of transfer in the commit

7b8389ac08f2025af8bad23af0ba7ea91ca94c26, and decided to leave swapExactTokensForTokens as it

was.

(CertiK) Per the current PancakeRouter contract design, the swapExactTokensForTokens will

automatically revert on failure, which is safe. However, we encourage the team to be cautious about any

modification or update of the PancakeRouter to ensure the external calls coordinate well with your project

logic.

Alpaca Finance Security Assessment

https://github.com/alpaca-finance/bsc-alpaca-contract/commit/7b8389ac08f2025af8bad23af0ba7ea91ca94c26

SAT-05 | Non-Optimal Parameter Set

Category Severity Location Status

Logical
Issue

Informational
protocol/strategies/pancakeswap/StrategyAddTwoSidesOptimal.sol: 11
1~115

Resolved

Description

The 2nd input parameter, amountOutMin of the function swapExactTokensForTokens indicates the desired

minimum amount of the tokens that should be swapped. If less than amountOutMin is swapped, this

function will revert. However, in the current contract, the parameter amountOutMin is set as 0:

111111 router router..swapExactTokensForTokensswapExactTokensForTokens((aInaIn,, 00,, path path,, addressaddress((thisthis)),, now now));;

Moreover, the 5th and 6th input parameters, amountAMin and amountBMin , of the function addLiquidity

indicate the minimum amount of the tokens that should be added to the liquidity pool. If less than

amountAMin and amountBMin are added, this function will revert. However, in the current contract,

amountAMin and amountBMin are set as 0:

113113 ((,,,, uint256uint256 moreLPAmount moreLPAmount)) == router router..addLiquidityaddLiquidity((
114114 baseToken baseToken,, farmingToken farmingToken,, baseToken baseToken..myBalancemyBalance(()),, farmingToken farmingToken..myBalancemyBalance(()),, 00,,
00,, addressaddress((thisthis)),, now now
115115));;

This will result in instant token-swap/liquidity-add without considering the market price. Therefore, it is

vulnerable to front running attack.

Recommendation

We recommend carefully setting the aforementioned parameters: amountOutMin , amountAMin and

amountAMin as some non-zero values, to reduce the potential risks.

Alleviation

(Alpaca Team Response) The reason that we passed those params as 0 is because for each strategy we

only assert the result after swapping only. We have

requirerequire((moreLPAmount moreLPAmount >=>= minLPAmount minLPAmount,, "StrategyAddTwoSidesOptimal::execute:: insufficient"StrategyAddTwoSidesOptimal::execute:: insufficient
LP tokens received"LP tokens received"));;

Alpaca Finance Security Assessment

after swapping. With this line, it basically checks if we received enough LPs and if there is a front running

attack or sandwich attack happened. Then this line will be reverted as it is not enough LP received.

(CertiK) We agreed on the design mentioned above. We still suggest the team should be cautious about

the potential attack for big transactions and carefully set the value of parameter minLPAmount (encoded in

the input data) whenever calling the execute function.

Alpaca Finance Security Assessment

SCK-01 | Function Should Be Declared External

Category Severity Location Status

Gas Optimization Informational token/Shield.sol: 29, 38, 46, 57, 66 Resolved

Description

The functions which are never called internally within the contract should have external visibility. For

example:

setAlpacaPerBlock

setBonus

mintWarchest

addPool

setPool

Recommendation

We recommend changing the visibility of the aforementioned functions to external .

Alleviation

The development team heeded our advice and resolved this issue in the commit

7b8389ac08f2025af8bad23af0ba7ea91ca94c26.

Alpaca Finance Security Assessment

https://github.com/alpaca-finance/bsc-alpaca-contract/commit/7b8389ac08f2025af8bad23af0ba7ea91ca94c26

SCK-02 | Lack of Checks for Reentrancy

Category Severity Location Status

Logical Issue Major token/Shield.sol: 29, 38, 46, 57, 66 Resolved

Description

The functions that contain state update(s) after external call(s) are potentially vulnerable to reentrancy

attack. For example:

setAlpacaPerBlock

setBonus

mintWarchest

addPool

setPool

These functions should apply reentrancy guard rails.

Recommendation

We recommend applying OpenZeppelin ReentrancyGuard library - nonReentrant modifier for the

aforementioned functions to prevent reentrancy attack.

Alleviation

(Alpaca Team Response) All methods in the Shield contract are needed to be executed through Timelock.

Hence, there won’t be any reentrancy issue.

(CertiK) We agree with the solution above. We recommend the team set up the owner of the contract

correctly, and set up proper parameters when calling the functions. Meanwhile, to improve the

trustworthiness of the project, any dynamic runtime update in the project should be notified to the

community in advance.

Alpaca Finance Security Assessment

https://github.com/OpenZeppelin/openzeppelin-contracts/blob/master/contracts/utils/ReentrancyGuard.sol

SLC-01 | Function Should Be Declared External

Category Severity Location Status

Gas Optimization Informational protocol/strategies/pancakeswap/StrategyLiquidate.sol: 22 Resolved

Description

The function initialize is never called internally within the contract and thus should have external

visibility.

Recommendation

We recommend changing the visibility of the aforementioned function to external for gas optimization.

Alleviation

The development team heeded our advice and resolved this issue in the commit

7b8389ac08f2025af8bad23af0ba7ea91ca94c26.

