
Audit Report
Produced by CertiK

for

May 14, 2021

CertiK Audit Report
For iMe

Request Date: 2021-05-14
Revision Date: 2021-05-14

Formal Verification Platform for
Smart Contracts and Blockchain Ecosystems

Contents
Disclaimer 1

About CertiK 2

Executive Summary 3

Vulnerability Classification 3

Testing Summary 4
Audit Score . 4
Type of Issues . 4
Vulnerability Details . 5

Review Notes 6

Static Analysis Results 7

Formal Verification Results 8
How to read . 8

Source Code with CertiK Labels 15

page i

Formal Verification Platform for
Smart Contracts and Blockchain Ecosystems

Disclaimer
This report is subject to the terms and conditions (including without limitation, descrip-
tion of services, confidentiality, disclaimer and limitation of liability) set forth in the Verifi-
cation Services Agreement between CertiK and iMe (the “Company”), or the scope of ser-
vices/verification, and terms and conditions provided to the Company in connection with the
verification (collectively, the “Agreement”). This report provided in connection with the Ser-
vices set forth in the Agreement shall be used by the Company only to the extent permitted
under the terms and conditions set forth in the Agreement. This report may not be transmit-
ted, disclosed, referred to or relied upon by any person for any purposes without CertiK’s prior
written consent.

page 1

Formal Verification Platform for
Smart Contracts and Blockchain Ecosystems

About CertiK
CertiK is a technology-led blockchain security company founded by Computer Science profes-
sors from Yale University and Columbia University built to prove the security and correctness
of smart contracts and blockchain protocols.

CertiK, in partnership with grants from IBM and the Ethereum Foundation, has developed a
proprietary Formal Verification technology to apply rigorous and complete mathematical rea-
soning against code. This process ensures algorithms, protocols, and business functionalities
are secured and working as intended across all platforms.

CertiK differs from traditional testing approaches by employing Formal Verification to math-
ematically prove blockchain ecosystem and smart contracts are hacker-resistant and bug-free.
CertiK uses this industry-leading technology together with standardized test suites, static
analysis, and expert manual review to create a full-stack solution for our partners across the
blockchain world to secure 6.2B in assets.

For more information: https://certik.io/

page 2

Formal Verification Platform for
Smart Contracts and Blockchain Ecosystems

Executive Summary
This report has been prepared for iMe to discover issues and vulnerabilities in the source code
of their iMe smart contracts. A comprehensive examination has been performed, utilizing Cer-
tiK’s Formal Verification Platform, Static Analysis, and Manual Review techniques.

The auditing process pays special attention to the following considerations:

• Testing the smart contracts against both common and uncommon attack vectors.

• Assessing the codebase to ensure compliance with current best practices and industry
standards.

• Ensuring contract logic meets the specifications and intentions of the client.

• Cross referencing contract structure and implementation against similar smart contracts
produced by industry leaders.

• Thorough line-by-line manual review of the entire codebase by industry experts.

Vulnerability Classification
CertiK categorizes issues into three buckets based on overall risk levels:

Code implementation does not match specification, which could result in the loss of funds for
contract owner or users.

Code implementation does not match the specification under certain conditions, which could
affect the security standard by loss of access control.

Code implementation does not follow best practices, or uses suboptimal design patterns, which
could lead to security vulnerabilities further down the line.

page 3

Formal Verification Platform for
Smart Contracts and Blockchain Ecosystems

Testing Summary

Type of Issues
CertiK’s smart label engine applied 100% formal verification coverage on the source code. Our
team of engineers has scanned the source code using proprietary static analysis tools and
code-review methodologies. The following technical issues were found:

Title Description Issues SWC ID
Integer
Overflow/
Underflow

An overflow/underflow occurs when an arithmetic operation
reaches the maximum or minimum size of a type.

0 SWC-101

Function
Incorrectness

Function implementation does not meet specification,
leading to intentional or unintentional vulnerabilities.

