
Bifrost Finance

Security Assessment

November 27th, 2020

For :
Bifrost Finance @ Bifrost

Disclaimer

CertiK reports are not, nor should be considered, an “endorsement” or “disapproval” of any
particular project or team. These reports are not, nor should be considered, an indication of the
economics or value of any “product” or “asset” created by any team or project that contracts
CertiK to perform a security review.

CertiK Reports do not provide any warranty or guarantee regarding the absolute bug-free nature
of the technology analyzed, nor do they provide any indication of the technologies proprietors,
business, business model or legal compliance.

Project Name bifrost-finance

Description An ERC20 token and Mint Drop Contract

Platform Ethereum; Solidity

Codebase bifrost-mint-drop

Commit 52e2be1422fc69400f91ea0700f13803dd75de66
d42fd40673bffe61b738459113b11cc3efd91392
41585a78c93f10a7289a1a3bfe0f6541443f0d40

CertiK Reports should not be used in any way to make decisions around investment or
involvement with any particular project. These reports in no way provide investment advice, nor
should be leveraged as investment advice of any sort.

CertiK Reports represent an extensive auditing process intending to help our customers increase
the quality of their code while reducing the high level of risk presented by cryptographic tokens
and blockchain technology.

Blockchain technology and cryptographic assets present a high level of ongoing risk. CertiK’s
position is that each company and individual are responsible for their own due diligence and
continuous security. CertiK’s goal is to help reduce the attack vectors and the high level of
variance associated with utilizing new and consistently changing technologies, and in no way
claims any guarantee of security or functionality of the technology we agree to analyze.

What is a CertiK report?

A document describing in detail an in depth analysis of a particular piece(s) of source code
provided to CertiK by a Client.

An organized collection of testing results, analysis and inferences made about the structure,
implementation and overall best practices of a particular piece of source code.

Representation that a Client of CertiK has indeed completed a round of auditing with the
intention to increase the quality of the company/product’s IT infrastructure and or source
code.

 Overview

Project Summary

Delivery Date Nov. 27, 2020

Method of Audit Static Analysis, Manual Review

Consultants Engaged 2

Timeline Nov. 25, 2020 - Nov. 27, 2020

Total Issues 7

Total Critical 1

Total Major 0

Total Minor 1

Total Informational 5

Audit Summary

Vulnerability Summary

 Executive Summary

This report has been prepared for Bifrost Finance to discover issues and vulnerabilities in the
source code of their Smart Contract as well as any contract dependencies that were not part of an
officially recognized library. A comprehensive examination has been performed, utilizing Dynamic
Analysis, Static Analysis, and Manual Review techniques.

The auditing process pays special attention to the following considerations:

Testing the smart contracts against both common and uncommon attack vectors.
Assessing the codebase to ensure compliance with current best practices and industry
standards.
Ensuring contract logic meets the specifications and intentions of the client.
Cross referencing contract structure and implementation against similar smart contracts
produced by industry leaders.
Thorough line-by-line manual review of the entire codebase by industry experts.

 Documentation

The sources of truth regarding the operation of the contracts in scope were lackluster and are
something we advise to be enriched to aid in the legibility of the codebase as well as project. To
help aid our understanding of each contract’s functionality we referred to in-line comments and
naming conventions.

These were considered the specification, and when discrepancies arose with the actual code
behaviour, we consulted with the Bifrost Finance or reported an issue.

 Review Notes

The audited commits are
52e2be1422fc69400f91ea0700f13803dd75de66 , d42fd40673bffe61b738459113b11cc3efd91392,
41585a78c93f10a7289a1a3bfe0f6541443f0d40

and the files included in the scope are MintDrop.sol,vETH.sol and IVETH.sol.

Certain optimization steps that we pinpointed in the source code mostly referred to coding
standards and inefficiencies, however 1 critial and 1 minor vulnerabilities were identified during
our audit that solely concerns the specification.

Certain discrepancies between the expected specification and the implementation of it were
identified and were relayed to the team, however they pose no type of vulnerability and concern
an optional code path that was unaccounted for.

 Recommendations

Overall, the codebase of the contracts should be refactored to assimilate the findings of this
report, enforce linters and / or coding styles as well as correct any spelling errors and mistakes
that appear throughout the code to achieve a high standard of code quality and security.