Alpaca Finance Security Assessment

https://github.com/alpaca-finance/bsc-alpaca-contract/commit/7b8389ac08f2025af8bad23af0ba7ea91ca94c26

SLC-02 | Inappropriate Payable Modifier

Category Severity Location Status

Logical Issue Informational protocol/strategies/pancakeswap/StrategyLiquidate.sol Resolved

Description

According to the current code implementation, this strategy contract is not designed to receive any native

token (BNB or ETH). However, the execute function in the contract is a payable function, which is conflict

with its design:

3131 functionfunction executeexecute((addressaddress /* user *//* user */,, uint256uint256 /* debt *//* debt */,, bytesbytes calldatacalldata data data))
3232 externalexternal
3333 override override
3434 payablepayable
3535 nonReentrant nonReentrant

Recommendation

We recommend removing the payable modifier from the function execute in the aforementioned contract.

Alleviation

The development team heeded our advice and resolved this issue in the commit

7b8389ac08f2025af8bad23af0ba7ea91ca94c26.

Alpaca Finance Security Assessment

https://github.com/alpaca-finance/bsc-alpaca-contract/commit/7b8389ac08f2025af8bad23af0ba7ea91ca94c26

SLC-03 | Lack of Return Value Handling

Category Severity Location Status

Logical
Issue

Minor
protocol/strategies/pancakeswap/StrategyLiquidate.sol: 45, 48, 53, 5
9

Partially
Resolved

Description

The functions approve , swapExactTokensForTokens and removeLiquidity are not void-returning

functions per IUniswapV2Router02 and IERC20 interfaces. In the StrategyLiquidate contract, the return

values of the functions are not handled properly:

4545 lpToken lpToken..approveapprove((addressaddress((routerrouter)),, uint256uint256((--11))));;

4848 router router..removeLiquidityremoveLiquidity((baseTokenbaseToken,, farmingToken farmingToken,, lpToken lpToken..balanceOfbalanceOf((addressaddress((thisthis)))),,
00,, 00,, addressaddress((thisthis)),, now now));;

5353 router router..swapExactTokensForTokensswapExactTokensForTokens((farmingTokenfarmingToken..myBalancemyBalance(()),, 00,, path path,, addressaddress((thisthis)),,
nownow));;

5959 lpToken lpToken..approveapprove((addressaddress((routerrouter)),, 00));;

Ignoring the return values of these functions might cause some unexpected exceptions, especially if the

called functions don't revert automatically on failure.

Recommendation

We recommend checking the output of the aforementioned functions, and continuing processing when

receiving proper returned values, otherwise reverting.

Alleviation

The development team heeded our advice and handled the return value of approve in the commit

7b8389ac08f2025af8bad23af0ba7ea91ca94c26, and decided to leave swapExactTokensForTokens and

removeLiquidity as they were.

Alpaca Finance Security Assessment

https://github.com/alpaca-finance/bsc-alpaca-contract/commit/7b8389ac08f2025af8bad23af0ba7ea91ca94c26

(CertiK) Per the current PancakeRouter contract design, the functions swapExactTokensForTokens and

removeLiquidity will automatically revert on failure, which are safe. However, we encourage the team to

be cautious about any modification or update of the PancakeRouter to ensure the external calls

coordinate well with your project logic.

Alpaca Finance Security Assessment

SLC-04 | Non-Optimal Parameter Set

Category Severity Location Status

Logical Issue Informational protocol/strategies/pancakeswap/StrategyLiquidate.sol Resolved

Description

The 4th and 5th input parameters, amountAMin and amountBMin , of the function removeLiquidity indicate

the minimum amount of tokens that should be removed from the liquidity pool. If less than amountAMin

and amountBMin are removed, this function will revert. However, in the current contract, amountAMin and

amountBMin are set as 0:

4848 ((,,,, uint256uint256 moreLPAmount moreLPAmount)) == router router..addLiquidityaddLiquidity((
4949 router router..removeLiquidityremoveLiquidity((baseTokenbaseToken,, farmingToken farmingToken,, lpToken lpToken..balanceOfbalanceOf((addressaddress((thisthis)))),,
00,, 00,, addressaddress((thisthis)),, now now));;
5050));;

Moreover, the 2nd input parameter, amountOutMin of the function swapExactTokensForTokens indicates

the desired minimum amount of tokens that should be received. If less than amountOutMin is received, this

function will revert. However, in the current contract the parameter amountOutMin is set as 0:

5353 router router..swapExactTokensForTokensswapExactTokensForTokens((farmingTokenfarmingToken..myBalancemyBalance(()),, 00,, path path,, addressaddress((thisthis)),,
nownow));;

This will result in instant token-swap/liquidity-add without considering the market price. Therefore, it is

vulnerable to front running attack.

Recommendation

We recommend carefully setting the aforementioned parameters: amountOutMin , amountAMin and

amountAMin as some non-zero values, to reduce the potential risks.

Alleviation

(Alpaca Team Response) The reason that we passed that param as 0 is because for each strategy we

only assert the result after swapping only. We have

requirerequire((balance balance >=>= minBaseToken minBaseToken,, "StrategyLiquidate::execute:: insufficient baseToken"StrategyLiquidate::execute:: insufficient baseToken
received"received"));;

Alpaca Finance Security Assessment

after swapping. With this line, it basically checks if we received enough baseToken and if there is a front

running attack or sandwich attack happened. Then this line will be reverted as it is not enough baseToken

received.

(CertiK) We agreed on the design mentioned above. We still suggest the team should be cautious about

the potential attack for big transactions and carefully set the value of parameter minBaseToken (encoded in

the input data) whenever calling the execute function.