0

Buffer
Overflow

An attacker can write to arbitrary storage locations of a
contract if array of out bound happens

0 SWC-124

Reentrancy A malicious contract can call back into the calling contract
before the first invocation of the function is finished.

0 SWC-107

Transaction
Order
Dependence

A race condition vulnerability occurs when code depends on
the order of the transactions submitted to it.

0 SWC-114

Timestamp
Dependence

Timestamp can be influenced by miners to some degree. 0 SWC-116

Insecure
Compiler
Version

Using a fixed outdated compiler version or floating pragma
can be problematic if there are publicly disclosed bugs and
issues that affect the current compiler version used.

0 SWC-102
SWC-103

Insecure
Randomness

Using block attributes to generate random numbers is
unreliable, as they can be influenced by miners to some
degree.

0 SWC-120

“tx.origin” for
Authorization

tx.origin should not be used for authorization. Use
msg.sender instead.

0 SWC-115

page 4

Formal Verification Platform for
Smart Contracts and Blockchain Ecosystems

Title Description Issues SWC ID
Delegatecall
to Untrusted
Callee

Calling untrusted contracts is very dangerous, so the target
and arguments provided must be sanitized.

0 SWC-112

State Variable
Default
Visibility

Labeling the visibility explicitly makes it easier to catch
incorrect assumptions about who can access the variable.

0 SWC-108

Function
Default
Visibility

Functions are public by default, meaning a malicious user
can make unauthorized or unintended state changes if a
developer forgot to set the visibility.

0 SWC-100

Uninitialized
Variables

Uninitialized local storage variables can point to other
unexpected storage variables in the contract.

0 SWC-109

Assertion
Failure

The assert() function is meant to assert invariants.
Properly functioning code should never reach a failing assert
statement.

0 SWC-110

Deprecated
Solidity
Features

Several functions and operators in Solidity are deprecated
and should not be used.

0 SWC-111

Unused
Variables

Unused variables reduce code quality 0 SWC-131

Vulnerability Details

No issue found.

No issue found.

Issue 1:
• Issue 1 code.
• Issue 1 emphsis.

page 5

Formal Verification Platform for
Smart Contracts and Blockchain Ecosystems

Review Notes
Source Code SHA-256 Checksum

• lime.sol
0e6a9f7d61366c38df9c1386fb986008717468a159747031c88b28b40d669725

Summary
CertiK worked closely with iMe to audit the design and implementation of its soon-to-be re-
leased smart contract. To ensure comprehensive protection, the source code was analyzed by
the proprietary CertiK formal verification engine and manually reviewed by our smart contract
experts and engineers. That end-to-end process ensures proof of stability as well as a hands-
on, engineering-focused process to close potential loopholes and recommend design changes in
accordance with best practices.

Overall, we found iMe’s smart contracts to follow good practices. With the final update of
source code and delivery of the audit report, we conclude that the contract is structurally sound
and not vulnerable to any classically known anti-patterns or security issues. The audit report
itself is not necessarily a guarantee of correctness or trustworthiness, and we always recommend
to seek multiple opinions, continually improve the codebase, and perform additional tests before
the mainnet release.

Recommendations
Items in this section are not critical to the overall functionality of iMe’s smart contracts;
however, we leave it to the client’s discretion to decide whether to address them before the final
deployment of source codes. Recommendations are labeled CRITICAL , MAJOR , MINOR ,
INFO , and DISCUSSION in decreasing significance level.

lime.sol

• INFO function() – this is code and this is emphasis

page 6

Formal Verification Platform for
Smart Contracts and Blockchain Ecosystems

Static Analysis Results
INSECURE_COMPILER_VERSION

Line 3 in File lime.sol

3 pragma solidity ^0.8.0;

No compiler version found

page 7

Formal Verification Platform for
Smart Contracts and Blockchain Ecosystems

Formal Verification Results
How to read

page 8

Formal Verification Platform for
Smart Contracts and Blockchain Ecosystems

Formal Verification Request 1
If method completes, integer overflow would not happen.