 Findings

ID Title Type Severity

EXH-01 Unlocked Compiler Version Declaration Optimization Informational

EXH-02 Proper Usage of "public" and "external" type Coding Style Informational

EXH-03 Gas Consumption Optimization Informational

EXH-04 Gas Consumption Optimization Informational

EXH-05 Dangerous require Optimization Critical

EXH-06 Code optimization Optimization Informational

EXH-07 Incorrect Rewards Calculation Optimization Minor

Type Severity Location

Language Sepcific Informational IVETH.sol

 Exhibit-01: Unlocked Compiler Version Declaration

Description:

The compiler version utilized in several files uses the "^" prefix specifier, denoting that a compiler
version which is greater than the version will be used to compile the contracts.
The compiler version utilized in other files uses the "<=" prefix specifier, denoting that a compiler
version which is smaller than the version will be used to compile the contracts.
Recommend the compiler version should be consistent throughout the codebase.

Recommendation:

It is a general practice to instead lock the compiler at a specific version rather than allow a range
of compiler versions to be utilized to avoid compiler-specific bugs and be able to identify ones
more easily. We recommend locking the compiler at the lowest possible version that supports all
the capabilities wished by the codebase. This will ensure that the project utilizes a compiler
version that has been in use for the longest time and as such is less likely to contain yet-
undiscovered bugs.

(Biforst - Resolved) The issue is addressed in commit
d42fd40673bffe61b738459113b11cc3efd91392.

Type Severity Location

Coding Style Informational MintDrop.sol

Type Severity Location

Optimization Informational MintDrop.sol L37,MintDrop.sol L39

 Exhibit-02: Proper Usage of "public" and "external"

type

Description:

"public" functions that are never called by the contract should be declared "external" . When the
inputs are arrays "external" functions are more efficient than "public" functions. link
Examples:
Functions like : getRewards()

Recommendation:

Consider using the "external" attribute for functions never called from the contract.

(Biforst - Resolved) The issue is addressed in commit
d42fd40673bffe61b738459113b11cc3efd91392.

 Exhibit-03: Gas consumption

Description:

Below variables change only once, better to define it as immutable to avoid gas consumption.

Recommendation:

We recommend to change the codes as below:

(Biforst - Resolved) The issue is addressed in commit
d42fd40673bffe61b738459113b11cc3efd91392.

 address public vETHAddress;

 address public depositAddress;

 uint public bonusStartAt;

 address public immutable vETHAddress;

 address public immutable depositAddress;

 uint public immutable bonusStartAt;

Type Severity Location

Optimization Informational MintDrop.sol L139

Type Severity Location

Optimization Critical MintDrop.sol L139

 Exhibit-04: Gas consumption

Description:

The function lockWithdraw() could add the modifier isWithdrawNotLocked to save gas in case
of multiple calls.

Recommendation:

We recommend to add the modifier isWithdrawNotLocked .

(Biforst - Resolved) The issue is addressed in commit
d42fd40673bffe61b738459113b11cc3efd91392.

Exhibit-05: Dangerous require

Description:

Because of the condition at line 123,the function lockForValidator() may never succeed.

Neither contracts nor “external accounts” are currently able to prevent that someone sends them
Ether. Contracts can react on and reject a regular transfer, but there are ways to move Ether
without creating a message call. One way is to simply “mine to” the contract address and the
second way is using selfdestruct(x) .link

Recommendation:

We recommend to change it like this or simply delete it.

function lockWithdraw() external onlyOwner isWithdrawNotLocked {}

require(address(this).balance.add(totalLocked) >= totalDeposit, "invalid

balance");

Type Severity Location

Optimization Informational MintDrop.sol L96

Type Severity Location

Optimization Minor MintDrop.sol

(Biforst - Resolved) The issue is addressed in commit
d42fd40673bffe61b738459113b11cc3efd91392.

Exhibit-06: Code optimization

Description:

Since the reward is calculated after the start time, it is better to compare it to the bonusStartAt
instead of comparing with 0 .

Recommendation:

We recommend to change it like this.

(Biforst - Resolved) The issue is addressed in commit
d42fd40673bffe61b738459113b11cc3efd91392.

 Exhibit-07: Incorrect Rewards Calculation

Description:

In MintDrop contract, users must consistently call the function claimRewards() . Otherwise the
rewards is incorrectly calculated.

Example:

User A deposited 1 ether on the first day, no other users deposited until the end of the 7th day.

If user A claim rewards at the end of the 7th day, he will get 100% of the total rewards for 7 days.

 if (now < bonusStartAt) {

 if (myLastClaimedAt[msg.sender] < bonusStartAt) {

 myLastClaimedAt[msg.sender] = bonusStartAt;

 }

 return;

 }

 if (myLastClaimedAt[msg.sender] >= bonusStartAt) {}

If user A forgot to claim rewards, and in the 8th day user B deposited 99 ethers.

At the end of the 8th day, user A claimed rewards, and he will only get down to 1% of the total
rewards for all 8 days.

(Biforst - Response) This rewards calculation is not entirely fair, but it is relatively simple to
calculate.