Alpaca Finance Security Assessment

SPO-01 | Centralization Risks

Category Severity Location Status

Centralization / Privilege Major protocol/SimplePriceOracle.sol: 37 Partially Resolved

Description

The external facing function setPrices in the aforementioned line allows the feeder to modify the price

manually and store it in the PriceData for further usage in the project:

3737 functionfunction setPricessetPrices((
3838 addressaddress[[]] calldatacalldata token0s token0s,,
3939 addressaddress[[]] calldatacalldata token1s token1s,,
4040 uint256uint256[[]] calldatacalldata prices prices
4141))
4242 externalexternal
4343 onlyFeeder onlyFeeder
4444 {{
4545
4646 store store[[token0token0]][[token1token1]] == PriceDataPriceData(({{
4747 price price:: uint192uint192((priceprice)),,
4848 lastUpdate lastUpdate:: uint64uint64((nownow))
4949 }}));;
5050
5151 }}
5252 }}

The price stored in PriceData performs a significant role and directly influences the income of both users

and the project. Hence, our concern is, if the feeder accidentally and improperly, calls the function

setPrices to modify the price , it might cause some unexpected loss, thus introducing centralization

risks.

Recommendation

We recommend the team review the design and ensure minimum centralization risk.

Alpaca Finance Security Assessment

Alleviation

(Alpaca Team Response) We are currently engaged with several oracle providers. We will soon integrate

with an oracle provider.

(CertiK) Please ensure integrating with a reliable oracle provider and avoid manually calling the function

setPrice .

Alpaca Finance Security Assessment

SPO-02 | Mismatch Between Comment and Code

Category Severity Location Status

Coding Style Informational protocol/SimplePriceOracle.sol: 36~43 Resolved

Description

According to the comment in L36, the function setPrices must be called by the owner:

3636 /// @dev Set the prices of the token token pairs. Must be called by the owner./// @dev Set the prices of the token token pairs. Must be called by the owner.

From the code implementation, however, the modifier in L43 is onlyFeeder instead of onlyOwner :

3737 functionfunction setPricessetPrices((
3838 addressaddress[[]] calldatacalldata token0s token0s,,
3939 addressaddress[[]] calldatacalldata token1s token1s,,
4040 uint256uint256[[]] calldatacalldata prices prices
4141))
4242 externalexternal
4343 onlyFeeder onlyFeeder

Recommendation

We recommend the team review the code and correct either the comment or the code implementation.

Alleviation

The development team heeded our advice and resolved this issue in the commit

7b8389ac08f2025af8bad23af0ba7ea91ca94c26.

Alpaca Finance Security Assessment

https://github.com/alpaca-finance/bsc-alpaca-contract/commit/7b8389ac08f2025af8bad23af0ba7ea91ca94c26

SPO-03 | Function Should Be Declared External

Category Severity Location Status

Gas Optimization Informational protocol/SimplePriceOracle.sol: 26, 32 Resolved

Description

The functions initialize and setFeeder are never called internally within the contract and thus should

have external visibility.

Recommendation

We recommend changing the visibility of the aforementioned functions to external .

Alleviation

The development team heeded our advice and resolved this issue in the commit

7b8389ac08f2025af8bad23af0ba7ea91ca94c26.

Alpaca Finance Security Assessment

https://github.com/alpaca-finance/bsc-alpaca-contract/commit/7b8389ac08f2025af8bad23af0ba7ea91ca94c26

SVC-01 | Centralization Risks

Category Severity Location Status

Centralization / Privilege Major protocol/SimpleVaultConfig.sol: 61, 85 Partially Resolved

Description

The function setParams in L61 allows the owner to change important configurations of the contract after

contract initialization:

6161 functionfunction setParamssetParams((
6262 uint256uint256 _minDebtSize _minDebtSize,,
6363 uint256uint256 _reservePoolBps _reservePoolBps,,
6464 uint256uint256 _killBps _killBps,,
6565 InterestModel _interestModel InterestModel _interestModel,,
6666 addressaddress _wrappedNative _wrappedNative,,
6767 addressaddress _wNativeRelayer _wNativeRelayer,,
6868 addressaddress _fairLaunch _fairLaunch
6969)) publicpublic onlyOwner onlyOwner {{
7070 minDebtSize minDebtSize == _minDebtSize _minDebtSize;;
7171 getReservePoolBps getReservePoolBps == _reservePoolBps _reservePoolBps;;
7272 getKillBps getKillBps == _killBps _killBps;;
7373 interestModel interestModel == _interestModel _interestModel;;
7474 wrappedNative wrappedNative == _wrappedNative _wrappedNative;;
7575 wNativeRelayer wNativeRelayer == _wNativeRelayer _wNativeRelayer;;
7676 fairLaunch fairLaunch == _fairLaunch _fairLaunch;;
7777 }}

Those configuration parameters are of great significance to the contract and would directly influence the

income of both the users and the project. For instance, _killBps is a critical parameter to calculate the

reward before killing a position. If it is accidentally and improperly modified, the reward might not be

calculated correctly, and thus the users and project might suffer unexpected loss.

Similarly, the function setWorkers update workers with configuration parameters:

8585 functionfunction setWorkersetWorker((
8686 addressaddress worker worker,,
8787 boolbool _isWorker _isWorker,,
8888 boolbool _acceptDebt _acceptDebt,,
8989 uint256uint256 _workFactor _workFactor,,
9090 uint256uint256 _killFactor _killFactor
9191)) publicpublic onlyOwner onlyOwner {{
9292 workers workers[[workerworker]] == WorkerConfigWorkerConfig(({{
9393 isWorker isWorker:: _isWorker _isWorker,,

Alpaca Finance Security Assessment

9494 acceptDebt acceptDebt:: _acceptDebt _acceptDebt,,
9595 workFactor workFactor:: _workFactor _workFactor,,
9696 killFactor killFactor:: _killFactor _killFactor
9797 }}));;
9898 }}

The state workers in the contract also perform a critical role in executing the core logic like Vault. work ,

and the configuration parameters bundled with workers would influence the behavior of the contract. Our

concern is if the owner accidentally updates the significant configurations, it would influence the entire

project logic, which might cause some unexpected loss.