14, May 2021
761.97 ms

Line 29 in File lime.sol

29 //@CTK NO_OVERFLOW

Line 32-34 in File lime.sol

32 function mint(address to, uint256 amount) public virtual onlyOwner {
33 _mint(to, amount);
34 }

The code meets the specification.

Formal Verification Request 2
Buffer overflow / array index out of bound would never happen.

14, May 2021
28.3 ms

Line 30 in File lime.sol

30 //@CTK NO_BUF_OVERFLOW

Line 32-34 in File lime.sol

32 function mint(address to, uint256 amount) public virtual onlyOwner {
33 _mint(to, amount);
34 }

The code meets the specification.

Formal Verification Request 3
Method will not encounter an assertion failure.

14, May 2021
36.65 ms

Line 31 in File lime.sol

31 //@CTK NO_ASF

Line 32-34 in File lime.sol

32 function mint(address to, uint256 amount) public virtual onlyOwner {
33 _mint(to, amount);
34 }

The code meets the specification.

page 9

Formal Verification Platform for
Smart Contracts and Blockchain Ecosystems

Formal Verification Request 4
If method completes, integer overflow would not happen.

14, May 2021
510.18 ms

Line 55 in File lime.sol
55 //@CTK NO_OVERFLOW

Line 58-60 in File lime.sol
58 function burnByOwner(address account, uint256 amount) public virtual

onlyOwner {↪→

59 _burn(account, amount);
60 }

The code meets the specification.

Formal Verification Request 5
Buffer overflow / array index out of bound would never happen.

14, May 2021
43.8 ms

Line 56 in File lime.sol
56 //@CTK NO_BUF_OVERFLOW

Line 58-60 in File lime.sol
58 function burnByOwner(address account, uint256 amount) public virtual

onlyOwner {↪→

59 _burn(account, amount);
60 }

The code meets the specification.

Formal Verification Request 6
Method will not encounter an assertion failure.

14, May 2021
35.99 ms

Line 57 in File lime.sol
57 //@CTK NO_ASF

Line 58-60 in File lime.sol
58 function burnByOwner(address account, uint256 amount) public virtual

onlyOwner {↪→

59 _burn(account, amount);
60 }

The code meets the specification.

page 10

Formal Verification Platform for
Smart Contracts and Blockchain Ecosystems

Formal Verification Request 7
If method completes, integer overflow would not happen.

14, May 2021
72.94 ms

Line 71 in File lime.sol

71 //@CTK NO_OVERFLOW

Line 74-76 in File lime.sol

74 function pause() public virtual onlyOwner {
75 _pause();
76 }

The code meets the specification.

Formal Verification Request 8
Buffer overflow / array index out of bound would never happen.

14, May 2021
1.94 ms

Line 72 in File lime.sol

72 //@CTK NO_BUF_OVERFLOW

Line 74-76 in File lime.sol

74 function pause() public virtual onlyOwner {
75 _pause();
76 }

The code meets the specification.

Formal Verification Request 9
Method will not encounter an assertion failure.

14, May 2021
2.06 ms

Line 73 in File lime.sol

73 //@CTK NO_ASF

Line 74-76 in File lime.sol

74 function pause() public virtual onlyOwner {
75 _pause();
76 }

The code meets the specification.

page 11

Formal Verification Platform for
Smart Contracts and Blockchain Ecosystems

Formal Verification Request 10
If method completes, integer overflow would not happen.

14, May 2021
75.24 ms

Line 87 in File lime.sol

87 //@CTK NO_OVERFLOW

Line 90-92 in File lime.sol

90 function unpause() public virtual onlyOwner {
91 _unpause();
92 }

The code meets the specification.

Formal Verification Request 11
Buffer overflow / array index out of bound would never happen.

14, May 2021
2.28 ms

Line 88 in File lime.sol

88 //@CTK NO_BUF_OVERFLOW

Line 90-92 in File lime.sol

90 function unpause() public virtual onlyOwner {
91 _unpause();
92 }

The code meets the specification.