Recommendation

We recommend the team review the design and ensure minimum centralization risk.

Alleviation

(Alpaca Team Response) All SimpleVaultConfigs are owned by a Timelock contract with 24 hours delay.

Hence, tx that will trigger setParams and setWorkers need to be queued 24 hours in advance. So, if there

is a malicious attempt from us, everyone has 24 hours to exit everything.

(CertiK) We agree with the solution above. We recommend the team set up the owner of the contract

correctly, and set up proper parameters when calling the functions. Meanwhile, to improve the

trustworthiness of the project, any dynamic runtime update in the project should be notified to the

community in advance.

Alpaca Finance Security Assessment

SVC-02 | Function Should Be Declared External

Category Severity Location Status

Gas Optimization Informational protocol/SimpleVaultConfig.sol: 35, 85 Resolved

Description

The functions initialize and setWorker are never called internally within the contract and thus should

have external visibility.

Recommendation

We recommend changing the visibility of the aforementioned functions to external .

Alleviation

The development team heeded our advice and resolved this issue in the commit

7b8389ac08f2025af8bad23af0ba7ea91ca94c26.

Alpaca Finance Security Assessment

https://github.com/alpaca-finance/bsc-alpaca-contract/commit/7b8389ac08f2025af8bad23af0ba7ea91ca94c26

SWM-01 | Function Should Be Declared External

Category Severity Location Status

Gas
Optimization

Informational
protocol/strategies/pancakeswap/StrategyWithdrawMinimizeTradin
g.sol: 23

Resolved

Description

The function initialize is never called internally within the contract and thus should have external

visibility.

Recommendation

We recommend changing the visibility of the aforementioned function to external for gas optimization.

Alleviation

The development team heeded our advice and resolved this issue in the commit

7b8389ac08f2025af8bad23af0ba7ea91ca94c26.

Alpaca Finance Security Assessment

https://github.com/alpaca-finance/bsc-alpaca-contract/commit/7b8389ac08f2025af8bad23af0ba7ea91ca94c26

SWM-02 | Inappropriate Payable Modifier

Category Severity Location Status

Logical
Issue

Informational
protocol/strategies/pancakeswap/StrategyWithdrawMinimizeTrading.s
ol

Resolved

Description

According to the current code implementation, this strategy contract is not designed to receive any native

token (BNB or ETH). However, the execute function in the contract is a payable function, which is conflict

with its design:

3535 functionfunction executeexecute((addressaddress user user,, uint256uint256 debt debt,, bytesbytes calldatacalldata data data)) externalexternal
override override payablepayable nonReentrant nonReentrant {{

Recommendation

We recommend removing the payable modifier from the function execute in the aforementioned contract.

Alleviation

The development team heeded our advice and resolved this issue in the commit

7b8389ac08f2025af8bad23af0ba7ea91ca94c26.

Alpaca Finance Security Assessment

https://github.com/alpaca-finance/bsc-alpaca-contract/commit/7b8389ac08f2025af8bad23af0ba7ea91ca94c26

SWM-03 | Lack of Return Value Handling

Category Severity Location Status

Logical
Issue

Minor
protocol/strategies/pancakeswap/StrategyWithdrawMinimizeTrading.sol:
44, 47, 56

Partially
Resolved

Description

The functions approve , swapTokensForExactTokens and removeLiquidity are not void-returning

functions per IUniswapV2Router02 and IERC20 interfaces. In the StrategyWithdrawMinimizeTrading

contract, the return values of the functions are not handled properly:

4444 lpToken lpToken..approveapprove((addressaddress((routerrouter)),, uint256uint256((--11))));;

4747 router router..removeLiquidityremoveLiquidity((baseTokenbaseToken,, farmingToken farmingToken,, lpToken lpToken..balanceOfbalanceOf((addressaddress((thisthis)))),,
00,, 00,, addressaddress((thisthis)),, now now));;

5656 router router..swapTokensForExactTokensswapTokensForExactTokens((remainingDebtremainingDebt,, farmingToken farmingToken..myBalancemyBalance(()),, path path,,
addressaddress((thisthis)),, now now));;

Ignoring the return values of these functions might cause some unexpected exceptions, especially if the

called functions don't revert automatically on failure.

Recommendation

We recommend checking the output of the aforementioned functions, and continuing processing when

receiving proper returned values, otherwise reverting.

Alleviation

Alpaca Finance Security Assessment

The development team heeded our advice and handled the return value of approve in the commit

7b8389ac08f2025af8bad23af0ba7ea91ca94c26, and decided to leave swapTokensForExactTokens and

removeLiquidity as they were.

(CertiK) Per the current PancakeRouter contract design, the functions swapTokensForExactTokens and

removeLiquidity will automatically revert on failure, which is safe. However, we encourage the team to be

cautious about any modification or update of the PancakeRouter to ensure the external calls coordinate

well with your project logic.

Alpaca Finance Security Assessment

https://github.com/alpaca-finance/bsc-alpaca-contract/commit/7b8389ac08f2025af8bad23af0ba7ea91ca94c26

SWM-04 | Non-Optimal Parameter Set

Category Severity Location Status

Logical
Issue

Informational
protocol/strategies/pancakeswap/StrategyWithdrawMinimizeTrading.so
l: 47~56

Resolved

Description

The 4th and 5th input parameters, amountAMin and amountBMin , of the function removeLiquidity indicate

the minimum amount of tokens that should be removed from the liquidity pool. If less than amountAMin

and amountBMin are removed, this function will revert. In the current contract, amountAMin and

amountBMin are set as 0:

4747 router router..removeLiquidityremoveLiquidity((baseTokenbaseToken,, farmingToken farmingToken,, lpToken lpToken..balanceOfbalanceOf((addressaddress((thisthis)))),,
00,, 00,, addressaddress((thisthis)),, now now));;

Moreover, the 2nd input parameter, amountInMax of the function swapTokensForExactTokens indicates the

maximum amount of input tokens that can be required before the transaction reverts. If more than

amountInMax is required, this function will revert. In the current contract the parameter amountInMax is set

as account balance:

5656 router router..swapTokensForExactTokensswapTokensForExactTokens((remainingDebtremainingDebt,, farmingToken farmingToken..myBalancemyBalance(()),, path path,,
addressaddress((thisthis)),, now now));;

Above setting up will result in instant token-swap/liquidity-removal without considering the market price.

Therefore, it is vulnerable to front running attack .

Recommendation

We recommend carefully setting the aforementioned parameters: amountOutMin , amountAMin and

amountAMin as some non-zero values, to reduce the potential risks.

Alleviation

(Alpaca Team Response) We have

requirerequire((remainingFarmingToken remainingFarmingToken >=>= minFarmingToken minFarmingToken,,
"StrategyWithdrawMinimizeTrading::execute:: insufficient quote tokens received""StrategyWithdrawMinimizeTrading::execute:: insufficient quote tokens received"));;

Alpaca Finance Security Assessment

after swapping. With this line, it basically checks if we have enough remainingFarmingToken and if there is

a front running attack or sandwich attack happened. Then this line will be reverted as it is not enough

remainingFarmingToken left.

(CertiK) We agreed on the design mentioned above. We still suggest the team should be cautious about

the potential attack for big transactions and carefully set the value of parameter minFarmingToken

(encoded in the input data) whenever calling the execute function.

Alpaca Finance Security Assessment

TCK-01 | Function Should Be Declared External

Category Severity Location Status

Gas Optimization Informational Timelock.sol: 50, 59, 67, 80, 91, 111 Resolved

Description

The functions which are never called internally within the contract should have external visibility. For

example:

setDelay

acceptAdmin

setPendingAdmin

queueTransaction

cancelTransaction

executeTransaction

Recommendation

We recommend changing the visibility of the aforementioned functions to external .

Alleviation

The development team heeded our advice and resolved this issue in the commit

7b8389ac08f2025af8bad23af0ba7ea91ca94c26.

Alpaca Finance Security Assessment

https://github.com/alpaca-finance/bsc-alpaca-contract/commit/7b8389ac08f2025af8bad23af0ba7ea91ca94c26

TCK-02 | Lack of Checks for Reentrancy

Category Severity Location Status

Logical Issue Minor Timelock.sol: 111 Resolved

Description

The function executeTransaction contains state update after external call. Therefore, the function is

potentially vulnerable to reentrancy attack and should apply reentrancy guard rails.

Recommendation

We recommend applying OpenZeppelin ReentrancyGuard library - nonReentrant modifier for the

aforementioned function to prevent reentrancy attack.

Alleviation

The development team heeded our advice and resolved this issue in the commit

7b8389ac08f2025af8bad23af0ba7ea91ca94c26.

Alpaca Finance Security Assessment

https://github.com/OpenZeppelin/openzeppelin-contracts/blob/master/contracts/utils/ReentrancyGuard.sol
https://github.com/alpaca-finance/bsc-alpaca-contract/commit/7b8389ac08f2025af8bad23af0ba7ea91ca94c26

VCK-01 | Potential Liquidating Issue

Category Severity Location Status

Logical Issue Informational protocol/Vault.sol: 311 Resolved

Description

The kill function in L311 is designed to kill and liquidate the given position when the killFactor*health

condition is met in L311:

311311 requirerequire((healthhealth..mulmul((killFactorkillFactor)) << debt debt..mulmul((1000010000)),, "Vault::kill:: can't liquidate""Vault::kill:: can't liquidate"));;

However, if a user wants to withdraw the assets by calling the kill function with a certain position id , the

require check in the aforementioned line is likely to revert since the health factor might be large enough.

Logically, users would expect to be capable of withdrawing all their assets at any time rather than waiting

until the position is "unhealthy". Besides, the asset might be locked permanently if the killFactor*health

condition is never met.

Recommendation

We recommend the team review the logic and ensure this is an intended design.

Alleviation

(Alpaca Team Response) It is intended by design. Kill function is used for liquidating unhealthy positions

only. If users want to close the position, they will use the work function with either StrategyLiquidate or

StrategyMinimizeTrading not kill function.

Alpaca Finance Security Assessment

VCK-02 | Unexpected Revert

Category Severity Location Status

Logical Issue Minor protocol/Vault.sol: 317 Resolved

Description

According to the implementation of sub function, from where the calculation in L317 would revert if back <

prize :

315315 uint256uint256 back back == SafeToken SafeToken..myBalancemyBalance((tokentoken))..subsub((beforeTokenbeforeToken));;
316316 uint256uint256 prize prize == back back..mulmul((configconfig..getKillBpsgetKillBps(())))..divdiv((1000010000));;
317317 uint256uint256 rest rest == back back..subsub((prizeprize));;

In L316, if config.getKillBps() > 1000 , prize will be larger than back , and L317 will revert, instead of

performing liquidation. In this case, the contract and the users might suffer unexpected loss since it fails to

liquidate in time.