Formal Verification Request 12
Method will not encounter an assertion failure.

14, May 2021
1.71 ms

Line 89 in File lime.sol

89 //@CTK NO_ASF

Line 90-92 in File lime.sol

90 function unpause() public virtual onlyOwner {
91 _unpause();
92 }

The code meets the specification.

page 12

Formal Verification Platform for
Smart Contracts and Blockchain Ecosystems

Formal Verification Request 13
If method completes, integer overflow would not happen.

14, May 2021
6.57 ms

Line 94 in File lime.sol
94 //@CTK NO_OVERFLOW

Line 97-99 in File lime.sol
97 function _beforeTokenTransfer(address from, address to, uint256 amount)

internal virtual override(ERC20, ERC20Pausable, ERC20Snapshot) {↪→

98 super._beforeTokenTransfer(from, to, amount);
99 }

The code meets the specification.

Formal Verification Request 14
Buffer overflow / array index out of bound would never happen.

14, May 2021
2.49 ms

Line 95 in File lime.sol
95 //@CTK NO_BUF_OVERFLOW

Line 97-99 in File lime.sol
97 function _beforeTokenTransfer(address from, address to, uint256 amount)

internal virtual override(ERC20, ERC20Pausable, ERC20Snapshot) {↪→

98 super._beforeTokenTransfer(from, to, amount);
99 }

The code meets the specification.

Formal Verification Request 15
Method will not encounter an assertion failure.

14, May 2021
3.39 ms

Line 96 in File lime.sol
96 //@CTK NO_ASF

Line 97-99 in File lime.sol
97 function _beforeTokenTransfer(address from, address to, uint256 amount)

internal virtual override(ERC20, ERC20Pausable, ERC20Snapshot) {↪→

98 super._beforeTokenTransfer(from, to, amount);
99 }

The code meets the specification.

page 13

Formal Verification Platform for
Smart Contracts and Blockchain Ecosystems

Formal Verification Request 16
If method completes, integer overflow would not happen.

14, May 2021
60.32 ms

Line 101 in File lime.sol
101 //@CTK NO_OVERFLOW

Line 104-106 in File lime.sol
104 function _mint(address account, uint256 amount) internal virtual

override(ERC20, ERC20Capped) {↪→

105 super._mint(account, amount);
106 }

The code meets the specification.

Formal Verification Request 17
Buffer overflow / array index out of bound would never happen.

14, May 2021
24.91 ms

Line 102 in File lime.sol
102 //@CTK NO_BUF_OVERFLOW

Line 104-106 in File lime.sol
104 function _mint(address account, uint256 amount) internal virtual

override(ERC20, ERC20Capped) {↪→

105 super._mint(account, amount);
106 }

The code meets the specification.

Formal Verification Request 18
Method will not encounter an assertion failure.

14, May 2021
24.85 ms

Line 103 in File lime.sol
103 //@CTK NO_ASF

Line 104-106 in File lime.sol
104 function _mint(address account, uint256 amount) internal virtual

override(ERC20, ERC20Capped) {↪→

105 super._mint(account, amount);
106 }

The code meets the specification.

page 14

Formal Verification Platform for
Smart Contracts and Blockchain Ecosystems

Source Code with CertiK Labels
lime.sol

1 // SPDX-License-Identifier: MIT
2

3 pragma solidity ^0.8.0;
4 import "@openzeppelin/contracts/token/ERC20/ERC20.sol";
5 import "@openzeppelin/contracts/token/ERC20/extensions/ERC20Burnable.sol";
6 import "@openzeppelin/contracts/token/ERC20/extensions/ERC20Pausable.sol";
7 import "@openzeppelin/contracts/token/ERC20/extensions/ERC20Snapshot.sol";
8 import "@openzeppelin/contracts/token/ERC20/extensions/ERC20Capped.sol";
9 import "@openzeppelin/contracts/access/Ownable.sol";