Recommendation

We recommend adding check for the variable price after the L316 to minimize the unexpected loss.

317317 ifif ((prize prize >> back back)) {{
318318 prize prize == back back;;
319319 }}

Alleviation

The development team heeded our advice and resolved this issue by validating the killBps setting in

ConfigurableInterestVaultConfig.setParams() (to ensure prize < back) in the commit

7b8389ac08f2025af8bad23af0ba7ea91ca94c26.

Alpaca Finance Security Assessment

https://github.com/alpaca-finance/bsc-alpaca-contract/commit/7b8389ac08f2025af8bad23af0ba7ea91ca94c26

VCK-03 | Risk When Opening a Farming Position

Category Severity Location Status

Logical Issue Major protocol/Vault.sol: 236 Resolved

Description

When opening a farming position with the function work in this contract, a user could borrow a huge

amount of tokens from the vault. The only significant guard rail to prevent this action is in L280, by

checking if it is healthy enough:

280280 requirerequire((healthhealth..mulmul((workFactorworkFactor)) >=>= debt debt..mulmul((1000010000)),, "Vault::work:: bad work factor""Vault::work:: bad work factor"));;

However, the health (one factor of the health evaluation) in L278 is highly dependent on PancakeSwap

listing prices, which is quite sensitive to any ongoing on-chain DeFi attack (e.g., flash loan attack):

278278 uint256uint256 health health == IWorkerIWorker((workerworker))..healthhealth((idid));;

On the other hand, the workFactor (another factor of the health evaluation) in L279 is a manual-set factor

that might not be updated in time:

279279 uint256uint256 workFactor workFactor == config config..workFactorworkFactor((workerworker,, debt debt));;

As a result, the project might suffer from the following risk scenario: A user opening a position by loaning a

huge amount of tokens successfully, and right after that block, it might already trigger the liquidating signal

due to some chain state change. But even if kill is triggered right away in the next block (if the bot is

working frequently enough), the loss could potentially be big enough to erode the PROJECT principal. The

problem could be quite severe because there are not enough checks in the first place. To control the risk,

for most yield farming contracts, the loan should be no more than about 40%-60% of the user deposit

principal and should never be more than 100% (unless it is a flash loan).

Recommendation

We recommend the team review the flow and minimize the potential risk. We would also suggest setting a

threshold to limit the amount of loan according to the user's principal in the first place before any further

processing.

Alpaca Finance Security Assessment

Alleviation

PancakeswapWorker.health() is one factor of the healthy evaluation which we take the asset price from

PCS. I agree that PancakeswapWorker.health() alone wouldn’t be enough to prevent an on-chain DeFi

attack through flash-loan, etc. However, you can see that on the next line config.workFactor() L279

which call ConfigurableInterestVaultConfig.workFactor() and later call WorkerConfig.workFactor()

where in this WorkerConfig.workFactor we checked various conditions whether the Worker is under the

manipulation or not. This includes checking if the reserve is consistent and also if the price of that pair is

diff from the oracle more than the diff threshold or not. Hence, if the attacker tries to manipulate the price

on PCS, the contract will block the open, close, and kill position until the price on PCS becomes

within the diff threshold, and LP becomes consistent.

(CertiK) We strongly encourage the team to closely monitor the position activities (open/close) and the

state of the opened positions to avoid any potential loss.

Alpaca Finance Security Assessment

VCK-04 | Residue in the Contract

Category Severity Location Status

Logical Issue Minor protocol/Vault.sol: 201 Resolved

Description

In the function withdraw , the requirement in L201 means nobody can withdraw all the shares left, but

instead has to leave residue larger than 1e17 shares in the contract:

201201 requirerequire((totalSupplytotalSupply(()) >> 1e171e17,, "Vault::withdraw:: no tiny shares""Vault::withdraw:: no tiny shares"));;

For instance, if a user deposits 11e17 tokens and withdraws at once, he can only get back 10e17-1 at

most and thus suffer from a loss.

Recommendation

We recommend the team review the flow and ensure this is an intended design.

Alleviation

(Alpaca Team Response) The 1e17 loss will be covered by the Alpaca team.

Alpaca Finance Security Assessment

VCK-05 | Function Should Be Declared External

Category Severity Location Status

Gas Optimization Informational protocol/Vault.sol: 107, 166 Resolved

Description

The functions initialize and positionInfo are never called internally within the contract and thus

should have external visibility.

Recommendation

We recommend changing the visibility of the aforementioned functions to external .

Alleviation

The development team heeded our advice and resolved this issue in the commit

7b8389ac08f2025af8bad23af0ba7ea91ca94c26.

Alpaca Finance Security Assessment

https://github.com/alpaca-finance/bsc-alpaca-contract/commit/7b8389ac08f2025af8bad23af0ba7ea91ca94c26

WCC-01 | Unkillable Position When Worker Is Unstable

Category Severity Location Status

Logical Issue Minor protocol/workers/WorkerConfig.sol: 86~89 Resolved

Description

The function killFactor in L86 returns the kill factor of a certain worker. It will revert when the worker is

not stable:

8686 functionfunction killFactorkillFactor((addressaddress worker worker,, uint256uint256 /* debt *//* debt */)) externalexternal override override viewview
returnsreturns ((uint256uint256)) {{
8787 requirerequire((isStableisStable((workerworker)),, "WorkerConfig::killFactor:: !stable""WorkerConfig::killFactor:: !stable"));;
8888 returnreturn uint256uint256((workersworkers[[workerworker]]..killFactorkillFactor));;
8989 }}

When it is not stable, the function kill in the contract Vault will revert since it is calling the function

killFactor :

functionfunction killkill((uint256uint256 id id)) externalexternal onlyEOA onlyEOA accrueaccrue((00)) nonReentrant nonReentrant {{

 uint256uint256 killFactor killFactor == config config..killFactorkillFactor((pospos..workerworker,, debt debt));;
 requirerequire((healthhealth..mulmul((killFactorkillFactor)) << debt debt..mulmul((1000010000)),, "Vault::kill:: can't liquidate""Vault::kill:: can't liquidate"));;

 }}

The concern is when health is low, the user might want to kill the position as soon as possible. However,

if the worker is not stable, the function kill will not be executed successfully. As a result, the project and

the user might suffer unexpected loss since the position cannot be liquidated in time.

Recommendation

We recommend the team review the flow and ensure this is an intended design.

Alleviation

(Alpaca Team Response) The function kill should be blocked as well. This is due to the fact that if

isStable is reverted, it means that the price of the given pair on DEX is being manipulated by the attacker.

This is to prevent attackers that try to manipulate the price to the point where all positions on our protocol

get liquidated.

Alpaca Finance Security Assessment

WCC-02 | Boolean Function Never Returns False

Category Severity Location Status

Logical Issue Informational protocol/workers/WorkerConfig.sol: 52 Resolved

Description

The function isStable in the aforementioned line is designed to determine whether a worker is stable. It

would EITHER return true , OR revert, but never return false. The visibility of the function is public, thus it

might cause some user experience issues if being called from a client, when the user expects false but

receives an exception.

Recommendation

We recommend the team review the working flow and ensure this is an intended design

Alleviation

(Alpaca Team Response) The reason that we made isStable returns bool is because we want to clearly

stated require(isStable(), "") in functions acceptDebt , workFactor , and killFactor to increase our

code readability.

Alpaca Finance Security Assessment

WCC-03 | Centralization Risks I

Category Severity Location Status

Centralization / Privilege Major protocol/workers/WorkerConfig.sol: 33 Partially Resolved

Description

The function setOracle in the aforementioned line allows the owner to change the Oracle within the

project after contract initialization:

3333 functionfunction setOraclesetOracle((PriceOracle _oraclePriceOracle _oracle)) externalexternal onlyOwner onlyOwner {{
3434 oracle oracle == _oracle _oracle;;
3535 }}

Since Oracle provides significant price information for contracts to use within the project, it would be risky

if a malicious Oracle is applied. Our concern is if the owner accidentally update the Oracle to a malicious

one, it will influence the entire project logic, and might cause some unexpected loss.

Recommendation

We recommend the team review the design and ensure minimum centralization risk.

Alleviation

(Alpaca Team Response) All WorkerConfigs are owned by a Timelock contract with 24 hours delay.

Hence, tx that will trigger setOracle needs to be queued 24 hours in advance. So, if there is a malicious

attempt from us, everyone has 24 hours to exit everything.

(CertiK) We agree with the solution above. We recommend the team set up the owner role properly.

Meanwhile, to improve the trustworthiness of the project, any dynamic runtime update in the project

should be notified to the community in advance.

Alpaca Finance Security Assessment

WCC-04 | Centralization Risks II

Category Severity Location Status

Centralization / Privilege Major protocol/workers/WorkerConfig.sol: 38 Partially Resolved

Description

The function setConfigs in L38 allows the contract owner to change significant configurations of the

contract after contract initialization:

3838 functionfunction setConfigssetConfigs((addressaddress[[]] calldatacalldata addrs addrs,, Config Config[[]] calldatacalldata configs configs)) externalexternal
onlyOwner onlyOwner {{
3939 uint256uint256 len len == addrs addrs..lengthlength;;
4040 requirerequire((configsconfigs..length length ==== len len,, "WorkConfig::setConfigs:: bad len""WorkConfig::setConfigs:: bad len"));;
4141 forfor ((uint256uint256 idx idx == 00;; idx idx << len len;; idx idx++++)) {{
4242 workers workers[[addrsaddrs[[idxidx]]]] == ConfigConfig(({{
4343 acceptDebt acceptDebt:: configs configs[[idxidx]]..acceptDebtacceptDebt,,
4444 workFactor workFactor:: configs configs[[idxidx]]..workFactorworkFactor,,
4545 killFactor killFactor:: configs configs[[idxidx]]..killFactorkillFactor,,
4646 maxPriceDiff maxPriceDiff:: configs configs[[idxidx]]..maxPriceDiffmaxPriceDiff
4747 }}));;
4848 }}
4949 }}

Configuration parameters acceptDebt , workFactor and killFactor are quite important factors in the

functions kill and work in the contract Vault, which directly influence the income of the project. For

instance, the killFactor could be modified to block anyone else from liquidating a position. Besides,

maxPriceDiff is a key factor to determine whether a worker is stable and if it is improperly set, it would

cause the function kill and work to revert. Our concern is if the owner accidentally updates the

significant configurations to some improper values, it might cause some unexpected loss.

Recommendation

We recommend the team review the design and ensure minimum centralization risk.

Alleviation

(Alpaca Team Response) All WorkerConfigs are owned by a Timelock contract with 24 hours delay.

Hence, tx that will trigger setConfigs needs to be queued 24 hours in advance. So, if there is a malicious

attempt from us, everyone has 24 hours to exit everything.

Alpaca Finance Security Assessment

(CertiK) We agree with the solution above. We recommend the team set up the owner role properly.