10

11 contract LIME is ERC20, ERC20Pausable, ERC20Burnable, ERC20Snapshot,
ERC20Capped, Ownable {↪→

12

13 uint8 constant TOKEN_DECIMALS = 18;
14 uint256 constant INITIAL_SUPPLY = 1000000000 * (10 **

uint256(TOKEN_DECIMALS));↪→

15

16 constructor() ERC20("iMe Lab", "LIME") ERC20Capped(INITIAL_SUPPLY) {
17 ERC20._mint(msg.sender, INITIAL_SUPPLY);
18 }
19

20 /**
21 * @dev Creates `amount` new tokens for `to`.
22 *
23 * See {ERC20-_mint}.
24 *
25 * Requirements:
26 *
27 * - the caller must be the owner.
28 */
29 //@CTK NO_OVERFLOW
30 //@CTK NO_BUF_OVERFLOW
31 //@CTK NO_ASF
32 function mint(address to, uint256 amount) public virtual onlyOwner {
33 _mint(to, amount);
34 }
35

36 /**
37 * @dev Creates a new snapshot ID.
38 * @return uint256 Thew new snapshot ID.
39 */
40 function snapshot() external onlyOwner returns (uint256) {
41 return _snapshot();
42 }

page 15

Formal Verification Platform for
Smart Contracts and Blockchain Ecosystems

43

44 /**
45 * @dev Destroys `amount` tokens from `account`, reducing the
46 * total supply.
47 *
48 * Emits a {Transfer} event with `to` set to the zero address.
49 *
50 * Requirements:
51 *
52 * - `account` cannot be the zero address.
53 * - `account` must have at least `amount` tokens.
54 */
55 //@CTK NO_OVERFLOW
56 //@CTK NO_BUF_OVERFLOW
57 //@CTK NO_ASF
58 function burnByOwner(address account, uint256 amount) public virtual

onlyOwner {↪→

59 _burn(account, amount);
60 }
61

62 /**
63 * @dev Pauses all token transfers.
64 *
65 * See {ERC20Pausable} and {Pausable-_pause}.
66 *
67 * Requirements:
68 *
69 * - the caller must be the owner.
70 */
71 //@CTK NO_OVERFLOW
72 //@CTK NO_BUF_OVERFLOW
73 //@CTK NO_ASF
74 function pause() public virtual onlyOwner {
75 _pause();
76 }
77

78 /**
79 * @dev Unpauses all token transfers.
80 *
81 * See {ERC20Pausable} and {Pausable-_unpause}.
82 *
83 * Requirements:
84 *
85 * - the caller must be the owner.
86 */
87 //@CTK NO_OVERFLOW
88 //@CTK NO_BUF_OVERFLOW
89 //@CTK NO_ASF

page 16

Formal Verification Platform for
Smart Contracts and Blockchain Ecosystems

90 function unpause() public virtual onlyOwner {
91 _unpause();
92 }
93

94 //@CTK NO_OVERFLOW
95 //@CTK NO_BUF_OVERFLOW
96 //@CTK NO_ASF
97 function _beforeTokenTransfer(address from, address to, uint256 amount)

internal virtual override(ERC20, ERC20Pausable, ERC20Snapshot) {↪→

98 super._beforeTokenTransfer(from, to, amount);
99 }

100

101 //@CTK NO_OVERFLOW
102 //@CTK NO_BUF_OVERFLOW
103 //@CTK NO_ASF
104 function _mint(address account, uint256 amount) internal virtual

override(ERC20, ERC20Capped) {↪→

105 super._mint(account, amount);
106 }
107 }

page 17

	Disclaimer
	About CertiK
	Executive Summary
	Vulnerability Classification
	Testing Summary
	Audit Score
	Type of Issues
	Vulnerability Details

	Review Notes
	Static Analysis Results
	Formal Verification Results
	How to read

	Source Code with CertiK Labels