Meanwhile, improving the project's trustworthiness and dynamic runtime update in the project should be

notified to the community in advance.

Alpaca Finance Security Assessment

WCC-05 | Function Should Be Declared External

Category Severity Location Status

Gas Optimization Informational protocol/workers/WorkerConfig.sol: 27 Resolved

Description

The function initialize is never called internally within the contract and thus should have external

visibility.

Recommendation

We recommend changing the visibility of the aforementioned function to external .

Alleviation

The development team heeded our advice and resolved this issue in the commit

7b8389ac08f2025af8bad23af0ba7ea91ca94c26.

Alpaca Finance Security Assessment

https://github.com/alpaca-finance/bsc-alpaca-contract/commit/7b8389ac08f2025af8bad23af0ba7ea91ca94c26

WNR-01 | Function Should Be Declared External

Category Severity Location Status

Gas Optimization Informational protocol/WNativeRelayer.sol: 27 Resolved

Description

The function withdraw is never called internally within the contract and thus should have external visibility.

Recommendation

We recommend changing the visibility of the aforementioned function to external .

Alleviation

The development team heeded our advice and resolved this issue in the commit

7b8389ac08f2025af8bad23af0ba7ea91ca94c26.

Alpaca Finance Security Assessment

https://github.com/alpaca-finance/bsc-alpaca-contract/commit/7b8389ac08f2025af8bad23af0ba7ea91ca94c26

Appendix

Finding Categories

Centralization / Privilege

Centralization / Privilege findings refer to either feature logic or implementation of components that act

against the nature of decentralization, such as explicit ownership or specialized access roles in

combination with a mechanism to relocate funds.

Gas Optimization

Gas Optimization findings do not affect the functionality of the code but generate different, more optimal

EVM opcodes resulting in a reduction on the total gas cost of a transaction.

Mathematical Operations

Mathematical Operation findings relate to mishandling of math formulas, such as overflows, incorrect

operations etc.

Logical Issue

Logical Issue findings detail a fault in the logic of the linked code, such as an incorrect notion on how

block.timestamp works.

Control Flow

Control Flow findings concern the access control imposed on functions, such as owner-only functions

being invoke-able by anyone under certain circumstances.

Volatile Code

Volatile Code findings refer to segments of code that behave unexpectedly on certain edge cases that may

result in a vulnerability.

Data Flow

Data Flow findings describe faults in the way data is handled at rest and in memory, such as the result of a

struct assignment operation affecting an in-memory struct rather than an in-storage one.

Language Specific

Alpaca Finance Security Assessment

Language Specific findings are issues that would only arise within Solidity, i.e. incorrect usage of private or

delete.

Coding Style

Coding Style findings usually do not affect the generated byte-code but rather comment on how to make

the codebase more legible and, as a result, easily maintainable.

Inconsistency

Inconsistency findings refer to functions that should seemingly behave similarly yet contain different code,

such as a constructor assignment imposing different require statements on the input variables than a setter

function.

Magic Numbers

Magic Number findings refer to numeric literals that are expressed in the codebase in their raw format and

should otherwise be specified as constant contract variables aiding in their legibility and maintainability.

Compiler Error

Compiler Error findings refer to an error in the structure of the code that renders it impossible to compile

using the specified version of the project.

Checksum Calculation Method

The "Checksum" field in the "Audit Scope" section is calculated as the SHA-256 (Secure Hash Algorithm 2

with digest size of 256 bits) digest of the content of each file hosted in the listed source repository under

the specified commit.

The result is hexadecimal encoded and is the same as the output of the Linux "sha256sum" command

against the target file.

Alpaca Finance Security Assessment

Disclaimer
This report is subject to the terms and conditions (including without limitation, description of services,

confidentiality, disclaimer and limitation of liability) set forth in the Services Agreement, or the scope of

services, and terms and conditions provided to the Company in connection with the Agreement. This

report provided in connection with the Services set forth in the Agreement shall be used by the Company

only to the extent permitted under the terms and conditions set forth in the Agreement. This report may not

be transmitted, disclosed, referred to or relied upon by any person for any purposes without CertiK’s prior

written consent.

This report is not, nor should be considered, an “endorsement” or “disapproval” of any particular project or

team. This report is not, nor should be considered, an indication of the economics or value of any

“product” or “asset” created by any team or project that contracts CertiK to perform a security

assessment. This report does not provide any warranty or guarantee regarding the absolute bug-free

nature of the technology analyzed, nor do they provide any indication of the technologies proprietors,

business, business model or legal compliance.

This report should not be used in any way to make decisions around investment or involvement with any

particular project. This report in no way provides investment advice, nor should be leveraged as investment

advice of any sort. This report represents an extensive assessing process intending to help our customers

increase the quality of their code while reducing the high level of risk presented by cryptographic tokens

and blockchain technology.

Blockchain technology and cryptographic assets present a high level of ongoing risk. CertiK’s position is

that each company and individual are responsible for their own due diligence and continuous security.

CertiK’s goal is to help reduce the attack vectors and the high level of variance associated with utilizing

new and consistently changing technologies, and in no way claims any guarantee of security or

functionality of the technology we agree to analyze.

Alpaca Finance Security Assessment

About
Founded in 2017 by leading academics in the field of Computer Science from both Yale and Columbia

University, CertiK is a leading blockchain security company that serves to verify the security and

correctness of smart contracts and blockchain-based protocols. Through the utilization of our world-class

technical expertise, alongside our proprietary, innovative tech, we’re able to support the success of our

clients with best-in-class security, all whilst realizing our overarching vision; provable trust for all

throughout all facets of blockchain.

Alpaca Finance Security Assessment

